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Summary. Two-dimensional hydrodynamic calculations of an accretion flow on 
to a compact object fed by a stellar wind in a close binary system with a mass ratio 
of unity are performed. We consider the case in which a stellar wind is driven by a 
thermal pressure. The parameters specifying the problem are the sound speed of 
gas, Co, at the surface of the mass-losing star and the ratio of specific heats, y. 

In the case of y=5/3, it is found that the flow is rather unstable when 
Co=1.0-1.4, and a unique solution is not found. In the case of c0=1.5, we found a 
retrograde rotating accretion disc separated by a bow shock from a wind. In cases 
of Co>=2.0, we have a conical accretion shock. In the cases of y=4/3, we have a 
conical accretion shock if c0> = 1.2. In some models a flow changes its pattern 
sporadically, and we term it a flip-flop flow. 

Time histories of a mass accretion rate and an angular momentum accretion 
rate on to the compact object are monitored. Their behaviour is not steady 
generally. The accreted angular momentum flux becomes negative in some 
models. In the flip-flop flow, the angular momentum accreted by the compact 
object changes it sign sporadically. This phenomenon is consistent with the 
random-walk model of a period fluctuation of Vela X-l and 4U1538-52. 

1 Introduction 

A substantial fraction of X-ray sources in binary systems are known to exhibit regular X-ray 
pulsations. They are called X-ray pulsars and are believed to be rotating, magnetized neutron 
stars. In these interacting binary systems, matter with angular momentum flows from a 
companion star towards the rotating neutron star, the response of which is the change of its 
rotation rate, i.e. a spin-up or a spin-down of the neutron star. 

Five X-ray pulsars among some 20 presently known ones show a more-or-less steady spin-up 
(Henrichs 1983). The spin-up behaviour has been generally understood in terms of the torque 
exerted by an accretion disc formed in a Roche lobe overflow. 

Other sources show spin-up and spin-down behaviour. Even for five sources exhibiting a clear 
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786 T. Matsuda, M. Inoue and K. Sawada 

spin-up trend, the change in pulse period is not always monotonie on short time-scales 
(Rappaport & Joss 1983). 

Vela X-l (4U0900—40) particularly shows a spin-down after a spin-up period (Nagase 1981; 
Nagase etal. 1984). An average spin-up rate is P/P=-1.5x l0_4yr-1, while the spin-down rate is 
P/P=2.6xl0_3yr-1. Furthermore, Vela X-l shows fluctuations in the pulse period within the 

time-scale of an orbital period superimposed on the secular trend of pulse period change. The 
value of P fluctuates between P/P=4xl0-3 and -3xl0“3yr_1 (Nagase et al. 1984). 

Makishima et al. (1986) observed 4U1538—52 and reported that its pulsation period changes in 
a random-walk manner, which is very similar to Vela X-l. 

Such a behaviour is difficult to understand in terms of a simple Roche lobe overflow model. 
These sources are most likely to be undergoing accretion from a stellar wind. Nagase et a/. (1984) 
interpreted the observed pulse-period change as a random-walk process, in response to random 
polarity reversals in external torque exerted by the stellar wind to the neutron star. The reversals 
seem to occur on time-scales comparable to the orbital period. Boynton et al. (1984) formulated 
the same idea. Makishima et al. (1986) supported this idea on the basis of their observation. 

Let us overview accretion theories proposed so far. Davidson & Ostriker (1973) assumed that 
the net angular momentum with respect to the neutron star of all gas entering the cylindrical 
volume with an accretion radius ra is accreted by the neutron star. Here the accretion radius is 
defined as 

ra=2Gm/(y2+c?), (1.1) 

where m, V and cs are the mass of the neutron star, the wind speed and the sound speed of gas, 
respectively. 

The velocity vector of a wind particle makes an angle with respect to the line connecting the 
mass-losing star and the neutron star. Assuming the stellar wind to be spherically symmetric, 
there exists a density gradient in the stellar wind across the accretion cross-section. Therefore, the 
target face will capture different amounts of particles at the far-side and at the near-side. 
Considering these, Shapiro & Lightman (1979) gave a formula for the captured specific angular 
momentum, /: 

/=i/2Q^7, (1.2) 

where Q is the orbital angular velocity and rj is an efficiency of the angular momentum accretion. 
The efficiency factor r¡ is unity if the wind velocity is assumed constant. An essential point in the 
above theory is that ^ can never become negative. 

In the presence of a radial velocity gradient, the value of rj is (Wang 1981) 

77~l+7/4(A/R* —1), (1.3) 

where A and R* are the separation of two stars and the radius of the mass-losing star, respectively. 
In our case R*=A/2, and therefore 7=2.75. Wang (1981) argued that rj can become negative if 
there is significant azimuthal anisotropy in the stellar wind density and/or velocity. However, 
such a situation seems to be rather unrealistic in X-ray binaries (Masai 1984, private 
communication). 

On the other hand Davies & Pringle (1980) showed that the net accreted angular momentum 
should be zero in order for any accretion to occur, irrespective of the existence of a density/or 
velocity gradient across the target face. This result is based on the asumptions: (i) that the 
accreting star is point like; (ii) that the accretion line joins the point mass; (iii) that no dissipation 
occurs as the particles stream along the accretion line. 

Livio et al. (1986) and Soker et al. (1986) confirmed this conclusion by the numerical 
simulations of three-dimensional inhomogeneous accretion. Anzer, Borner & Monaghan (1986) 
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787 An accreting compact object 

performed two-dimensional calculations and obtained a similar conclusion. These authors used 
the smoothed particle hydrodynamics (SPH) technique proposed by Gingold & Monaghan 
(1983). 

None of the theories described above can account for the spin-down phenomena of a neutron 
star except for a very unrealistic situation, since the specific angular momentum accreted by a 
compact object is generally positive or zero. Even if the accreted angular momentum were 
negative, a steady solution could not account for the random-walk model of the spin-up/down of 
neutron stars described before. Taking this into consideration, it is interesting to see if more 
realistic calculations can predict unsteady solutions exhibiting both positive and negative angular 
momentum captured by a neutron star. 

The purpose of the present paper is to perform 2D hydrodynamic calculations of wind-fed 
accretion on to a compact object in order to estimate the amount of angular momentum accreted 
by it. We compute rather low Mach number cases in order to make the point clear. 

Numerical simulations of a stellar wind in a close binary system has been performed by 
Biermann (1971) and Sorensen, Matsuda & Sakurai (1975), although they did not compute the 
amount of angular momentum transfer. Recently, we (Sawada, Matsuda & Hachisu 1986b, Paper 
1 hereafter) performed numerical simulations on wind-fed accretion and obtained flow patterns 
using a modern technique of computational hydrodynamics. In the work we actually observed the 
amount of angular momentum transfer, but we were disappointed to find that no systematic trend 
in the accreted angular momentum was obtained. 

In the present paper, we re-attack the problem using a finer mesh spacing, a sophisticated grid 
system, a faster computer, a longer computation time and more careful parameter search. We 
report here quite unexpected results: p can become negative even without the assumption of 
azimuthal anisotropies in the stellar wind density and/or velocity. Therefore, our result is 
different from the theories of Shapiro & Lightman (1976), Wang (1981) as well as Davies & 
Pringle (1980). Moreover, solutions are generally unsteady and the accreted angular momentum 
changes its sign in a random manner, although the boundary condition on the mass-losing star is 
kept constant in time. 

2 Assumptions 

In a case of wind-fed accretion, a mass-losing star need not fulfil its own critical Roche lobe and its 
mass is generally much larger than a mass-accreting neutron star. In spite of this, we consider a 
semi-detached binary system of mass-ratio unity in order to make the condition the same as in 
Paper 1. Therefore, it may not be appropriate to compare our model directly with, say, Vela X-l. 
Nevertheless, we believe that the results are not heavily dependent on this assumption as far as a 
basic hydrodynamic behaviour of an accretion flow is concerned. 

We restrict our attention to within a thin disc with a constant thickness on the rotational plane 
in order to make the calculation two dimensional. Three-dimensional calculations will be 
performed in a near future. 

We neglect cooling, heating, viscosity, magnetic fields and radiation. The gas is assumed to be 
an ideal one with the specific heat ratio y. We solve a 2D Euler equation with a time-marching 
method. At an initial stage, uniform tenuous atmosphere is assumed to fill all over the 
computational domain except inside the stars. Gas begins to be ejected perpendicularly to the 
surface of the mass-losing star at r=0. 

We followed the time evolution of the system over a sufficient period. Since the method of 
solution is the explicit Osher upwind scheme, second-order accurate in space and in time, we can 
obtain an unsteady solution as well as a steady one. The scheme is described separately (Sawada et 
ai 1986c). 
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788 T. Matsuda, M. Inoue and K. Sawada 

The grid systems used in the present calculation are of multi-box or multi-zone types, which 
were used in our previous paper (Sawada et al. 1987). In order to check the result, we use two 
grids having different sizes and different numbers of meshes (see Fig. 1). The smaller one (grid A) 
has 73 circumferential grids and 38 radial ones, while the larger one (grid B) is a 73x48 grid. The 
radius of the mass-accreting object is set to be 0.01A, where A is the separation of two stars. In a 
typical condition this size is comparable to one of a white dwarf or a magneto-sphere of a neutron 
star with a magnetic field, £~1012G. 

As to the boundary condition on the mass-losing star, the density, the sound speed and the 
velocity of gas just inside the surface are specified. Since the density can be normalized by the 
density mentioned above, we take the above density to be unity. The velocity is set to be zero; this 

Figure 1. (a). The smaller multi-box type grid used in the present calculation (grid A) having 73x38 meshes, (b) The 
larger grid (grid B) having 73x48 meshes. 
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789 An accreting compact object 

was assumed to be 0.0125 in Paper 1. We are considering, therefore, a thermally driven wind such 
as the solar wind rather than a radiation driven wind. If we fix the sound speed and vary the 
velocity of ejected gas, we may simulate a series of solutions corresponding to the radiation driven 
wind. We meet some numerical difficulty in such a case, and we restrict ourselves here to the 
thermally driven wind. 

The boundary condition on the surface of the mass-losing star can be computed by solving a 
Riemann problem between the state just inside the surface and that just outside. Parameters 
specifying the present problem, therefore, are the sound speed of gas c0 and y. We will normalize 
the velocity by AQ. 

At the interior points of the compact object, the density and the pressure of gas is set to be so 
low that all the gas arriving on the surface of the mass-accreting star is swallowed. At the outer 
boundary, a similar condition is assumed. 

We computed the cases with c0=1.0, 1.2, 1.3, 1.4, 1.5, 2.0, 2.5, 5.0, and y=5/3 and 4/3. In 
Paper 1, we examined only cases with Cq=1.0 and 2.5 with y=5/3. Assuming the system velocity 
AQ = 100kms-1 as an example, the above sound speeds correspond to a temperature of 
106-2.5x107K. 

3 Numerical results 

Here we describe the cases for y=5/3 first. When c0=1.0-1.4, puzzling phenomena occur and 
these cases will he discussed later. All calculations described in the following three subsections 
are performed both on grid A and on grid B, and essentially the same results are obtained. 

3.1 RETROGRADE-ROTATING DISC 

In the case of c0=1.5, we obtained flow patterns represented in Fig. 2, which shows the density 
contours and the Mach number contours at t= 19 and 20, respectively. They are computed on grid 
B. The accretion disc about the compact object is rotating clockwise: a retrograde-rotating disc. 
The accreted angular momentum is negative. 

A bow shock detached from the compact object is observed. The flow pattern is not completely 
steady. Weak shocks (or pressure waves) are formed close to the compact object, and they 
propagate upstream to merge into the bow shock, which is itself steady. 

In order to show that the present result does not depend on the particular choice of an initial 
condition, we performed an experiment. At first we fixed c0 to be 0.75 to obtain a Roche lobe 
overflow. At t=6, we changed c0 from 0.75 to 1.5 to study further evolution. We obtained a 
retrograde-rotating disc identical to the previous result shortly after the change, and this pattern 
persisted up to t=20. 

3.2 A SHOCK SHOWING FLIP-FLOP BEHAVIOUR 

When we raise c0 further to 2.0 we obtain an unsteady accretion shock as shown in Fig. 3, which 
shows flow patterns at t=10, 11 and 12. 

At t= 10 and 11 the shock is detached from the compact object and a small accretion disc seems 
to be formed about the compact object. A disc at r=ll possesses a tiny spiral. The sense of 
rotation of the accretion discs and the direction of the bow shocks are different from time to time. 
The flow pattern shows such flip-flop behaviour all the time. It is noted that a sonic line 
surrounding the compact object is closed and therefore effects originating in the outer boundary 
do not disturb these flow patterns. 
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which is divided by 20 contour lines with an equal increment, (b) Mach number contours. The large white region is a 
subsonic pocket. Velocity vectors in each of the four grids are displayed. Vectors on the innermost five shells near the 
compact object are omitted in order to avoid confusion, (c) As for (a) except r=20. (d) As for (b) except i=20. 
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Figure3. (a) Density contours for the model with Co=2.0and/=5/3 ati=10. The density range is 0.001-0.5. (b) Mach 
number contours for the same model at i=10. (c) Density contours aW=ll. (d) Mach number contours aU=ll. (e) 
Density contours at i=12. (f) Mach number contours at f=12. 
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An accreting compact object 795 

This flip-flop nature is best illustrated by the time history of the angular momentum accretion 
rate, which not only oscillates heavily but also changes its sign sporadically. In Fig. 4, the 
mass-loss rate from the mass-losing star, is shown by the solid line and the mass accretion rate, 
ma, on to the compact object by the dashed line. The latter quantity is made 10 times larger to 
show it clearly. The angular momentum accreted by the compact object in a unit time is 

monitored at the innermost shell, and is also shown in Fig. 4. It is computed on the rotating frame 
and is normalized by (/IQ)2. 

3.4 STEADY CONICAL SHOCK 

By the conical shock we mean a 2D cross-section of a conical shock, which is attached to the 
compact object. In the case of c0=2.5, we have a rather steady conical shock. Fig. 5 shows a 
typical stage. This flow pattern is essentially the same as that obtained in Paper 1. 

TIME 

3. 0 

!. 5 

O I. 0 
co 
\ LO 
(J 1. 6 
CO CO o 
^ i. 0 OQ co 

0. 5 

0. 0 

Figure 4. Time histories of the non-dimensional mass transfer rates and the non-dimensional specific angular 
momentum accreted by the compact object for the models with y=5/3. The mass-loss rate from the mass-losing star is 
shown by the solid line and 10 times the mass-accretion rate on to the compact object by the dashed line. The time is 
made dimensionless by Q~l, and therefore 2jt is an orbital period. 
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Figure 4 - continued 

© Royal Astronomical Society • Provided by the NASA Astrophysics Data System 



19
8 

7M
N

RA
S.

22
6.
 .7

85
M

 

An accreting compact object 797 

*14 

0. 6 0. 8 
TIME 

Figure 4 - continued 
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number contours and velocity vectors. 
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(b) 
v/i n r 0.000 
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Figure 6. (a) Density contours of the model, ranging from 0.001 to 0.1, with co=5.0 and y=5ß at t=l. (b) Mach 
number contours and velocity vectors. 
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800 T. Matsuda, M. Inoue and K. Sawada 

When we raise c0 to 5.0, we have a very steady conical shock shown in Fig. 6. The mass 
accretion rate and the angular momentum accretion rate are also very steady as is shown in Fig. 4. 
Such an accretion flow is a typical one obtained in the axisymmetric calculation of the accretion 
(Shims, et al. 1985). 

3.4 NON-UNIQUE SOLUTIONS FOR LOWER WIND SPEED 

A puzzling point is that the present result of the case c0 = 1.0 using grid A shows a rotating disc with 
a spiral shock and is separated by a bow shock from a wind. This flow pattern is different from that 
in Paper 1, in which we had no bow shock. Then we recomputed the same model using grid B 
shown in Fig. 1. In this case we had a disc rotating clockwise, i.e. a retrograde-rotating disc! The 
bow shock is not steady. It emerges from the compact object, propagates towards the mass-losing 
star, disappears, and emerges again. 

We guess that the flow pattern for low c0 is very unstable and is sensitive to the slight variation 
of parameters, a numerical domain and a mesh size. In order to test this hypothesis, we computed 
the cases for c0=1.0-1.4 using two grids shown in Fig. 1. 

The results obtained using grid A are different to those using grid B. In grid A, we have an 
accretion disc surrounding the compact object for co=1.0 and 1.2. We can observe two 
spiral-shaped shock waves characteristic of an accretion disc in a Roche lobe overflow (Sawada, 
Matsuda & Hachisu 1986a, b; Sawada et al. 1987). We can also observe a bow shock separating 
the accretion disc from a wind gas. In the case of c0=1.3 and 1.4, we have a retrograde-rotating 
disc with a bow shock and a conical shock, respectively. On the other hand, the corresponding 
results in grid B show a retrograde rotating disc having an unsteady bow shock for co=1.0-1.4. 

Such a ridiculous situation can be understood in terms of the stand-off distance of the bow 
shock defined as the shortest distance from the compact object to the bow shock. The position of 
the bow shock is determined by a delicate balance of a wind pressure and a downstream pressure. 
In the present low wind speed range, the bow shock is very detached from the compact object and 
the stand-off distance is very large. Therefore, it is very sensitive to the choice of the grid, the 
boundary condition and even the initial condition in this parameter range. 
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Figure 7. Time histories of the mass acretion rate and the angular momentum accretion rate for the model with 
7=4/3. 
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Figure 1-continued 
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Figure 1-continued 

© Royal Astronomical Society • Provided by the NASA Astrophysics Data System 



19
8 

7M
N

RA
S.

22
6.
 .7

85
M

 

An accreting compact object 803 

*10 

Figure 1-continued 
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Figure 1-continued 
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Figure 1-continued 
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806 T. Matsuda, M. Inoue and K. Sawada 

We calculated an axisymmetric accretion flow on a compact object (see Shima étal. 1985). The 
Mach number at the upstream flow is fixed to be unity. In this case, the bow shock does not settle 
into a fixed position but propagates upstream, although there is a supersonic region close to the 
compact object. After the shock leaves the numerical domain, a new shock emerges. There is no 
steady flow. If the upstream Mach number is larger than unity, we would have a steady solution. 

In our case, there is a subsonic region surrounding the mass-losing star, and therefore the shock 
entering into the subsonic region disappears. Therefore, we may not expect a steady flow in such a 
case. 

The present bow shock has a large subsonic pocket behind it. When the subsonic region extends 
to the outer numerical boundary as is so in the present case, the flow may be influenced by the 
outer boundary condition. 

We must conclude that the flow in this parameter range is very unstable and that no unique 
solution exists. A final solution sensitively depends on an initial state, boundary conditions, the 

(W DENSITY 
GRMMR=1.333 
CO =1.300 

T I ME: 

LOOP: 
1 1.000 
153570 

TMRX= 0.500 
TM I N= 0.001 

Figure 8. (a) Density contours of the model, ranging from 0.001 to 0.5, with c0=1.3 and 7=4/3 at i=10. (b) Density 
contours at i=ll. 
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An accreting compact object 807 

grid used and a slight change of parameters. We do not give numerical results for C0 = 1.0-1.4 
here. 

3.5 RESULTS FOR X=4/3 

We also computed the cases of y=4/3. These cases are not so spectacular as the cases of y=5/3. 
All cases except co=1.0 show conical shock patterns both on grid A and on grid B. Solutions are 
not steady in a strict sense, see, e.g. Fig. 7, where the mass accretion rate and the angular 
momentum accretion rate are shown. These solutions are based on grid A. Near solutions exhibit 
a flip-flop nature. 

In Figs 8, 9 and 10, two typical density contours for two different times are shown for c0=1.3, 
1.4 and 2.5, respectively. Three major patterns of the oscillation of the conical shock are 
observed: (i) a spherical shock originating from the compact object propagates upstream (Fig. 8) ; 

(a) DENSITY 
GAMMA=1.333 
CO =1.400 

T I ME = 9.000 
L 0 OP = 12365 1 

T M A X = 0.500 
TM I N= 0.001 

(b) DENSITY 
GAMMA = 1 .333 
00 =1.400 

T I ME = 
LGGP = 

10.000 
1 33087 

T M A X = 
T M I N = 

500 
001 

Figure 9. (a) Density contours of the model, ranging from 0.001 to 0.5, with c0=1.4 and y=4/3 at t=9. (b) Density 
contours at r= 10. 
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(a) DENSITY 
GRMMR=1.333 
CO =2.500 

T I ME= 19.000 
LGGP= 238593 

TMRX= 0.500 
TM I N= 0.001 

(b) DENSITY 
GRMMR=1.333 
00 =2.500 

T IME= 20.000 
L00P= 250353 

TMRX: 
T MIN: 

0.500 
0.001 

Figure 10. (a) Density contours of the model, ranging from 0.001 to 0.5, with c0=2.5 and 7=4/3 at i=19. (b) Density 
contours at i=20. 

(ii) a symmetric oscillation in which an opening angle of the shock changes with time (Fig. 9); (iii) 
asymmetric wavy motion perpendicular to the main flow direction (Fig. 10). 

4 Angular momentum transfer 

All models shown in the present work are summarized in Table 1. In the table, the mass accretion 
rate, ma, is a mean value. The accretion radius, ra, is computed using the following relation rather 
than equation (1.1); 

2rJ2jrA=mJm0. (4.1) 

The accreted angular momentum is also a mean value. In the case of the flip-flow flow, values at 
two phases are shown. 

Since we monitored the mass accretion rate, ma, and the angular momentum accretion rate, L, 
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809 An accreting compact object 

Table 1. Summary of calculated results. In the table, c0 and y represent the sound speed of gas at the surface of the 
mass-losing star and the ratio of specific heats, ma, rhi the dimensionless mass accretion rate and the mass loss rate, L 
the total angular momentum accretion rate, ra the accretion radius, / the specific angular momentum, and r] the 
efficiency factor, respectively. 

r 
5/3 

4/3 

Q 
1.5 
2.0 
2.5 
5.0 
1.0 
1.2 
1.3 
1.4 
1.5 
2.0 
2.5 
5.0 

mjthx 

0.033 
0.031 
0.015 
0.005 
0.063 
0.100 
0.082 
0.067 
0.055 
0.024 
0.014 
0.005 

-0.004 
-0.004~0.003 

0.002 
-0.00002 

0.005 
-0.004~0.006 
-0.006~0.005 
-0.005~0.005 
-0.005~0.004 

0.003 
-0.002~0.002 
-0.000014 

0.104 
0.097 
0.047 
0.016 
0.195 
0.314 
0.258 
0.210 
0.173 
0.075 
0.044 
0.016 

/=L/ma 

0.100 
-0.080~0.060 

0.067 
0.001 
0.125 

-0.040~0.060 
-0.067~0.056 
-0.063~0.063 
-0.083~0.067 

0.075 
-0.067~0.067 

0.0007 

■12.75 
-18.49 
-17.00' 
60.66 

8.11 
6.57 

-0.81~1.68 
-2.01~1.68 
-2.86~2.86 
-5.55~4.48 

26.67 
-69.21~69.21 

5.47 

we can compute the specific angular momentum, /, carried by the accreting gas using a following 
formula: 

/=L/ma. (4.2) 

Not surprisingly we obtained /~±0.1 for cases with a disc, since a gas particle undergoes nearly 
Keplerian motion about the compact object. Here / is normalized by A2Q. 

We can formally compute p based on the above l, and we obtain a rather large absolute value of 
rj. This value has no significant meaning, since it depends on the size of the inner numerical 
boundary. In the cases of conical shock, the calculated efficiency factor rj may have some 
meaning. It should be noted that the absolute values of the efficiency factor rj obtained in the 
present calculation are generally larger than unity. 

5 Conclusion and discussion 

5.1 CONCLUSION 

We can draw the following conclusions: 

(i) One can see that the absolute values of rj obtained in our calculations are fairly large, and 
that they are certainly larger than the values quoted by Livio et al. (1986), Soker et al. (1986) and 
Anzer et al. (1987). It seems that our results do not support Davies & Pringle’s theory (1980). 

(ii) The accreted angular momentum can become negative. This is not the case in Shapiro & 
Lightman’s theory. Wang (1981) argued that r¡ may become negative if the boundary condition on 
the mass-losing star has azimuthal dependence. Our result is not the same as his, since the 
boundary condition on the surface of the mass-losing star is assumed uniform. 

(iii) The accreted angular momentum changes its sign sporadically for flip-flop flows. This 
effect may explain the period fluctuation of Vela X-l discussed in the introduction. 

(iv) We have a conical accretion shock for ^=5/3 and c0>=2.5. The cases for /=4/3 show a 
conical shock except for co=1.0. In the case of y=5/3 and c0=1.5, we have a retrograde rotating 
disc bounded by a bow shock from a wind gas. 

5.2 UNSTEADY FLOW 

A characteristic nature of our flow is the unsteadiness for almost all models. It may be argued that 
a small oscillation of a flow and a flip-flop are induced by an improper choice of numerical 
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810 T. Matsuda, M. Inoue and K. Sawada 

boundary conditions. However, as can be seen in Fig. 4, the boundary condition at the surface of 
the mass-losing star is very steady. 

It may be difficult to determine the boundary condition at the downstream end, if the gas flows 
out subsonically. This is because a numerical perturbation may be reflected back at the outflow 
boundary into a main flow field. In numerical experiments of axisymmetric jets, Ishii & Umeda 
(1986) and Matsuda et al. (1987) found that an improper choice of boundary conditions enhances 
the oscillatory motion. They reported that the Sawada’s boundary condition or the ambient gas 
condition (Sawada et al. 1986c) used in the present work gives the most satisfactory result. 

In this boundary condition, numerical flux on the downstream boundary are computed by 
solving a Riemann problem between the state just upstream and the fixed state out of the 
boundary. By choosing the fixed state so that only one characteristic wave, say w-c, enters a 
numerical domain in a case of subsonic outflow, the external effect can be minimized. If the 
outflow is supersonic, all characteristic waves go out of the numerical region, and no effect 
outside the region is felt. 

Even if we insist that our boundary condition is a proper one, the possibility cannot be ruled out 
that the outer boundary condition affects the result. This is probably the case in our models for 
low sound speeds. However, in the cases of the flip-flop flows, the Mach number at the outer 
boundary is larger than unity, which means that the outer boundary cannot have any effect on the 
upstream flow. Taking this into consideration, we conclude that the unsteady nature of our flows 
is a physical one rather than numerical one. 

The oscillation of the conical shock discussed before may be caused by a propagation of 
pressure waves in the subsonic pocket at the downstream side of the shock. Such a phenomenon is 
sometimes observed on the wings of transonic aircraft. Assuming the sound velocity in the 
subsonic pocket to be of the order of unity and taking the typical length as the accretion radius, 
which ranges from about 0.01 to 0.1, the propagation time of the disturbance is about 0.01-0.1. 
This value is consistent with the transition time in the flip-flop shown in Figs 4 and 7. 

5.3 DISCREPANCY BETWEEN OUR RESULTS AND OTHERS 

Our results do not support Davies & Pringle’s theory. This is not surprising because Davies & 
Pringle’s results were derived in the case of infinite Mach number, in which line accretion results. 
On the other hand, rather low Mach number cases are considered in our calculation, and a 
pressure effect is important behind the bow shock. Moreover, all assumptions made by Davies & 
Pringle, i.e. a point-like star, an accretion line pointing to the star, and no dissipation, are not 
satisfied in our result. 

Our results do not coincide with numerical simulations by other authors (Livio et al. 1986; 
Soker et al. 1986; Anzer et al. 1987), who support Davies & Pringle’s theory. What are the causes 
of this discrepancy? These authors assumed a parallel flow having non-uniform density 
far-upstream, while we computed a flow with a more realistic configuration. Their Mach number 
is constant in the upstream region, while ours varies from place to place. This is particularly 
important in deciding the shock position for low Mach number cases. 

They computed the pressureless case (Livio et al. 1986) or isothermal case (Soker et al. 1986; 
Anzer et al. 1987). If}/is 5/3, the stand-off distance of the bow shock is large in low Mach number 
cases. In such instances we have an accretion disc bounded by a detached bow shock. 

Our solutions are unsteady, while other authors claim that they obtained steady solutions. In 
our experience of numerical simulations of jets (Matsuda et al. 1987) an unsteady flow develops 
when artificial/numerical viscosity is reduced by increasing the number of meshes. A seemingly 
steady solution occurs either if a rather coarse mesh is adopted or too much artificial viscosity is 
included. 
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811 An accreting compact object 

In our calculation a stream in an accretion column does not point to the mass-accreting star. 
Gas particles in the stream are accreted through a dissipation in spiral shocks, if they exist. These 
spiral shocks are produced because of the tidal effects of the companion star. These tidal effects 
are not taken into account in the numerical calculations quoted above. A finite size of our 
mass-accreting star may contribute somehow. We have taken into account the effects of the 
Coriolis force, which becomes important for a low-velocity wind, and which other authors have 
ignored. 

All these effects mentioned above result in a discrepancy between our results and others. If 
these are the only reasons for the discrepancy then there may not be any contradiction among 
them. In any rate we need further investigation to settle the problem. 
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