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Summary. Two-dimensional hydrodynamic calculations of a gas flow in a 
semi-detached close binary system with mass ratio unity are carried out again, 
using a different coordinate system from our previous work (Sawada, Matsuda & 
Hachisu). The Euler equation is solved using the second-order Osher scheme in a 
multi-box type of grid, which gives a high resolution about a mass-accreting 
compact object. 

Spiral-shaped shock waves in the accretion disc are found to extend down to 
r=0.01 A , where r and A are the radial distance from the compact star and the 
separation of two stars respectively. It means that the tidal effect by the 
mass-losing star is important even so close to the compact object. It is also 
confirmed that the gas particles lose their angular momentum at the shocks and 
can spiral in without the help of a turbulent viscosity. 

The fundamental assumptions of the standard accretion disc model, i.e. an 
axisymmetric thin disc, the important role of the turbulent viscosity etc., are 
questioned. 

1 Introduction 

The standard accretion disc model was proposed by Shakura (1972), Pringle & Rees (1972) and 
Shakura & Sunyaev (1973) and has been developed extensively by many workers (see reviews by 
Pringle 1981, Petterson 1983, Frank, King & Raine 1985 and Hoshi 1985). 

The basic assumptions underlying the standard accretion disc model are as follows (Petterson 
1983). 

(1) The disc is axisymmetric. This implies that the gravitational influence of the mass-losing 
star is neglected. 
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(2) The disc is thin. Its half-thickness h satisfies the inequality h/r<l at every radius r. 
Assuming that the disc is in a hydrostatic balance in the z direction, we require that the local 
Kepler velocity should be highly supersonic for the disc to be thin (Frank et al 1985). 

(3) Molecular viscosity influences the flow only slightly because of the high Reynolds number, 
and therefore (3a) the disc is highly turbulent and (3b) radial inflow of the gas in the accretion disc 
is caused by the turbulent stress, whose component is given by 

dQ 
<7r<t> = W , (1.1) 

dr 

where r] and Q are the turbulent viscosity coefficient and the angular speed of the gas around the 
compact object respectively. We can add the a model of Shakura & Sunyaev (1973) to the basic 
assumptions. 

(4) The disc is stationary. 

In our previous papers (Sawada, Matsuda & Hachisu 1986a, b) we showed the following. 

(a) There exist spiral-shaped shocks on an accretion disc formed about a compact object in a 
semi-detached close binary system. The shocks seem to penetrate down to r=0.03A , where r is 
the radial distance from the compact object and A is the separation of two stars. 

(b) The gas particles lose their angular momentum at these shocks and a fraction of gas can 
spiral in towards the compact object without the help of a conventional turbulent/magnetic 
viscosity. 

If we accept result (a), the accretion disc is no longer axisymmetric and assumption (1) does not 
hold. It has been believed that the tidal effect of the mass-losing star is effective only at the outer 
part of the accretion disc. However, our result shows that it is important evén at r=0.03A , which 
is the radius of our inner boundary. 

The reason why earlier workers (Prendergast & Taam 1974; Flannery 1975; Sorensen, Matsuda 
& Sakurai 1975; Lin & Pringle 1976; Sorensen 1976; Hensler 1982) failed to find such shocks was 
that their numerical methods were too dissipative because of an excessive artificial viscosity. For 
example, Sorensen et al (1975) used the flic code, which is a simple donor-cell method and has 
only a first-order accuracy in space. It has been realized that first-order schemes often need 
impossibly high resolution to give reliable results, and therefore higher-order schemes are more 
economical (van Albada 1985; Mulder 1985; Rozyczka 1985). The method used in our previous 

paper was the second-order Osher scheme. 
If the existence of these spiral shocks is accepted it follows that subsonic or low Mach number 

pockets may exist just behind them. If this is the case, assumption (2) may no longer be valid and 

therefore the disc may be thick in the pocket. 
Assumption (3a) is also questionable since there is no proof that the accretion disc is fully 

turbulent despite the high Reynolds number. These discs are textbook examples of flows which 
satisfy Rayleigh’s stability criterion (Safronov 1969; Pringle 1981; Petterson 1983). Since the 
Rayleigh criterion deals with only axisymmetric modes in incompressible inviscid fluids, it is 
hoped that the higher modes for compressible fluids will become unstable, although it is not 
possible to derive a simple local dispersion relation for these modes. 

It is worth noting here that one theory of the origin of the Solar System assumes that the solar 
nebula surrounding the proto-Sun is not turbulent (Safronov 1969; Hayashi 1981). The dynamics 
of the solar nebula and the accretion disc are essentially the same, except for the fact that the 
latter is affected by the tidal force due to a companion star. 

Even if we assume that the disc is turbulent, there is no proof that the turbulent stress is given by 
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309 Is the standard accretion disc model invulnerable? 

equation (1.1). It tries to reduce an angular velocity gradient in the flow. In doing so, the angular 
momentum is transferred outwards in a Keplerian disc. Equation (1.1) would be correct if the 
turbulence were isotropic, but this is questionable in a rotating shearing disc. 

Prandtl’s semi-empirical mixing-length approach to turbulence gives a formula which reduces 
the angular momentum difference in the flow by particle exchange between different orbits. This 
formula is obtained because it would be more natural to assume that the fluid element conserves 
its angular momentum rather than its angular velocity during the exchange. If this is the case, the 
angular momentum of the gas is transferred inward rather than outward. These problems have 
been fully discussed by Safronov (1969). 

There is a mechanism called ‘negative viscosity’ by which the angular velocity difference is 
enhanced rather than reduced (Starr 1968). This phenomenon is caused by coupling between 
shear flows and turbulent eddies. Ando (1985) discussed a coupling between a rotation and waves 
and concluded that the angular velocity difference is enhanced rather than diminished. This is 
also an example of negative viscosity phenomena. Negative viscosity phenomena seem to be 
occurring on stellar surfaces. If the negative viscosity is operative in the accretion disc, then 
angular momentum is also transferred inward. Even if we use the a prescription of the turbulent 
viscosity, we should ask whether a is positive at all. 

If angular momentum is transferred inward, it would drive near-Keplerian flows towards a 
uniform angular momentum distribution. We would have a narrow ring rather than a spreading 
disc. Such a mechanism would not provide an accretion disc, whose existence is confirmed rather 
well observationally. The assumption that turbulence is the main viscous mechanism in discs is 
still problematic (Petterson 1983). 

If we accept our result (b), we have an alternative mechanism for the angular momentum loss of 
the spiralling gas. The gas element hitting the shock gives its angular momentum directly to the 
orbital angular momentum through a gravitational interaction; the spiral-shaped density 
enhancements behind the shocks produce a torque on the two stars. If this is the case, assumption 
(3a) and (3b) may be unnecessary. 

In our paper we neglect the magnetic effect. However, it would be useful to touch upon the 
effects of magnetic fields. If the compact object has a strong magnetic field, the accretion disc 
would not be formed (at least inside the Alfvén radius). Efforts have been made to derive the a 
model in a turbulent magnetic disc. The existence of turbulence is also essential in this 
mechanism. 

Our numerical solutions show an oscillatory nature in one case, which therefore contradicts 
assumption (4). However, it is not clear whether this is significant with respect to the structure of 
the accretion disc. This point has yet to be clarified. 

In view of the above discussions, it is important to confirm our previous result. The following 
criticisms of our results could be made. 

(1) The numerical grid used in our previous work is too coarse to exclude the possibility that the 
numerical viscosity is the main cause of the angular momentum transfer. 

(2) The radius of our ‘compact object’ is not really small enough to represent real compact 
objects. 

(3) The cooling effect is not taken into account. 
(4) The three-dimensional effect is not taken into account. 

With regard to criticism (1), we performed a calculation on the grid using a half-mesh spacing 
and concluded that the essential features were not altered (Sawada et al. 1986a). Nevertheless, it 
is true that our numerical domain is too large to give a fine resolution near the compact object. 
Our O-type grid enclosing both the mass-losing star and the mass-accreting star might not be 
suitable for giving a fine resolution about the compact object. One purpose of the present paper is 
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K. Sawada et al. 310 

to remove this defect and to give a fine resolution, particularly close to the compact object, by 
using a multi-box type of grid. This will be discussed in Section 2. 

An important question relating to criticism (2) is how deep the spiral shocks penetrate toward 
the mass-accreting compact object. Non-axisymmetry of the Roche potential about the 
mass-accreting object, which is the cause of the appearance of these shocks, diminishes towards 
the compact object. However, the velocity of gas flows increases. If the spiral shocks vanish 
before they reach the surface of the compact object or the Alfvén surface, we still require a 
conventional mechanism such as viscous interaction for the accretion to occur. If they reach either 
of these surfaces, the possibility of a new accretion mechanism arises. The radius of the compact 
star, which was assumed to be 0.03A in the previous work, is reduced to 0.01A in the present 
work. 

The separation of two stars in close binary systems is given by the formula (Frank et al. 1985) 

^=2.9xl011MÍ/3(l + í)1/3P^yCni 

>l=3.5xl0loAí1/3(l+í)1/3Ph
2
r
/3cm, (1.2) 

where Mi, q and P are the mass of the primary star in solar masses, the mass ratio and the 
rotational period respectively. This gives a typical separation of 10lo-1011cm for close binaries 
with a period of hours or days. 

Since we set the radius of the inner circular numerical boundary (our compact object) to be 
0.01 A , it corresponds to 108-109 cm. A typical radius of a white dwarf is about 109cm, and our 
‘compact star’ corresponds to a white dwarf. 

If the compact star has a magnetic field, its effect is dominant up to the radius rM given by 
(Frank et al. 1985): 

rM=5.1xl08Mïi/7Mïl/1ju%7 cm, (1.3) 

where all parameters on the right-hand side are quantities of the order of unity. If the compact 
star is a neutron star with a magnetic field of 1012 G, the Keplerian disc can extend only down to 
5xl08cm, which corresponds to the radius of our compact star. 

With regard to criticism (3), a cooling effect was simulated by using a lower value of the specific 
heat ratio, i.e. /=1.2 (Sawada et al. 1986a). We found that the fraction of the gas accreted on to 
the compact object was rather sensitive to the choice of y. The lower the value of / is, the larger is 
the accretion rate, because the shocks become stronger. Some 60-90 per cent of the gas ejected 
from the mass-losing star was accreted on to the compact object in the case y=1.2. In the present 
paper we compute two cases: y=1.2 and y=5/3. 

Full three-dimensional calculations are yet to be performed. In the present paper we compute a 
half-thickness h of the disc by assuming a hydrostatic balance in the z direction based on our 
two-dimensional calculation, although such a calculation may be inconsistent with our basic 
assumption of two-dimensionality. 

2 Method of calculation 

2.1 ASSUMPTIONS AND PARAMETERS 

We consider a semi-detached binary system with a mass ratio of unity. Viscous effects, magnetic 
effects and radiative cooling and heating are all neglected. We consider only flows in the 
equatorial plane so that the two-dimensional Euler equation is solved. 

The system separation is taken as a typical length scale, and the reciprocal of the angular 
velocity is taken as a time-scale. Density is normalized by the value of the gas ejected from the 
mass-losing component. 
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The parameters characterizing the flow are the sound velocity of the gas ejected from the 
mass-losing component, which is chosen to be c0=0.1, and the velocity of gas inside the star 
surface, which is uo=0. The density of the circumferential gas which fills up interstellar space at 
the initial moment is taken to be as low as 10-5 so that it does not affect the subsequent evolution. 
The temperature of this gas is assumed to be 10 times hotter than the value of the ejected gas in 
order to maintain stability at the interface of the two gases. 

2.2 MULTI-BOX GRID 

The coordinate system adopted in the present calculation is the so-called multi-box or multi-zone 
type shown in Fig. 1 (Rai 1985). The system has 73 circumferential and 38 radial grids. The 
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312 K. Sawada et al. 

correspondence between the physical space and the numerical space is shown in Fig. 2. Rather a 
complicated mapping is adopted to preserve the grid qualities about the mass-accreting 
component where hypersonic circular flows are expected. It appears rather coarse about the 
mass-losing star. However, since our attention is concentrated on the mass-accreting component, 
it should give a satisfactory result. 

The shortest mesh spacing is about 10“3^4 in this grid system. Assuming the typical length to be 
A and the typical speed to be AQ, we have a mesh Reynolds number of the order of 106 in a 
second-order scheme. Although this seems to be an overestimate, we still have a value of 104. 
Therefore we can conclude that the effect of numerical viscosity is not significant. 

2.3 NUMERICAL METHOD 

The numerical method employed is the second-order Osher scheme described in the previous 
work (see also Sawada et al. 1986 for details). 

We assumed a vacuum state in the mass-accreting star. The boundary condition on the surface 
of the mass-accreting object is computed by solving a Riemann problem between this vacuum 
state and the state just outside the compact object. It is possible to adopt boundary conditions 
using a simple extrapolation procedure. However, this procedure sometimes causes a mass 
outflow from the mass-accreting star. In order to avoid this difficulty, we adopt the mass-sucking 
condition on the compact object. We also assume the mass-sucking condition at the outer 
numerical boundary. 

Starting from an initial state in which the space is filled by the thin circumstellar gas, we follow 
the evolution up to about 4-5 periods of revolution. In the previous work we found that it took 
about 1 period of revolution for the accretion disc to reach an almost steady state. 

Since we use an explicit time integration scheme and the minimum mesh spacing is very narrow, 
this procedure requires an enormous number of steps and a long GPU time. About 2.5 X105 steps 

and 3 CPU hr were required using the Fujitsu VP200 vector processor whose maximum speed is 
520 Mflops. The CPU time per step per grid is about 1.7xl0_5s. 

3 Results 

3.1 THE CASE OF y =1.2 

Fig. 3 shows the time evolution of the density contours with the velocity vectors. These patterns 
are essentially the same as those obtained in the previous calculations. The initial transient stage, 
in which the elephant trunk develops, is very dynamic and is difficult to follow with the numerical 
calculation. After about 1 period of revolution, i.e. t~2^r, the density pattern reaches an almost 
steady state. Even after this stage the flow field does not settle into a completely steady state; the 
density in the disc increases gradually, although the basic density pattern is unchanged. 

It is difficult to see the density distribution and the structure of the shocks in the central part of 
the disc in Fig. 3. A perspective of the density distribution of the accretion disc for r<0.3A at t=35 
is shown in Fig. 4. The § and rj axes show the circumferential and radial mesh numbers 
respectively. The lower left-hand side corresponds to the inner boundary, i.e. the surface of the 
compact star. The gas flow is from the lower right to the upper left. 

It can be seen clearly that the cliff of shocks extends towards the compact star and forms spiral 
shocks. The shock strength appears to become weak very close to the compact object. This is 
because of the sucking boundary condition on the inner boundary and is artificial. 
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As was stated in Section 1, pockets of low Mach number appear just behind the shocks. Fig. 5 
shows the Mach number contours at t=35. The maximum Mach number is M=8 which occurs in 
the elephant trunk. The Mach number near the compact object is M=4, which is not excessively 
large because of the high temperature of the gas. 

In order to have some idea of the thickness of the disc, let us assume hydrostatic balance in the z 
direction. Then we have 

dP gGmz 

dz r3 
(3.1) 

where g, P and m are the density and pressure of the gas and the mass of the compact object 
respectively. If the typical scale height of the disc in the z direction is /i, we can set dP/dz~P/h 
and z~/z. With P~gc2, where c is the velocity of sound, we have 

h~cr (3.2) 

Fig. 6(a) and (b) show the distribution of the scale height h based on equation (3.2). 
Examination of these figures suggests that the accretion disc is thin except at the shocks and the 
peripheral region. This is because the Mach number is greater than unity everywhere in the disc. 
The scale height increase behind the shocks is moderate. If y is raised or a cooling effect is 
neglected, we have a slightly thicker disc. Therefore it can be concluded that the basic assumption 
(2) is acceptable. 

However, if we consider X-ray emission from the central region of the accretion disc, the 
temperature at the ridges rises because of the illumination and the cooling effect may be 
compensated. It is difficult to decide which effect is dominant at this stage of the investigation. 

Fig. 7 shows the time history of the mass-loss rate from the mass-losing star, the mass-accretion 
rate on to the compact star and the mass-loss rate from the computational domain. The initial 
peak of the mass-loss rate from the mass-losing star is due to an initial violent out-gassing due to 
the extremely low density in the initial atmosphere. It can be seen that the mass-accretion rate 
does not reach a completely steady state even at ¿=35, although its increase is very low. 

The fraction of the gas accreted on to the compact object is about two-thirds of the ejected gas 
in the present model. This value is consistent with our previous result (Sawada et al. 1986a). We 
can conclude that the mechanism of angular momentum loss at the shocks is really working. 

3.2 THE CASE OF Y = 5/?> 

In this section we give a result for the case of 7=5/3, i.e. an adiabatic gas. We computed this case 
up to ¿=26. Fig. 8 shows the density contours with velocity vectors at ¿=18. Fig. 9 shows a 
perspective view of the density distribution of the central part of the accretion disc. We can 
observe spiral shocks. The pitch angle of the spirals is larger than in the case of 7=1.2. 

Fig. 10 shows the Mach number contours, which indicate the presence of subsonic pockets 
behind the shocks. Fig. 11(a) and (b) show the scale height distributions. The disc is thicker than 
in the case of 7=1.2 because the Mach number is lower. 

Fig. 12 shows the time history of the mass-loss and mass-accretion rates. It can be seen that the 
mass-loss rates from the mass-losing star and the computational domain show very violent 
oscillations at about ¿=14 and ¿=21. In our previous paper, we obtained indications of this 
phenomenon, but we did not follow the evolution for such a long period. The accretion disc is 
substantially deformed at about ¿=14 by the infalling gas from the outer numerical boundary, and 
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(a) 

(b) 

Figure 3. Time evolution of the density contours for the case of y=1.2 : (a) i=0.5 ; (b) f=1.5 ; (c) 2.5 ; (d) i=4.0 ; (e) 
r=6.0; (f ) T=35. The portion near the compact object is enlarged. The density range is 0.001-0.2, which is divided by 
10 contour lines with an equal spacing. 
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316 K. SawadaQidiX. 

Figure 4. A perspective view of the density distribution of the inner accretion disc (r<0.3A and ¿=35). The £ and rj 
axes represent the mesh numbers in the circumferential and radial directions respectively. The lower left-hand side 
corresponds to the surface of the compact object. 

the spiral shocks almost disappear. However, the disc and the shocks appear again as is shown in 
the above figures. The mean accretion rate on to the compact object is about 1/3. 

We do not consider that this oscillation is due to the instability in the Osher scheme, since it 

shows marked stability in other problems (Shimaefö/. 1985; Sawada eta/. 1986a,b). Itis possible 
that the oscillation is caused by an improper choice of numerical boundary conditions. In order to 

112 3 3 2 

Figure 5. Mach number contours at ¿=35. 
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Is the standard accretion disc model invulnerable? 317 

determine whether this phenomenon has a numerical origin, we tested other boundary conditions 
at the outer numerical boundary: a simple extrapolation, a tenuous gas at rest beyond the 
boundary and a similar gas moving to balance gravity. We also tested the case of an enlarged 
numerical domain. A lower temperature of the initial atmospheric gas was also tested. All cases 

«. « -I 

Figure 6. (a) A bird’s eye view of the vertical scale-height distribution of the inner accretion disc at i=35; (b) a 
topologically deformed representation of (a). The £ and t] coordinates shown in the figure are the mesh numbers of 
the circumferential and radial directions respectively. The surface of the compact object is at the lower right. 
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Figure 7. Time history of the mass-loss rate from the mass-losing star (full curve) the mass-accretion rate (broken 
curve) and the mass-loss rate from the numerical domain (dotted curve). 

showed a similar phenomenon differing only in the exact time history. We cannot decide yet 
whether this oscillation is a real phenomenon or is simply numerical. 

An encouraging result is that the rate of mass accretion on to the compact object does not show 
marked oscillation despite the violent oscillation of other quantities. The accretion disc works as a 

Figure 8. Density contours with velocity vectors at i=18 for the case of y=5/3. 
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319 Is the standard accretion disc model invulnerable? 

Figure 9. As Fig. 4 but with y=5/3 and r=18. 

reservoir for the accreting gas. The basic density pattern and the accretion rate are the same for all 
cases tested. 

Recently, Spruit (1986) sought a self-similar solution in an accretion disc. He showed that there 
are steady self-similar solutions exhibiting logarithmic spiral shocks. However, he could not find a 

steady solution with two spiral shocks in a disc of constant thickness for y> 1.6. This fact may be 
consistent with our result on the oscillatory nature of the flow for y=5/3. 
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1.4-1 

•. 9 - 

(b) 
Figure 11. (a) Scale-height distribution at i=18 for y=5ß\ (b) topologically deformed graph of (a). 

4 Discussion 

In the present work we neglect the viscosity, but we cannot claim that the gas is dissipationless. It 
is really operating in the narrow shock layers and our accretion disc is dissipative in this sense. If 
we construct a one-dimensional accretion disc model by taking a mean value in the 
circumferential direction, we would have a model similar to the standard accretion disc. An 
important difference is that the angular momentum is not transferred in the gas but is just lost 
through gravitational interaction. 
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Spruit (1986) computed an effective a parameter based on his self-similar flow and obtained a 
value of 10-2. This value may be too small to explain the observations, and it is inconsistent with 
our result. This is because the maximum Mach number in Spruit’s flow is only 1.360, while our 
Mach number is much larger. Is this discrepancy due to the assumption of self-similarity of the 
flow, which does not hold in a real accretion flow? Alternatively, is our numerical viscosity still 
too large? We need to make further investigations to clarify this discrepancy. 

The size of our ‘compact star’ corresponds to that of a white dwarf. A neutron star is typically a 
factor of 10“3 of the size of a white dwarf. If a neutron star has no magnetic field or only a weak 
magnetic field, the accretion disc is on a much smaller scale than that investigated in the present 
work. Therefore, one of the most important questions relating to the present work is: How deep 
can spiral shocks penetrate? 

Relating to this question, we can ask why tidal effects can operate so close to the accreting 
object where they should be weak. With regard to this point it is useful to note that a shock is an 
envelope of compression waves originating from a flow compression. Therefore it is possible to 
form shocks very close to the compact object if compression waves formed at the outer region, 
where tidal effects are prominent, can propagate deep inside and form envelopes. In fact Spruit’s 
(1986) logarithmic spiral shocks show this phenomenon. 

Another interesting possibility was proposed by Michel (1984), who considered spiral shocks 
(he called them hydraulic jumps) originating from the non-axisymmetric magnetosphere of a 
neutron star. Michel’s waves propagate outward, while ours propagate inward. The sign of the 
pitch is opposite (Spruit 1986). 

In the present model we fixed the value of y. If we take account of a phase change in the gas, 
e.g; ionization of the gas etc., the effective value of y may vary from place to place and from time 
to time. Such a model may explain the time variability of the accretion rate and hence the 
variation of the luminosity of the disc. It is hoped to investigate further the structure of the 
accretion disc using the present model. 

11 
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