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Abstract

Axially symmetric, isothermal pulsations of a geometrically thin disk
rotating around a nonrotating relativistic object are investigated. The
disk is assumed to be isothermal in the vertical direction and to have a con-
stant vertical scale height. It is found that there exist global pulsation
modes trapped in an inner region of the disk. Eigenfrequencies of the
modes are in the range of O to «,,,, where k,,. is the maximum value of an
epicyclic frequency in the disk. For an oscillation to be trapped in the
disk, the eigenfunctions must have at least one node in the vertical direc-
tion. The trapping is related to the fact that, in relativistic disks, the radial
distribution of the epicyclic frequency has a maximum at a certain radius.
The results suggest that the presence of global trapped oscillation modes is a
general characteristic of thin relativistic disks. The oscillation period ob-
tained is briefly compared with observations.

Key words: Accretion disks; Active galactic nuclei; Compact stars;
Pulsations; Trapped oscillations.

1. Introduction

It is well accepted that disk accretion onto a compact object is the machinery
which generates tremendous energy in various astronomical objects such as active
galactic nuclei, galactic X-ray sources, cataclysmic variables, and so on. Hence,
observations of widely ranged periodic or quasi-periodic variabilities in many of these
astronomical objects naturally lead astronomers to the idea that some of these vari-
abilities are attributed to pulsations of accretion disks. Thus, oscillations of accre-
tion disks have been investigated by many authors.
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At present, however, the investigation appears to be limited mainly to geometri-
cally thin, nonself-gravitating, nearly Keplerian disks because of their practical im-
portance and of their simplicity. Even for such restricted disks, the work done so
far is mainly on local oscillations [Van Horn et al. (1980); Cox (1981); Livio and
Shaviv (1981); Cox and Everson (1983) for nearly vertical oscillations, and Kato
(1978, 1979); Kato and Fukue (1980); Blumenthal et al. (1984) for nearly radial oscilla-
tions]. A general investigation of local oscillations (nonaxisymmetric oscillations
with short wavelengths both in the vertical and in the horizontal directions) was done
recently by Carroll et al. (1985).

Investigations of local oscillations are of importance to know the basic properties
of disk oscillations. Local oscillations, however, cannot be the direct source of ob-
served variabilities because incoherent oscillations at various places cannot produce
a regular or semiregular large amplitude variation as a whole. Studies of global
oscillations of disks are thus necessary in relation to observed variabilities. Such
studies have been done little except by Kato (1983) and Okazaki and Kato (1985).
In this paper, we examine global, isothermal oscillations of an isothermal relativistic
Keplerian disk. The results show that there are axisymmetric global oscillation modes
which are trapped in an inner region of the disk. These trapped oscillations will be
common in relativistic disks as long as disks are geometrically thin. They are im-
portant observationally, because the inner region of the disks is the region where the
most luminosity comes, and thus such oscillations will produce large amplitude varia-
tions.

The presence of trapped oscillations can be examined by considering how the
propagation region of local waves is distributed in disks, as is done often in the study
of nonradial oscillations of stars (e.g., Unno et al. 1979). Let us consider axisymmetric
local oscillations with frequency w. If the oscillations are mainly radial and have
no nodes in the vertical direction, the wave propagation region in the radial direction
is specified by w>«, where « is the epicyclic frequency. If the oscillations have node(s)
in the vertical direction, however, a propagation region is changed to the region of
w<k. This will be mentioned later somewhat in detail.

In the latter case of w< k, there is the possibility of the trapping of oscillations
when the disks are relativistic. This is because, in the relativistic disks, the epicyclic
frequency « has a maximum «,,, at a certain radius near the inner edge of the disks
(Kato and Fukue 1980), and decreases both inwards and outwards in the radial direc-
tion. Hence, around £, there is a limited region of w<<x. In this paper we shall
demonstrate that the trapping of global oscillations around the radius of r=r,,.
really occurs, although the case considered is special.

In section 2 the unperturbed isothermal disk model is described and an isothermal
perturbation is superposed on that disk. Then, a set of partial differential equations
for a perturbed quantity is derived. When the disk’s vertical scale height is constant
in the radial direction, this set of equations is separated into ordinary differential equa-
tions. Section 3 gives the results on vertical oscillations. Section 4 discusses wave
trapping in the radial direction, and the results on radial oscillations are given in
section 5. The final section is devoted to discussion. The general relativistic epicyclic
frequency is derived in the Appendix for the convenience of the reader.
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2. Unperturbed Disk Model and Equations for Perturbations
2.1. Unperturbed Disk Model

As an unperturbed steady, axisymmetric disk, we consider a geometrically thin,
nonself-gravitating perfect fluid rotating around a nonrotating compact object. The
radius of the compact object is supposed to be less than 3r,, wherer, is the Schwarzschild
radius specified by its mass M. It is assumed that the disk (with a constant molecular
weight) is isothermal in the vertical direction but not so in the radial one. We adopt
the cylindrical coordinates (r, ¢, z) which are centered on the central object and have
the z-axis in the direction perpendicular to the disk plane. General relativistic effects
are simulated in terms of the so-called pseudo-Newtonian potential ¢ defined by

oM
(}‘2-{—22)1/2—-—1‘!;

(r, 2)= 2.1
(e.g., Paczynsky and Wiita 1980).

Since the disk is geometrically thin, the pressure force is negligible in the mo-
mentum balance in the radial direction, and the centrifugal force balances the grav-
itational one. Then it follows that the angular frequency £2(r) of disk rotation is
equal to the relativistic (strictly speaking, pseudo-Newtonian) Keplerian one Q(r)

defined by
_ i— asb 1/2 . GM 1/2
a0=(75) =y @2
The equation describing the hydrostatic balance in the vertical direction is
L o g
o a7 = Qg% 2.3)

Here p, and p, are the unperturbed density and pressure, respectively. Since the disk
is isothermal in the vertical direction, equation (2.3) is easily integrated to give the
density distribution in the vertical direction:

s )= puot) exp | = —2712—(7} . 24)

Here p,,(r) is the unperturbed density on the equatorial plane and its functional form
remains to be specified later. The scale height H(r) of the disk is given by

H(r)=—,§-§(% , @.5)

where c¢,(r) is the isothermal sound speed:

cs(r)=(—%:—>l/2 . 2.6)

2.2. Equations for Isothermal Perturbations
A small-amplitude axisymmetric perturbation is superposed on the disk men-

© Astronomical Society of Japan ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1987PASJ...39..457O

rI9B7PAS) T .30 4570

460 A. T. Okazaki, S. Kato, and J. Fukue [Vol. 39,

tioned above. The perturbation is assumed to be isothermal:

n=cps, Q.7

where p, and p, are respectively the Eulerian perturbation of the pressure and that of
the density. Although we adopt this assumption for mathematical simplicity, it is
adequate for the case where the thermal time scale associated with the perturbation is
less than the dynamical one.

The equation of continuity for the perturbation is

9o, , & LN
at + rar (rpour)+ az (pouz)""09 (28)

and the equations of motion describing the perturbation are

e 20uy=— plo gy £, o2 (2.9)
s | £u,=0, (2.10)
aa”; =——;0——a;’71+pﬁ:2—%, 2.11)
where «(r) is the epicyclic frequency defined by
x2=2g(29+r—‘ff—) : 2.12)

and (u,, uy, u,) is the velocity associated with the perturbation. Substituting equa-
tion (2.2) into equation (2.12), we find

K_[ GM(r—3r,) T2

" (2.13)

Note that the epicyclic frequency has its maximum [(y/ 3 —1)/(2+4/ 3 )(144/ 3 )*]/2 X
(GM]r,®)* at r=(2+4/ 3)r, in this pseudo-Newtonian treatment, while it does at
r=4r, in the relativistic one [see equation (4.1) of Kato and Fukue (1980) or equation
(A16) of this paper].

We seek for solutions which vary as exp (iw?), where w is the frequency of the
perturbation. Eliminating u; and u, from equations (2.8)—(2.11) after replacing d/ot
by iw, we have a set of partial differential equations for u,(r, z) and A(r, z):

du,  dlnrpn  _ #h, z oh, | o

i

or dr T w < 0z H® oz T cs? hl) ’ (2.14)
aa}f - dlng" hy= ——;—(wz—xz)uf , (2.15)

where 4, is defined as
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h(r, 2)= i’) L (2.16)
0

Here we have used the assumption that the disk temperature Tj is independent of z,
and also the relation 9 In p,/0z=—z/H* which comes from equation (2.4).

It is difficult to solve a set of equations (2.14) and (2.15) in general. Hence, as
the first step, we restrict our consideration to the mathematically simplest case where
the scale height H is constant in the radial direction. Note that in this case the tem-
perature varies as

Toocr™(r—ry)™2. (2.17)

The solution of equations (2.14) and (2.15) then can be written in separable
forms:

u,(r, 2)=iwy(r)g(2) ,
h(r, 2)=f(r)g(2) . (2.18)

Substitution of equations (2.18) into equations (2.14) and (2.15) gives a set of the first-
order ordinary differential equations for y(r) and f(r):

d dinr 1
=y (0~ KOS (2.19)
d din T,
=@ =)+ (2.20)

and the second-order ordinary differential equation for g(z):

g _ dg

2 S
H 72 Zdz

+Kg=0, (2.21)
where K is a constant. The value of K is determined, with relevant boundary condi-
tions, as the eigenvalue of equation (2.21). The basic equations to be solved in this
paper are thus equations (2.19)-(2.21).

3. Vertical Component of Isothermal Pulsations

Equation (2.21) is solved first to find the vertical component of oscillations, g(z),
and the eigenvalue K. To do so, we introduce the dimensionless vertical coordinate
& defined by

5:%_, 3.1)
Equation (2.21) is then reduced to
d? d,
9O | gie)=0. 6.2
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Boundary conditions for equation (3.2) are taken on the equatorial plane (¢=0) and at
great distances (|&| — o).

We distinguish oscillations by the parity of their vertical components. Hence,
the condition on the equatorial plane is

g =0 (odd mode)
or d at £€=0, (3.3)
d—g=0 (even mode)

where even (odd) modes denote those whose vertical components of oscillations are
symmetric (antisymmetric) with respect to the equatorial plane.

Next, we shall discuss the boundary condition to be posed at great distances.
The proper condition at large |&| is that the energy density for perturbations is bound,
i.e., all quantities such as p,u,%, p,u.?, and p, are bound at great distances. Inspecting
equations (2.9) to (2.11) and equation (2.16), we see that the above condition is satisfied
if and only if p,'/?h, is bound at sufficiently large |£|. Hence, by use of equations

(2.4), (2.18), and (3.1), the relevant boundary condition at great distances is finally
reduced to

exp (—&%/4)g(é) is bound in the asymptotic region |&|-—o0 . 34

Solutions we are interested in are those which satisfy conditions (3.3) and (3.4) and are
regular everywhere at finite £. Thus, we find a solution for g(¢) in the form:

g(E):Ss(ao‘l‘azSZ‘l""+a2n52n+"'), (3.5)

where a,#0 and s=>0.

Equation (3.2) is to be valid for all values of &, so that when the series (3.5) is sub-
stituted into equation (3.2), the coefficient of each power of & can be equated to zero.

s(s—1)a,=0,
(s+2n4-2)(s+2n+1ay, . —(s+2n—K)a,,=0 (n=0,1,2,.--). (3.6)

Since a,+0, the first of the recurrence relation (3.6) tells that s=0 or s=1. Hence,
the series (3.5) denotes an even or an odd mode, corresponding to s=0 or s=1, re-
spectively. It should be noted that the boundary condition (3.3) is automatically
satisfied.

It follows from the second of the relation (3.6) that the presence of a finite or an
infinite number of terms in series (3.5) depends on the choice of K. If the series does

not terminate, its dominant asymptotic behavior can be inferred from the coefficients
of its high terms:

Qynys 1
a,. =, a8 n—o. 3.7

This ratio is the same as that of the series for £&™exp (£?/2) with any finite value of

m. Consequently, it is obvious that this behavior for g(&¢) violates the boundary
condition (3.4).
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Fig. 1. Functional form of g(&) exp (—&%/2) for the lowest four eigenmodes in the vertical
direction.

Therefore, series (3.5) must terminate. This means
K=2m+s, (3.8)

where m is a non-negative integer and the value of s is either zero or unity. We may
express this equation in terms of a number z:

K=n (n=0,1,2,-:+). (3.9)

Equation (3.2) becomes then

dzdgg(f) ¢ dg(sg) +ng($):0 (n=0, 1’ 2, . .) . (310)

Here an even (odd) n corresponds to an even (odd) mode of oscillation.
As is well known, a solution of equation (3.10) is the Hermite polynomial of

order n. Hence, we may put g(§) as
9©=H,&) (n=0,1,2,.--), (3.11)

because the normalization constant is arbitrary now. The functional form of
g(&) exp (—£&?/2) is shown in figure 1 with n=0 to 3.
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Fig.2. Keplerian angular frequency 2« and epicyclic frequency « in the pseudo-Newtonian
potential as a function of r. The upper thick curve represents 2x and the lower one
k. Note that # has the maximum [(v/3—1)/2++/3)A++/3)IVAGM]rs®)? at
r=Q2-+4/3)r;. The thin horizontal lines show values of eigenfrequency w for the
three lowest modes with #=1 under H/ry=3x10"? and p,=constant. They cor-
respond to (0, 1), (1, 1), and (2, 1) modes from top to bottom.

4. Wave Trapping in the Radial Direction

Before solving the set of equations (2.19) and (2.20) with K=n, we examine what
oscillations are trapped in the radial direction as standing waves. For this purpose,
it is convenient to rewrite equations (2.19) and (2.20) into canonical forms:

dy 1
dr = — w2csz (a)z—nQKQ)rpooToF, (4.1)
dF
L= =)o T) Y 42)
where
Y:rpooy and F:f/To- (4.3)

Qualitative features of the oscillations can be obtained by the local treatment, in which
the r-dependence of coefficients in equations (4.1) and (4.2) is neglected. After taking

Y and F to be proportional to exp (ikr), we have the dispersion relation for the present
problem:
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(=) (0*—nLg)
- Wi’ '

k2

4.4)

Equation (4.4) shows that local waves with n=0 (no node in the vertical direction)
can propagate in regions where o>« and must evanesce in the other regions. On the
other hand, local waves with n+0 can propagate in regions where w <<« or w>n'/2Q¢
and must evanesce in the other regions. To visualize the propagation region definitely,
the radial dependence of two kinds of frequencies, 2 and «, is shown in figure 2
by thick curves. As was noted in section 1, the epicyclic frequency « in relativistic
disks does not monotonically increase with decreasing r. It arrives at the maximum
Emax at r=(24-4/ 3 )r, (in the pseudo-Newtonian potential), and vanishes at r=3r,.

From figure 2 we see that local waves with n=0 can propagate everywhere in the
disk when w>«.,,, While they can propagate inside LR, or outside LR, when o <<t p,.
(cf. Kato and Fukue 1980). Here LR, and LR, are radii where o=« and defined so
that LR,<LR,. On the other hand, waves with n+0 can propagate in a bound
region between LR, and LR, when w=<rk,,, although they penetrate partially into the
outer propagation region of w>n'/20Qx.

The above consideration on the propagation region of local waves suggests that
when n=£0, there will exist global oscillation modes trapped in the region between
LR, and LR,. In the next section we shall show this by numerical calculations.

5. Numerical Results on Radial Pulsation

In this section we solve equations (2.19) and (2.20) with relevant boundary con-
ditions. Since our main attention is on the oscillations which are trapped in the
region around k=« .y, the boundary conditions to be adopted are that the wave am-
plitude is negligible both near the inner edge of the disk (r=3r,) and at radii far outside
LR,. In our present problem, however, a wave propagation region of w>n'/2Q,
appears a little outside of LR,, as discussed in the previous section and seen from figure
2. Hence, as the outer boundary condition, we take here that the wave amplitude is
negligible at a radius r,,, just inside this outer propagation region. The boundary
conditions adopted are thus

f(r)=0 at r=3r, and r=r,y;. é.D

The radius r,,, cannot be specified before solving equations (2.19) and (2.20); it is ob-
tained simultaneously with w, because r,, depends on the value of w.

If the amplitude of oscillations obtained by use of the above boundary conditions
is sufficiently small at » >3r, and r <r,;, the oscillations are well trapped and boundary
conditions (5.1) are relevant. Otherwise, the adoption of boundary conditions (5.1)
is too artificial, because in real situations the oscillations penetrate away into the
surrounding propagation region. In other words, trapping is incomplete. Final
numerical results, however, show that the wave trapping is rather complete in the
case when the disk is thin. A brief discussion on the validity of the boundary con-
ditions (5.1) will be presented in the last section.

In the following we classify each eigenmode by the numbers of nodes of eigen-
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Table 1. Effects of the density profile on eigenfrequencies.

d1n pg, o
dinr ©,1) an 2,1
5 9.666 (—2)' 9.400 (—2) 9.154 (—2)
0 i, 9.664 (—2) 9.400 (—2) 9.153 (—2)
=5 9.659 (—2) 9.394 (—2) 9.148 (—2)

* Eigenfrequencies are measured in units of (GM/rg®)/2. H/rg=3x 1072 is assumed.
' The number in parentheses denotes a power of ten.

functions y(r) and ¢g(¢). For example, the (m, n) mode represents the one which has
m node(s) in the radial direction and » node(s) in the vertical direction (— co<<& <<+ o0).
Since ¢(&) is an Hermite polynomial, even (or odd) » denotes the mode whose eigen-
function is symmetric (or antisymmetric) with respect to the equatorial plane. When
we refer to the eigenfrequency w of the (m, n) mode in particular, we write it as w(m, n).

It is noted here that parameters which will appear when equations (2.19) and
(2.20) are changed into dimensionless forms are d In p,,/d In r and H/r,.

In figure 2 the thin horizontal lines show the values of eigenfrequency w for the
three lowest eigenmodes with n=1 under H/r,=3x10~% and p,,=constant. They are
for (0, 1), (1, 1), and (2, 1) modes from top to bottom. It is readily observed that the
value of @ decreases with increase of the node number in the radial direction. As is
supposed from the form of equation (4.4), the results are less sensitive on the functional
form of p,(r). Table 1 shows this; differences among results for dln p,/d In r=-45,
0, and —S5 are very small. Hence, we consider only the case of p,,=constant for the
rest of this paper. '

Figure 3 shows radial dependence of eigenfunctions y(r) and f(r) and the cor-
responding k*(r) profile with H/r,=3x10"* and p,,=constant. Figures 3a, 3b, and
3c are for (0, 1), (1, 1), and (2, 1) modes, respectively. In the upper part of each figure,
y(r) and f(r) are respectively shown by solid and dashed curves, while in the lower
part k*(r)r,2. Short vertical lines crossing the horizontal axis denote the radii LR,
and LR,, which are, in a rough sense, good indicators of the radial extent of the oscilla-
tions. Also shown in each lower figure is the value of 7 defined by

LR,

1:& k(r)dr . (5.2)
LR,

The integral value I is helpful to compare numerical results with those obtained by

the WKBJ method. This comparison will be made in the next section.

Figure 3 also shows that the radial extent of the lower mode is narrower than that
of the higher one. In other words, the width of trapped regions becomes narrower
with increasing w.

Figure 4 shows the eigenfrequency w as a function of H/r, for some modes. A label
attached to each line denotes the mode. Solid lines are for (m, 1) modes and broken
lines are for (m, 2) modes with m=0 to 2. This figure shows that the value of w(mn, n)
for given m and » gradually increases and approaches ., with decreasing H. It is
also shown that the value of w(m, n) increases with decreasing m or with increasing x.
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Fig. 3. Radial eigenfunctions, y(r) and f(r), and corresponding k%(r) profile for the three
eigenmodes shown in figure 2: (a) the (0, 1) mode, (b) the (1, 1) mode, and (c) the (2, 1)
mode. Eigenfunctions y(r) and f(r) are respectively denoted by solid curves and
dashed ones in the upper panel while k%, is in the lower one. In the upper panel, the
curves are normalized so that the maximum value of f(r) is unity, Units of y(r) are
50/(H]/rg)? for (0, 1) mode and 20/(H/rg)? for (1, 1) and (2, 1) modes. In each figure,
short vertical lines crossing the horizontal axis represent LR; and LR,, the radii of
w=r. The eigenfrequency w is written in the upper panel in units of (GM/r;®)!/2, Also
written in the lower panel is the value of integral I.

6. Discussion

We have shown that trapped modes of isothermal global oscillations are present
in an inner part of a relativistic thin disk. The disk adopted is isothermal in the
vertical direction and its vertical scale height is constant in the radial direction. For
oscillations to be trapped, they must have nodes in the vertical direction. Their
frequencies are in the range of 0 to ., (see figure 2).

The trapping comes from the facts that (i) the region of w<x is a propagation
region of local waves of @ when n+0, and (ii) in relativistic disks the epicyclic frequency
x has a maximum and thus the region of w <« is bound when w<tp,,. The former,
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Fig. 4. Eigenfrequency w as a function of the scale-height H. A label characterizing the
mode is attached to each line.

i.e., (i), is a result of the local dispersion relation (4.4), and is free from the global
structure of disks. The latter, i.e., (ii), is also a general characteristic of thin relativistic
disks. Hence we consider that the presence of trapped wave modes is free from the de-
tailed disk structure, and is a common feature of thin relativistic disks.

First we shall discuss the validity of the boundary conditions adopted. We have
limited our attention to the case of thin disks with H/r,<10~*. This is because bound-
ary conditions (5.1) are relevant only in such thin cases. If the disk is thicker (the
pressure is higher), the trapping of waves is incomplete for the two following reasons.
With increasing disk thickness, the eigenfrequency of (trapped) oscillations decreases
and thus the radial width of the surrounding evanescent regions becomes narrower
(see figure 2). Second, the damping rate of wave amplitude in the evanescent region
becomes lower (notice that |k%| becomes smaller when the disk is thicker). Because
of these two situations, the boundary conditions that the wave amplitude vanishes at
r==3r, and r=r,,, are found to be irrelevant when the disk is thick. In particular, the
inner boundary condition imposed at r=3r, seems to be so when H/r, is larger than
0.1. (As will be seen below, the outer boundary condition is still relevant for disks
with H/r,~0.1.) In other words, when the disk is thick, more elaborate boundary
conditions such as radiation conditions should be adopted. In such cases, the trap-
ping is incomplete and oscillations will become damping ones. Examination of these
cases is beyond the scope of this paper.

Next we compare our results with those derived from the WKBJ method, which
has been used extensively in the field of nonradial oscillations of stars to find the
asymptotic solutions of eigenvalues and eigenfunctions.

If the leakage of waves into surrounding regions is taken into account, the fre-
quency w becomes complex as w=w,+iw; with v;/0.<1, o, and »; being the real
part and the imaginary part of w, respectively. Then equation (4.4) shows that the
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radial wavenumber k(r) in the region between LR, and LR, is written approximately
as

2 2)1/2 2 2\1/2 .
k) =ik = E— 0GR 0) (el o), 6.1)

w.QxH F—w? o,

where £*—o,*<#?, »,* has been used. According to the WKBJ method (Shibahashi
1979; Unno et al. 1979), the eigenvalue condition is then given by

SLRzkr(r)dr:(m+1 2z (m=0,1,2,---). (6.2)

The damping rate w; of the oscillations due to leakage into the region of w,>n"20Q;
is estimated from

LR, 1 To
tanh (S kidr>z — 7 exp (-2& |k|dr) (6.3)
R,

LR, L

as

w; ~_1_ _I{_ 2 /¢ LR: n.QKQ——ICQ dr -1 ro

@y = 4 < rg ) <SLR1 lQKZ krrgz) exp ( 2§LR2 1k]dr>
<exp (—28 |k|dr> . (6.4)
LR,

Here r, is the radius where w,=n"?Qg. In deriving equation (6.4) from equation (6.3),
equation (6.1) has been used.

Comparison of condition (6.2) with the integral I given by equation (5.2) shows
that the WKBJ method is accurate enough to find the eigenvalue in our present prob-
lem.

The value of |k| vanishes near r=LR, and r=r,, and between them it has the
maximum value which is smaller than n*/?/H. If |k|=n?/2H is substituted into equa-
tion (6.4), we have

@

: /
1 1/2
- L exp <——n T > , (6.5)

where /=r,—LR,. In the case of H/r,=3x10"% and n=1, we have /~1.5r, and the
exponential term becomes ~exp (—50). This implies that the leakage of waves into
the region of r>r, is practically negligible, as is already known by numerical calcula-
tions.

We should mention here briefly some intrinsic differences between the results ob-
tained in this paper and those in local vertical pulsations. The latter is for one di-
mensional (i.e., vertical) local oscillations. An ensemble of local incoherent oscilla-
tions with Keplerian periods results in a continuous spectrum in periods. On the
other hand, the former is for two dimensional global oscillations. The inner part of
the disk pulsates coherently with a time scale determined only by the mass of the
central object.

Now, we discuss the observational appearance. When an optically thick disk
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pulsates isothermally, there is no variation in disk luminosity. (Pulsations of disks
studied in this paper vary the disk luminosity only when the disks are optically thin
and the rotation axes of the disks are oblique to the line-of-sight direction.) Isothermal
pulsations, however, have been considered only to show a concrete example of trapped
oscillations. The presence of trapped oscillations will not be limited only to isothermal
disks as mentioned before. In general cases time variations of disk Iuminosity will
occur by pulsations. Furthermore, since the pulsating region is the inner part of
disks, which is the most luminous region of disks, pulsations will effectively produce
much change in the total luminosity.
The pulsation period P is

P=8.75><10‘4[ e ]( AA;@ ) s (6.6)

Periods of low modes are, roughly speaking, 1 ms for neutron stars and 1 d for 10°M
black holes because w~ gz ~0.1(GM/r,*)"/?. In this paper our attention was only
on the case when the central object is nonrotating. However, the results that there
are trapped oscillation modes with @ ~«r,,, Will be extended to the case when the
central object is rotating, because the circumstances leading to their presence (see the
second paragraph in this section) are unchanged. When the central object is rotating,
the frequency of trapped oscillations will become higher in comparison with that in
the case of no rotation, because «,,,, is higher in the rotating case than in the nonrotat-
ing one. In the Appendix the radial dependence of « in general relativity is derived.
Equation (A16) shows that the general relativistic k.., observed at infinity ranges
from 1/16 (Schwarzschild black holes) to ~0.2 (extreme Kerr holes) in units of
(GM/rg3)”2.

Cyg X-1, a black hole of ~10 Mg, exhibits rapid X-ray variability whose time
scale covers a range from milliseconds to seconds (e.g., Liang and Nolan 1984). Al-
though the variability is chaotic, the power spectrum of the variability shows that
there is a peak at a time scale somewhat smaller than 10 ms (Meekins et al. 1984).
This time scale is consistent with pulsation periods provided that the central black hole
rotates rapidly. Moreover, we know that several active galactic nuclei show rapid
X-ray variability with a time scale of ~1d. For example, the nucleus of Seyfert
galaxy NGC 4151 exhibits frequent flarelike events on a time scale of days (Lawrence
1980). In addition to NGC 4151, two Seyfert galaxies NGC 3227 and MCG 5-23-16
also show variability consistent with a time scale of ~1 d (Tennant and Mushotzky
1983). The time scales of these variabilities are of the same order of the pulsation
periods of accretion disks around black holes of ~10° M,

It is natural in the theoretical viewpoint that many accretion disks pulsate. Ob-
servations of several objects appear to support this idea. Of course, it is necessary
to investigate pulsations in more realistic disks in order to compare periods of eigen-
modes with observations. We expect, however, that the results in this paper are
qualitatively insensitive to disk models as long as geometrically thin disks are con-
sidered.

The authors thank an anonymous referee for pointing out an error in interpreting
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numerical results by the WKBJ method and for drawing their attention to the
asymptotic theory of stellar nonradial pulsations. Numerical computations were
performed at the Data Processing Center of Kyoto University.

Appendix. The Relativistic Epicyclic Frequency

To derive the relativistic epicyclic frequency x observed at infinity, we consider
particle orbits in the equatorial plane of the Kerr metric. Units with G=1=c are
chosen throughout the Appendix. Greek indices refer to four coordinates. In
Boyer-Lindquist coordinates, the metric in and near the equatorial plane is (Novikov
and Thorne 1973)

ds?=—

A 4 (dg—wdiy -+ drdzr, (A1)

or in contravariant form
(6)2__A /6)2_2Aw(a)(6>+d<a>2
as )~ rd\ ot rid \ ot /\ o¢ rt \ or
r—2M [/ 0 \? 0 \?
() + () (A2)

Here functions 4, 4, and » are defined by

A=r*—-2Mr-+a?, (A3)
A=r*+ra*+2Mra*, (A4)
w=2Mar[A , (A5)

where a is the angular momentum per unit mass of the Kerr black hole (0<Za< M).
The energy-momentum tensor of a particle of unit mass is

T =u"u, (A6)
where u* is the particle’s 4-velocity dx*/ds. Then, the Euler equation is
ut ur=0. (A7)

We first consider a circular motion in the equatorial plane. Then it follows from
equation (A7) that the angular velocity of a circular motion observed at infinity is

M1/2

~__d¢
2 =W:-_—t g

(A8)
In this and all subsequent formulae, the upper sign refers to direct orbits, while the
lower one refers to retrograde ones. The redshift factor u* at the radius of the circular
orbit, which we denote by U?, is then

r3/2-ag M2

Ut= r (PR =3Mr R 2aM R

(A9)
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Fig. Al. The functional form of the epicyclic frequency «(r) observed at infinity for various
values of the hole’s specific angular momentum a. Solid curves are for direct orbits
and broken curves for retrograde ones. Values of a of two adjacent curves differ by
0.2M; from the left, they decrease from M to 0 for solid curves and increase from 0.2M
to M for broken ones. For comparison, #(r) in the pseudo-Newtonian case is indicated
by the dash-dotted curve.

Now, we consider a perturbed motion in the equatorial plane, i.e., a motion in-
finitesimally deviated from the circular one. The coordinate velocity is written as

dx* .
dt

(1, v, 3 +v*,0). (A10)

Here v” and +# denote the infinitesimal velocity associated with the perturbation. To
derive linearized equations for v" and v*, it is convenient to rewrite the Euler equation
(A7) into the form

dx* dx* o ; dx"_
[( - )J+ L lnu] = o, (Al1)

.y
3

Here, u’ is expressed as
t_Ut 1 UtzA_Q 4 Al2
ut = +( ) s ( (1))?) ) ( )

which is a linearized form of equation (A1).
Substituting equations (A10) and (A12) into equation (All), we finally obtain
linearized equations for v" and v*:

ov"
ot

F24AMV 23 29¢ =0, (A13)

3 1/2p1/2(p2 __ /2p1/2
v _*_[M rt*(r*—6Mr +-8aM/?r1/2 3a2)]w:0.

at - ZA(r3/2iaM1/2)2 (A14)
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The epicyclic frequency « is immediately derived from these equations:

<~aa—;2—+/c2>( " )=0, (A15)

where

I€2

M(r*—6Mr +8aMY2r/2—3g2)
= r2(r3/2iaM1/2)2 M (A16)

The functional form of #(r) is shown in figure Al for various values of a. For com-
parison, x(r) in the pseudo-Newtonian case is also shown.
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