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Summary. The synchrotron emission from relativistic electrons
in a thermal plasma with large-scale random magnetic fields is
considered. In this case, the spectral synchrotron power of a
single electron can be given in closed form allowing exact analy-
tical expressions for the synchrotron emissivity, absorption coef-
ficient, intensity and total energy loss of particles to be derived.
The influence of various physical parameters such as gas density,
magnetic field strength, particle’s Lorentz factor on the resulting
emissivities, intensities and energy loss is discussed in detail.
Below the Razin-Tsytovich frequency vg=20Hz (n,/1 cm~3)
(B/1 Gauss) ™!, the spectral appearance of synchrotron radiation
both in the optically thin and thick case is quite different from the
vacuum behaviour. Since in quasar broad line regions, v is of the
order of 10'! Hz the suppression of synchrotron radiation may
explain why most quasars are radio quiet. Likewise, the necessary
physical conditions for the occurrence of synchrotron masering
in the optically thick case are given. We obtain optical depth
|z]> 1 for compact non-thermal sources. The total energy loss of a
single particle is shown to be exponentially reduced at Lorentz
factors less than yg=2.1-10"3 (n,/1 cm~3)'/2 (B/1 Gauss)™!.

Key words: radiation processes — plasma — synchrotron radiation
— relativistic electrons -~ quasar — maser

1. Introduction

The non-thermal continuum emission from radio to optical
frequencies of powerful extragalactic sources is commonly inter-
preted as synchrotron radiation of relativistic electrons in the
magnetic fields of these sources. Although present, the measured
degree of linear polarization is much smaller than the value
theoretically expected for a completely uniform magnetic field
configuration (Angel and Stockman, 1980, Miley, 1980;
Kellermann and Pauliny-Toth, 1981). This usually (e.g. Moflet,
1975) is interpreted by a small degree of “large-scale” homo-
geneity of the magnetic field, where “large-scale” means that the
field line directions are nearly randomly distributed on scales
small compared to the size of the cosmic source (typically
~10'7 ¢m for active galactic nuclei) but large compared to the
Larmor radii of the radiating electrons (r,~10%cm
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(y/10%)(B/1G)~ %, 7: Lorentz factor of the electron), so that the
synchrotron formulae are still applicable.

On the other hand, the magnetic fields are frozen in the highly
conducting thermal plasma in these sources. The detailed anal-
ysis of ultraviolet and optical spectra from quasars (for 3C273,
see Ulrich et al., 1980) has revealed the presence of dense (n, ~ 107
—10° cm ™ 3) warm (T~ 10* — 10*7 K) partly ionized gas (clouds),
probably in pressure equilibrium with hotter (T~10" K, n,~10*
—10% cm~3) completely ionized gas responsible for the X-ray
emission of these objects (intercloud region). For the understand-
ing of the underlying physical processes operating in these sour-
ces, it is highly desirable to investigate in detail the influence of
the thermal plasma on the synchrotron emission of relativistic
electrons. In the present paper, we study the extreme case of
synchrotron radiation in a thermal plasma with completely ran-
dom magnetic fields, since in this case the spectral synchrotron
power of a single electron can be given in closed form (Crusius
and Schlickeiser, 1986), allowing exact analytical expressions for
the emissivity, absorption coefficient, intensity, and total energy
loss of particles due to synchrotron radiation.

Our work generalizes earlier discussions by McCray (1966)
and Zheleznyakov (1966) of the possibility of maser action in
cosmic radio sources, who have used asymptotic approximations
of the synchrotron absorption coefficient. It supplements the
recent numerical study of Cawthorne (1985), who considered
synchrotron masering in a tangled web of magnetic fields con-
fined to the plane of the sky. Our analytical results allow a
detailed discussion of the influence of various parameters and the
behaviour of synchrotron emissivity, absorption coefficient, in-
tensity and energy loss of particles.

The organization of the paper is as follows: In Sect. 2, we
recall the theory of synchrotron emission in a plasma. The
spectral synchrotron power in a thermal plasma with large-scale
random magnetic fields is presented in Sect. 3. In Sects. 4 and 5
we calculate the emission and absorption coefficient for the
special case of monoenergetic relativistic electrons, respectively,
and discuss the influence of the various physical parameters.
Section 6 contains a discussion of the necessary physical condi-
tions for synchrotron masering in a thermal plasma with large
scale random magnetic fields and monoenergetic relativistic elec-
trons. In Sect. 7 we study the resulting synchtrotron intensity in a
homogeneous slab geometry in this case. The mean energy loss of
a single electron due to spontaneously emitted synchrotron
radiation in a thermal plasma with large-scale random magnetic
fields is calculated in Sect. 8. A summary and discussion of the
results completes the paper.
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2. Synchrotron emission in a plasma

Throughout this work we consider the synchrotron emission at
frequencies v which are large compared to the plasma frequency
v, and the non-relativistic gyrofrequency v,=eB/(2nmc) of the
thermal electrons in the magnetic field of magnitude B, i.e.

v>»v,=9-103(n,/1 cm™3)'? Hz (1)
and
v>>v,=2.8-10°(B/Gauss) Hz 2

Restriction (2) is always fulfilled since the typical frequency
emitted by the relativistic electrons with Lorentz factor y is given
by v,=3/2v,y% with v,=v, sinf, where 0 denotes the angle
between the velocity ¥ of the radiating electron and the magnetic
field B. Under these conditions the refractive index n at frequency
v reads

y2\1/2
(1) 0

The influence of the thermal plasma on the synchrotron emission
enters via this refractive index.

The total (i.e. summed over both polarization modes) spon-
taneously emitted spectral synchrotron power of a single electron
in a homogeneous magnetic field is then given by (see
Zheleznyakov, 1966; Yukon, 1968; Melrose, 1980)

2 ©
ph(v,e,w="—‘;”[1+<&)”  dyKss () 4
Y Y in 6

x/s

with

4e’n 2v v, \* P2
q0= 5 X = 1+ — (5)
V3 3vgy? v

3. Synchrotron power in a thermal plasma with large-scale ran-
dom magnetic fields

In a completely large-scale random magnetic field, the total
spontaneously emitted spectral synchrotron power from a single
electron is calculated by averaging p,(v, 6, y) over all possible
values of the polar (6) and azimuthal (¢) angles:

1

1 2n n T
pv, 1) =— f do J df sin 0 p,(v, 0, y)=— f d0 sinf py(v, 0, 7)
4n Jo 0 2Jo

qov w2 (. ©
=ﬁ[l+<7”> ]L d6 sinf L/sinody K3 (). (6)

Recently we have proven the identity (Crusius and Schlickeiser,
1986)

j" 40 sin r/o L4y K53 ()=nCS(x) %)
0 x/sin

with

CS()= Wo () Wod ()= Wy 3 () W_15(3) ®)

where W, ,(x) denotes Whittaker’s function.

The properties of CS(x) and its derivative dCS(x)/dx together
with their asymptotic expansions for small and large x are
summarized in the Appendix. With Eq. (7) used in Eq. (6) we

f= V/(Yo"p)

obtain
qomv v, \2
r\s = 1 -
=52 17|
2y v, \2\3?
cs[w<1+(y—vﬂ>> ]ergs"Hz‘l' ©)
0

For a given electron energy distribution function N(E), the
synchrotron emission coefficient ¢(v) and the synchrotron
absorption coefficient p,(v) in large-scale random magnetic fields
can be calculated as (e.g., Bekefi, 1966)

1 [ ¢]
s,(v)=4— J dE N(E) P(v,y) ergcm ™ 3s ' Hz 'ster™!,  (10)
T Jo
() 02 J‘oodE<d N(E)>E2P( 1 (11)
V)= — —
respectively.

In case of a homogeneous source slab of thickness L, the
emitted intensity is

&,(v)
[1—exp(—pu(v)L)]
1Av)
e(v)L for p(v)L«1
&,(v)
=4 ulv)
&(v)
1 (V)]

and can be determined straightforwardly from the respective
expressions for ¢,(v) and ,(v). In writing (12) as the solution of the
radiation transport equation, it is assumed that the local inten-
sity in the source is isotropic.

I(v)=

for p,(v)L>1 and p,(v)>0 (12)

exp(luv) |L) for |u(MIL>1 and p,(v)<0

4. Synchrotron emission coefficient in a thermal plasma with
large-scale random magnetic fields for monoenergetic electrons

In the following we discuss in detail the synchrotron emission
coefficient for a monoenergetic distribution of the relativistic
electrons,

N(E) dE=n(y) dy=Ngy 6(y —y,) dy. (13)

We choose this particular distribution function mainly for two
reasons: (i) results for more complex distribution functions can be
obtained by simple superposition of the expressions derived for
the monoenergetic distribution presented here; (ii) it has been
pointed out by one of us (Schlickeiser, 1984) that in active
galactic nuclei a natural mechanism exists to accelerate relativ-
istic electrons to almost monoenergetic energies, namely the
combined influence of diffusive shock wave acceleration and
radiation losses of particles in cases where the confinement time
of particles is much longer than the acceleration time.
With Eq. (13) used in Eq. (10) we find

N 2 ) 2332
by =10 [1+<y—°y—"> ]cs[ ’ {1+(y°—v‘l>} ] (14)
83 v 3voy3 v

It is convenient to introduce the dimensionless frequency

v
T9-10° Hzy, (n,/1cm%)!/2

(15)
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and the parameter

do =% (vo/v,) Yo =468 y, (B/1Gauss) (n,/lcm ~3)~ /2, (16)

In terms of these two quantities, Eq. (14) reads

eN)=b f(1+f7? CS[gL(Hf'z)m], (17)
0

with

b, =JoNo%s, (18)

8%o

We are interested in the behaviour of ¢,(f) for small frequencies
(f«1) and large frequencies (/> 1), as well as the influence of the
parameter g,.

4.1. Large frequencies, f>1

For large frequencies, f> 1, (17) reduces to

e /)b, f CS(f/g0)- (19
With the asymptotic expansion (A3) of CS(x),
agx 3 for x«1 (20a)
NOIEE R
e * for x>»1, (20b)
ag=2%3 F2(1 /3)/(57)=1.15128, (20c)

we may derive the behaviour of (19) for values of f small and large
compared to ¢g,.
In case g,>1 we obtain

aogo (flgo)'?
e~ fl90

for 1« f«<g, (21a)

(21b)

which agrees with the behaviour in vacuum. In fact, if we in-
troduce the definitions (15) and (16) we find f/g,=v/v. with
v,=3/2 v, 72 This means that the influence of the plasma is
negligible for frequencies v>>y,v,. For values g, <« 1, we find for
all f>1 that

el f)=~ b{

for 1« gy «f,

&l f)~by go exp(—f/go)- (22)
4.2. Small frequencies, f<« 1
For small frequencies, f« 1, (17) reduces to

b, 1
e(f)~— CS( > (23)

S gof?
In case g,>>1 we obtain

1
exp| — ) for f«gy?«1 24a
&(f)~b, gof xp(gf2> f<go (242)
aogo(f/g0)'®  for g Y2« f«1. (24b)

So the vacuum behaviour (21) continues down to frequencies
f,~gq 112, corresponding to (compare with Melrose, 1980, 4.129b)

2 3\ 1/2
v,,-( Yo ) —420 Y2 n24 B-112 Hz 25)
3v,
For values go,« 1, we find for all f<1,
-1
e(f)=by gof eXp( ) (26)
of ?
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i.e. in case of gy« 1, from (22) and (26) find the emission to be
suppressed in the whole frequency-range.

Figure 1 summarizes the behaviour of the emission coefficient
&,(f) for various values of the parameter g,. In case of go>1
it can be seen that the vacuum behaviour extends down to
the frequency f,~gg 1'% with ¢(f)ocf® for f<g, and

&(f)ocexp(—f/go) beyond g,, whereas below f, the emission is
exponentially reduced due to the presence of the thermal
medium, &,(f)ocf exp(—1/gof?).

The logarithmic bandwidth of the emission of monoenergetic
electrons is therefore

Alog(f)~log(g,)—log(go '/*)=1.5log(go)- 27

The larger g, the larger the logarithmic bandwidth Alog (f), with
its characteristic anisotropy around f=1.

In case of g, <1 Fig. 1 shows the exponential suppression of
emission for all frequencies when compared to the (g, > 1)-case.
The emission is very narrow-banded around frequency f~ 1. This
can also be estimated from (27), which yields Alog(f)=0
for go=1.

4.3. Influence of the relativistic electron Lorentz factor y,
The parameter g, in Eq. (16) may be written as

Yo
gO =
YR

02 L :
0 - -
‘I - —
0!+ -

8 L B
10 28 g0 102 103 10t

-10P| 1““1‘1\|Ll|

w3201 10 107 108 0k 0 b
NORMALIZED FREQUENCY f = v/(y,v,)

(28)
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Fig. 1. Emission coefficient ¢, as a function of normalized frequency f for
90=0.2,03, 0.5, 1, 10, 103, 103, 10*
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where

2
3_V"=2.1 1073 (n,/lcm™3)!/2 (B/1Gauss)" !
Yo

TR= (29)
is called the Razin-Lorentz factor in a random magnetic field.

For electron densities of n,~10% cm~3 and magnetic field
strengths of B~1072 Gauss in quasars, y is of the order of 103
(see also Table 1). Only the electrons with Lorentz factors y, >y
give rise to substantial unsuppressed synchrotron emission,
whose logarithmic bandwidth increases as Alog(g,)oclog(y,) with
increasing y, around v=y,v,. This source would become visible
in the optically thin case only at frequencies above

2 2
VR=V(Po=VR)=VxY, =§:—" —20(n,/lcm ™ %)(B/1Gauss)~* Hz,

0
(30)

which is the Razin-Tsytovich frequency. With the above given
values of n, and B we find that v is of the order 10'! Hz in active
galactic nuclei (AGN), making it plausible that most (90 percent)
of the quasars are radio-quiet if the radio emission can be
associated with the broad line region. However, according to
standard knowledge the filling factors of the broad line clouds are
very small (~10~%), and it is not easy to imagine how the radio
source could be compressed into such tiny clumps. Suppression
could also be associated with the intercloud gas below ~20 GHz
if the magnetic field strength in this region is as low as 1073 G.
The radio-loud quasars we detect may either be those AGN
whose Razin-Tsytovich frequency is low enough (<10'° Hz), or
whose radio emission comes from another population in these
objects not associated with the nucleus.

Table 1 summarizes values of the Razin-Lorentz factor y, and
the Razin-Tsytovich frequency vy in different astrophysical ob-
jects, indicating that objects like molecular clouds, the interstellar
medium, and quasars are visible in the light of synchrotron
radiation only above frequencies of order 108 —10!! Hz.

5. Synchrotron absorption coefficient in a thermal plasma with
large-scale random magnetic fields for monoenergetic electrons

Using Egs. (9) and (13) in Eq. (11) and partially integrating the
RHS of (11) yields

e
= S 4
o) 16my2v [dy * v

2 2732
os(ge [+ M)
3voy v Y =70
N 2 2 2y? 2,2\3/2
=0 | 210 Cs(yg)+ 2 <1— .| i
8mydv| v 3voyov viye v2

(31

where

2y v, \? |2
s () ]
3voYo v
In terms of the normalized frequency f (see (15)) and the par-
ameter g, (see (16)), Eq. (31) can be written as

wi = [CS [i (1+f° 2)3/2]
9o

f3
1 csiy) |
+5(1-2/?) [yT =L ) (32)
with
N
by =g 21 (33)
mv,Yo

As shown in the Appendix, the derivative of CS(y) is given by

acs(y) _ 1
4 = —— W%'%(y)W_%g(J’),
y y

which is negative for all positive values of y. Combining Egs. (34)
and (8) we find

dCS(y)
dy
which yields for Eq. (32)

G olLosr]
1A f) f3[ 3 go( +79)

1
+<f ’ —§> Wos [L(l +f _2)3/2j|W0,§ [L(l +f ‘2)3’2}].
Jo Jo

(36)

(34)

=CS(y)— Wos(») Wos ). (35)

Table 1. Razin-Lorentz factor y; and Razin-Tsytovich frequency vy in different astro-

physical objects

Electron Magnetic field

density strength
Object n{cm™3) B(Gauss) Yr vr(Hz)
Solar flare 10° 102 0.68 2108
Supernova remnant 1072 1073 20 210*
Molecular cloud 102 10°3 210% 2108
Interstellar medium 1 310°¢ 680 7107
Quasar: broad line region 108 1072 2103 210t
Quasar: intercloud region 10° 1073 210 210'°
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For the following discussion it is useful to note the asymptotic
behaviour of (see Appendix)

5/3aqy 23

e_!’

for y>»1 (37a)

(37b)

E'": with a, given in Eq. (20c). If we compare (37b) with (20b) we see
that for large arguments y the second term in (36) dominates the
first term involving CS(y) by a factor O(y). Because of the expres-
sion (1 —2f2) in front of the second term of Eq. (32) the absorp-
tion coefficient can become negative for frequencies f<1 /\/ 2,
allowing for induced synchrotron emission to occur (case (12c)).
We will come back to this point in Sect. 6.

We now consider the behaviour of y,(f) for small (f« 1) and
large (/> 1) frequencies, as well as the influence of the parameter
9o

Wos(Wo ()=~ { for y>»1

5.1. Large frequencies, > 1

For large frequencies, /> 1, Eq. (36) reduces to

b,
el ()

=b—2-W1 s <£> W_l,i<i>,
S 7 \go *%\go

which is positive for all values of (f/g,). Equation (38) implies as a
special case the impossibility of a synchrotron maser in vacuum,
since for v,—0 it reduces to the vacuum behaviour

N 1 v v
odo Wis <——> W_1s (—),
26 vC 206 VC

w(v)= 83 v
with ve=3/2 voy3, for all frequencies v>0.

With Egs. (20) and (37) it is straightforward to derive the
asymptotic behaviour of (38) for values of f small and large
compared to g,.

In case go,>1 we find

(38)

(39)

2/3 aggdPf =3 for 1«f«g, (40a)
ur(f)gbZ' -1 ,—f}
fle Jio for 1«go<f (40b)
which agrees with the vacuum behaviour.
For values gy« 1 we find for all f>1 that
mAf)=byf ™t eIl (41)

5.2. Small frequencies, f< 1

For small frequencies, f« 1, Eq. (36) reduces to

=252 ses( ) @iﬂ @)
2 gof? %5\go 12) " "\gor?/J

In case of g,>1 we obtain

2 23 £-5/3
$a0gdP ™%

L (f)=b,- -1
#elf)=b; %‘3exp( f2> for f«gg 1?«1

for go 1?«f«1 (43a)

(43b)

[

It is interesting to note, that (43a) agrees exactly with (40a),
indicating that the vacuum behaviour continues down to the
frequency f,~gg 1/2. Also it can be seen that at frequencies below
J, the absorption coefficient is negative.

For values gy« 1 we find

b, _ ~1
w(f)~ —7f 3 exp (W)’

a negative but exponentially small absorption coeficient for all
frequencies f< 1.

(44)

5.3. go»1

Figure 2 summarizes the behaviour of the synchrotron absorp-
tion co-efficient p,(f) in the case g,> 1. Exact numerical calcul-
ations of (36) are compared with the asymptotic results (40) and
(43) for a value of g,=10* For frequencies f>f,=g, /=102
we obtain the vacuum case behaviour, with pu(f)ocf ™53 for
f<go, whereas below f, the absorption coefficient becomes nega-
tive, p,(f)oc —f =3 exp(—1/gof?). As can be seen, apart from the
vicinity of f,, the asymptotic expressions agree well with the exact
curve.

In Fig. 3 Y=yu,/(b, g3'*) is plotted against X =f/g; '/* for
do=1,10,102, 10°. For values g, > 10? the form of the curves does
not change. This becomes plausible from (40) and (43), since we
can write

23 a, X5
—12X 3 exp(—1/X?) for X»1

for 1« X «g3/? (45a)
(45b)
which is independent of g,. This means that the minimal and

maximal values of y,(f) are proportional to b, g3/2, whereas the
corresponding frequencies are proportional to gq /2.

5.4. gox1

Figure 4 summarizes the behaviour of the absorption coefficient
w,(f) in the case g,« 1. Exact numerical calculations of (36) are
compared with the asymptotic results (41) and (44) in the case g,
=0.3. At small frequencies, f« 1, the absorption coefficient is
negative, u,(f)oc —f 3 exp(—1/gof?), but exponentially small,
whereas at large frequencies, f>1, it is positive u(f)ocf ~*

exp(—f/go)-

S 20 L T ) T

v, 1¢L gy=10 \ _
é 1; Jo \ 2 . =zl
= (8

= 04

= 00

e

=08

3

S 12

& -16

220

= 3 10-2 10" 1

NORMALIZED FREQUENCY f

Fig. 2. Absorption coefficient y, as a function of normalized frequency
Sf=v/(yov,) in the case g,=10* together with the asymptotic expansions
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0.15

-0.05

-0.10
10! 1 10 102

f/ g[—)1/2

Fig. 3. Normalized absorption coefficient p,/b,g3/% plotted against nor-
malized frequency f/gq /2 for g4 =1, 10, 102, 108

= 12 :
S g,=0.3 !
~
= 9 F \ -
& 1 expl-f/g,)
VO

—
Z6 T —
o= \
i \
S 3 ~ ' =
= ‘\
S \
= 0 \ -
== expl-1/g,f) o
A T

, i
2 30?2 '

107 1 10

NORMALIZED FREGUENCY f

Fig. 4. Absorption coefficient x,(f) together with its asymptotic expan-
sions in the case g,=0.3 (negative part of u, expanded by a factor 100)

The scale of the negative part is extended by a factor of 100
over the positive part.

6. Necessary conditions for synchrotron masering

For a synchrotron maser, of the type described above, to occur in
nature, three conditions have to be satisfied:

(1) The absolute value of the (negative) synchrotron absorp-
tion coeflicient has to be larger than the sum of all other (positive)
absorption coefficients, in particular the free-free absorption
coefficient pgp:

{1 an)l > tpr(fu) (46)

with (Melrose, 1980, p. 182)

Upp(V)=gn2v 2 T,32 cm ™1 47

for v>»>v,, { a number in the range 0.1 to 0.2, T, in Kelvins, and n,
in particles per cm?; f,, is the frequency of the maser-line, i.e.
where p,(f) reaches its minimum.

(2) When making use of the simple expression (3) for the
refraction index n it has been assumed that the relativistic elec-
trons generate the synchrotron photons but that they do not
affect the propagation of the electromagnetic waves through the
plasma. We can neglect the role of the relativistic particles when
evaluating n provided (Ginzburg, 1979)

Vv Cih(v)
> .
vy 4mvy,

(48)

(3) The absolute value of the optical depth 7 has to be greater
than unity for a significant enhancement of the radiation to
occur:

[t =lulf )l L>1,

where L is the thickness of the emitting slab.
In Sect. 53 we found for the frequency f,, and for the
minimum value- of the absorption coefficient u,(f3):

(49)

fu=063g417? (50)
and
t, (far)= —0.08 b, gg'> cm ™, (51

which holds well for g, > 102. Even for g, = 10 the deviations are

small (f,,=0.6 g5 1'%, u(fyr) = —0.06 b, g3/2). For g, =1 the devi-

ations are somewhat bigger (fy, =0.48, p(f))= —0.003 b,).
Using Egs. (50) and (51) in Eq. (46) we obtain the condition

N
—2>0.06 /2 gg 34 y3 T; %2 =3.10"5 n2/8 y3/* B=5* T, 312, (52)

ne

and the maser-frequency is given by

vy =0.63 gg 12 v,y =2.5-10% n3/* y%/* B~'/2 Hz, (53)

where in the second step in (52) and (53) equation (16) has been
used. Condition (48) can be rewritten as

No<«3.7-10° nl2 g5 12 y2 B

=1.7-10* n2* 932 B2 cm ™3 (54

and restricts the number of relativistic particles.

In writing u,(fy,) in the form (51) we have to introduce the
condition g,>1, since for g, <1 the absorption coefficient be-
comes exponentially small, which is not contained in the formula
(51). go>1 is equivalent to

n,<22-105y2 B2 cm ™3 (55)
From (49) we get the condition
L>210"n2g532y4 Ngtem

=2103n3*y32 B~32 Ny ! cm, (56)

which should be satisfied by the thickness L of the slab.

In Fig. S the condition (54) does not affect the diagram in the
shown range of parameters. The condition g,>1 in the form of
Eq. (55) is shown as a vertical line. For maser-action to be
possible the points (Ny/n,, n,) must be to the left of it. The
condition that the free-free absorption is small enough in the
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Fig. 5. Physical restrictions of a synchrotron maser. Maser action is
possible above the lines with slope 9/8 (free-free absorption negligible)
and left to the vertical lines (g,>1).

form of Eq. (52) is a straight line with slope 9/8. A synchrotron-
maser can only work on the upper-left side of it. These restric-
tions are shown for three different combinations of (B/Gauss, y,)
=[(1,102); (1,10%); (10~ 2, 102)] each at two temperature (T, = 10%,
107 K). Condition (56) has to be treated separately.

If the density of the thermal plasma is given, the magnetic
field strength and/or the Lorentz factor must be large enough, so
that the vertical boundary is to the right of the actually present
value.

For the length L not to become too large (L should be smaller
than the dimension of the source) the Lorentz factor has to be
small and the field strength large enough.

High temperatures are necessary in order that free-free
absorption becomes negligible at high densities n,. The maser-
frequency v,, depends on the Lorentz factor and the modulus of
the field as vy oc(yo/B)'/>

We now want to emphasize that another necessary condition
has been used implicitly: namely the assumption of a mono-
energetic distribution of the relativistic electrons. As can be seen
from Eq. (11) the energy distribution must have a slope >2 in
some energy interval, otherwise the absorption coefficient is
positive for all frequencies.

A mechanism which may produce nearly monoenergetic elec-
trons is the interplay of first and second order Fermi acceleration
(energy gain processes) with synchrotron and inverse Compton
losses (Schlickeiser, 1984). The particles accumulate at an energy
where gains and losses exactly balance each other.

A further constraint is associated with the radiation field.
Cawthorne (1985) has pointed out that inverse Compton
scattering and stimulated Compton scattering severely restrict
the feasibility of synchrotron masers. For example, to show that
stimulated Compton scattering is likely to be important, consider
the parameters used in Eq. (62), n,0;L~2. For
norL(KT,/mc?) <ty ~40  requires  KT,/mc*<20, ie.
T,<10'! K. A source of 10'! K and size 1 pc at a redshift z=1
has a flux density of only 0.1 mJy at 1 GHz. So for high-redshift
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powerful radio sources the problem with stimulated Compton
scattering becomes well apparent.

7. Emitted synchrotron intensity from a homogeneous slab

In case of a homogeneous slab of thickness L the emitted
synchrotron intensity from monoenergetic relativistic electrons
in a thermal plasma with large-scale random magnetic fields is
given by Eq. (12) after inserting the derived emission coefficient
(17) and the absorption coefficient (36).

7.1. Optically thin case

In the optically thin case, |u(f)|L«1, the intensity follows
directly from the emission coefficent ¢,(f),

L(fN)=elf)L,

the behaviour of which was thoroughly discussed in Sect. 4.

(57)

7.2. Optically thick case

In the optically thick case, |u,(f)|L> 1, we find according to (12b)
and (12c) that

% for u(f)>0
L(f)~ f( 1) (58)
= exp(udNIL) for p(f)<O.
L1 ()

Here the emitted intensity depends very much on the sign of the
absorption coefficient: drastic amplification of emission is poss-
ible in ranges where p,(f)<O0.

Figure 6 shows the optical depth t(f)=p,(f)L in the case
where g, =100 and L=0.05/b, with b, according to (33). For f—0
and f—o0 we have 1(f)— +0, which means that the emission
becomes optically thin (region 1 and 5). Since the absorption
coefficient goes through zero, there is a small frequency interval
where the emission is also optically thin (region 3). Regions 2 and
4 are the maser and self-absorbed regions, respectively.

T T | T
o :i E D.Q.®: 0PT. THN
= 4— : :I I @: MASER —
= L : @: SELF-ABSORBED
b P : T
= @\ N
& - j L =0.05/by
= 0r | i
= [ | ]
Sk ! -

_L E 1 :l I l
02 10" 1 100 102 103

NORMALIZED FREQUENCY f

Fig. 6. Optical depth () in the case g,=10? and length L=0.05/b,.
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In Fig. 7 the intensity spectrum of the radiation is plotted for
the optical depths t and 2t with 7 according to Fig. 6. For f—0 we
get from (24a)

I(f)~b;y go Lfexp <g 7

0.

) for f«gg 1?=10"1. (59)
Since gof%« 1, in this case, the intensity grows very rapidly. It
follows a continuous transition to the “maser-line”. The next part
of the spectrum can be approximated by (see (21a), (24b) and
(40a), (43a)):
3b, B

L(f)=—f* for go 2 <f<f. (60)
This region of the spectrum resembles the classical optically thick
Rayleigh-Jeans spectrum. f, is that frequency where t again
becomes smaller than unity, ie. the source is optically thin for
f>f. and the spectrum is described by the vacuum behaviour of
the emission coefficient (21a, b):

ag g3 f17? forf,<f<g,
go exp(—f/go) for f>»g,=10

In the case where g, =1, i.e. yo =7y, we find for the optical depth
at the maser frequency v,,

Ir(f)zblL{ (61)

ot 1= (ts) () (i) )
[tvmlgo =1= 106 cm 3 10°2G 10*cm ™3/ \1pc
(62)
with
n, B \!
VM(g0=1)=09 106Cm_3 IO_ZG GHz (63)

where we have used typical parameter values for compact non-
thermal sources (Jones, O’Dell, Stein 1974; Burbidge, Jones,
O’Dell 1974). Thus the occurrence of a synchrotron-maser might
be possible in these sources.
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Fig. 7. Synchrotron-spectrum for optical depth 7 (dashed line) and 2z
(continuous line) with t from Fig. 6.

8. Mean energy loss of a single electron due to spontaneously
emitted synchrotron radiation in a thermal plasma with large-scale
random magnetic fields

The analytical expression (9) for the spontaneously emitted syn-
chrotron power of a single electron allows a simple calculation of
the total energy loss:

dE d ®
—=mcz_z=_J de,(V,'y)=

0

gor ® y2v2 2v< yzvf,)m:l
=—— d 1+ CcS|—l1 . 64
2 Jo vv[ v’] [3vov2 T ©9
Introducing as before
S=v/lyv,), (65)
2 ol 7= (66)
g:— Va/V ‘)):—,
2 e Yr
and
! for f«1
) or <
R L (©7)
9 —~  forf»l1
g
yields
dy  mgevp [ [ RN
—= - dffCSy+\| dff 1 CSQ) |- (63)
dt 2me? | Jo 0

Using the asymptotic behaviour of y(f) for f small and large
compared to unity, we may approximate (68) as

=i | wres(a)+ | wres(l)
™ "ame L), V)t WS
Jares(g) ] ares ()]
+| arres(— )+ | arrres(t
0 af 1 g

2 3 0
— _To% [-I duu ' CS(w)

2
2me* | 2}y,

1 [e e}
+§g_1 duu~? CS(u)

1/9

+g? fw duu CS(u)]

1/g

(69)

after obvious changes of the integration variable. We consider the
two limits g> 1 and g« 1, respectively.

8.1. Vacuum case g>1 (y>yg)

From an order of magnitude analysis, we see that the three terms
in (69) are of respective order

1:1:¢4% (70)
so that in the range g> 1 we may neglect the first two terms, to
obtain

d nvz 2 © 1/g

il S _MH duu CS(u)— J duu CS(u)]. (71)
dt |g51 2mc 0 °
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The first integral in (71) solves exactly (see Appendix, A17) as

© 32./3
f duu CS(u)=—\/, (72)
o 81
whereas in the second one we may approximate (26a)
CS(uy~ayu~ 273, (73)
since u< g~ '«1, yielding
1/g 3
j duu CS(u)~—a, g~ *3. (74)
0 4
Inserting (72) and (74) in (71) we find
d 16/3nqov2g*[  18/3
AR LNCLL i PELNC P
dt 18me> | 128
4 qo v3 y? 81\/5 p\ 43
=— 1— ao| — ' (75)
3./3 mc? 128 YR

The first term corresponds exactly to the behaviour in vacuum
(see, e.g., Blumenthal and Gould, 1970). The second term is the
lowest order plasma-correction.

8.2. Plasma case g<1 (y<yg)

In this case the argument of the function CS in (69) is very large
compared to unity, u>g~!>1, so that we may approximate
according to (20b)

CS(u)y~u~1e ™" (76)
We obtain for Eq. (69)
d nqovi[3 [®
it ~— qoz”[—f duu2e
dt g« 1 2me 2 1/g
1 0
+—g‘1f duu3e “4g?% e‘”g]. 77
2 /g
Partially integrating the two integrals gives
2
& ~ o z" [Z —l/g_le—l/urgz o1/
dt |y« 2me* | 4 4
1 3
+|——=)E,(1 78
<4g 2) 1 /g)] (78)

where E(x) denotes the exponential integral of order one. Using
the asymptotic expansions of E,(x) for large arguments
(Abramowitz and Stegun, 1970, p. 231)

1 2
E(x)xx"le | 1-——+— (79)
X x
gives
dy 3nqovy 5 _y. —2Tmq0vh
— (pyp) — e M= 92 ¢RI, 80
dt (<ve) 2mc? gmc: | (80)

This result has the following implications. If the Lorentz factor y
of the relativistic electrons is smaller than the Razin-Lorentz
factor 7y, then the electrons lose an exponentially small amount
of energy by synchrotron radiation compared to the vacuum-
case.
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9. Summary and discussion

In this paper we discuss the effects of a thermal plasma on the
synchrotron emission process. We assume a large-scale random
magnetic field, which is suggested by many polarization obser-
vations of radio sources. This gives us the opportunity to use a
closed expression for the synchrotron power of a single particle.
The investigation of the emission-coefficient, the absorption-
coefficient, and the resulting intensity spectrum in a plasma with
random magnetic fields is therefore more transparent, compared
to previous discussions by other authors who either used aprox-
imations of the relevant formulas or made numerical calcul-
ations. We study synchrotron radiation of a monoenergetic
distribution function (all relativistic electrons have the Lorentz
factor y,) since in this case the influence of the plasma shows up
in its purest form. The emission and absorption coefficients for
any other distribution can be obtained by a superposition of our
results for different energies (one integration over energy).

The influence of the thermal ionized medium is described by
the parameter g,, which in turn depends on three source para-
meters (go=(3v/2v,) 7o =468 7, Bn; '/* in cgs units). The emis-
sion coefficient and the optically thin spectrum is exponentially
cut down for frequencies v<v,=gg /2 y,v, At the same fre-
quency the absorption coefficient becomes negative allowing a
maser-type emission. This effect produces a “line” in the spectrum
whose height and width depends on the optical depth. At high
frequencies (v>v,) we rediscover the vacuum case behaviour.

For large electron densities n, of the plasma, free-free absorp-
tion prevents the formation of the maser-line, restricting syn-
chrotron masering to objects with low n,. This restriction is
temperature-dependent, due to the dependence of the free-free
absorption coefficient upon T,(ugpoc T, 3/?). In the last part of the
paper we calculate the total energy loss of a single relativistic
electron moving in a thermal plasma. In case of g>»1 the in-
fluence of the medium is negligible, dy/dtocy?, as in the vacuum
case. But for g <1 the medium heavily suppresses emission in the
whole frequency range. The energy loss is exponentially reduced,
dy/dtocy? exp(—yg/y), with yg=2v,/3v,. Consequently particles
with y >y, lose energy through the synchrotron mechanism until
they reach the energy Ex=yzmc® Then the plasma suppresses
the emission drastically, which leads to negligible synchrotron
energy loss.
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Volk at the MPI Kernphysik, Heidelberg, where part of this
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Appendix: properties of the function CS(x)
The function CS(x) is defined as the integral

1 n 0
CS(x)=—j do sin9j

dt K5 5(1),
TJo x/sin@

(A1)
where K 5(t) is the modified Bessel function of the second kind
and of order 5/3. In a recent paper (Crusius and Schlickeiser,

1986) we have proven that
CS() = Wos (x) Wo (9= Wys (%) W_y 4 (%) (A2)

where W, (x) denote Whittaker functions. We also gave the
asymptotic expansions of R(x)=(nx/2) CS(x) from which we
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1
immediately obtain

agx~ 3 for x«1
CS(x)~y _, _ (A3)
x te™ for x»1
with
24/3
a0=5— I'%(1/3)=1.151275. (A4)
T

To calculate the first derivative CS(x) we differentiate (A1) with
respect to x and obtain

dcS(x) 2 ("2 X
=—— dO K53 | — (AS)
dx nJo sinf
Substituting 6 =n/2 — f§ yields
dCS(x) 2 (2 x
=—=| dBKss|—: (A6)
dx TJo cosf

which is a special case of the formula (Gradshteyn and Ryzhik,
1965, p. 741)

/2
J ap D g, ( - >=1 W) W0 (A7)
0 cosf cosff/ 2x
so that (A6) becomes (A=1/2, u=5/6)
dcs 1 1
- Y L0 Wy (9= [CS()— Was () Wy (01
X x x
(A8)

With the asymptotic expansions of the Whittaker functions for
small and large arguments (Abramowitz and Stegun, 1970; Buch-
holz, 1953) we derive

5/3

——ag X~ for x«1

dCS(x) 3
dx 1

——e
x

(A9)

-x

for x»1

From (A8), (A3) and (A9) we deduce

5/3aqx" %3 for x«1

Wos (%) Wo (x)=~ { (A10)

-x

for x»1

Finally we calculate the integral

[ o u u
j= J duu CS(u)= J. duv? K3 (‘) Ky (‘)
o 0 2 2

b f duu W%’% (u) W_%’g (u)

0

(A11)

where we used the relation

x \1/2
KA(Z)=(52> Wo,4(22). (A12)

Using (Gradshteyn and Ryzhik, 1965, p. 858)

J dxx*" W, (x) W_, (%)=
0

T=07% sin(m3)” 81

Tlp+ 1) T(p/2+1/2+ 1) T(p/2+1/2~ p)
01+ p/2+ ) T(1 +p/2—A)

(Rep>2|Reu|—1)
and (Erdelyi et al., 1954, p. 334)

(A13)

Jw dx x* ! K (ax) K (ax)=2""3a~*[T(p)] !
0

1 1 1 1
'F[z%p+u+V)] F[E(p—uH)] F[E(pﬂt—V)] F[E(p—u—V)]

(A14)

(Rep>[Rep| +[Rev])

gives

16 (1 2\ 32 /1 2
j=% F<§> F(§> ~>7m F<§> F<§> (A15)
With the reflection formula
I'(z) I'(1 —z)=m/sinnz (A16)
we obtain

6= 323 (A17)
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