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ABSTRACT 
The problem of diffusive shock acceleration of fast charged particles is reexamined with emphasis on the 

rate of energy gain, and the maximum energy which can be attained in a given circumstance. The direction of 
the average magnetic field at the shock is shown to have a large effect. If the perpendicular diffusion coeffi- 
cient is much smaller than the parallel coefficient, particles can gain much more energy if the shock is quasi- 
perpendicular than if it is quasi-parallel. Many of the published discussions of this problem are applicable 
only to the quasi-parallel case, so the maximum energy attainable can be substantially higher (by a factor of 
100 or more) than previous discussions would predict, in cases where the shock is quasi-perpendicular. The 
energy gain increases as kl decreases. The principal limitation comes from the requirement that diffusion be a 
valid approximation to the particle motion, and that the particle be able to diffuse fast enough to encounter 
the shock many times. 
Subject headings: diffusion — particle acceleration —- shock waves 

I. INTRODUCTION 

The importance of shock acceleration of charged particles in astrophysics is underscored by the number of recent papers 
presenting models of shock acceleration. Most of the discussions consider transport in the diffusive approximation, where the 
particles are scattered by magnetic irregularities and relax to a nearly isotropic angular distribution. In this approach, the 
acceleration is caused in part by the large relative motion between the scattering centers causing the diffusion in front of the shock 
and those behind the shock, and, if the magnetic field has a component normal to the direction of propagation, in part from the drift 
along the shock front. However, most discussions have neglected the magnetic field change and the resulting particle drifts, 
effectively restricting consideration to quasi-parallel shocks. In some cases possible diffusion normal to the ambient magnetic field is 
explicitly rejected (e.g., Axford 1980). A number of authors (see, e.g., Pesses, Decker, and Armstrong 1982 for a review) have 
considered drifts and quasi-perpendicular shocks in another limit, for the most part neglecting scattering and diffusion (the 
“shock-drift” mechanism). Decker and Vlahos (1986) considered scattering in numerical simulations of individual particle motion 
at oblique shocks, in an application to solar flares. For one discussion which explicitly includes the magnetic field in the diffusive 
theory with finite perpendicular diffusion, and which establishes the connection between diffusive theory and the shock-drift 
mechanism, see Jokipii (1982). The rest of the present paper will build on these earlier results including magnetic fields and 
perpendicular diffusion, in the diffusion approximation. 

Since the charged particles gain only a small amount of energy in each traversal of the shock front, the rate of energy increase 
depends on the rate at which particles scatter back and forth across the shock. Furthermore, since the maximum energy attainable 
in most situations is limited by the time available for acceleration due to a finite lifetime of the shock itself, escape of the particles 
from the vicinity of the shock, or to losses caused by collisions or synchrotron losses), the rate of energy gain also determines the 
maximum energy attainable. Previous discussions of the maximum attainable energy in diffusive shock acceleration have been 
based on the concept that the scattering mean free path determines the rate at which particles cross the shock. Hence the maximum 
energy gain rate occurs for the smallest scattering mean free path, which can not reasonably be smaller than the gyroradius rg. This 
would then set an upper limit on the energies which can be attained, indepenent of the scattering mechanism. However, if the shock 
is such that the average magnetic field has a component normal to the propagation direction, and iffCy > 7C±, the gyromotion of the 
particle can carry it across the shock many times between each scattering, with the consequence that the energy gain rate can be 
much larger than previous discussions would allow. In the process, the particle drifts along the shock, as discussed previously 
(Jokipii 1982). This effect also occurs in the shock-drift mechanism discussed above, although in most discussions of this mechanism 
the diffusion approximation is not valid. The goal of the present paper is to study the consequences of the magnetic field for energy 
gain in the diffusion approximation, and to make revised estimates of the maximum energies attainable in a variety of situations. 

II. THE BASIC PROBLEM 

Consider first the idealized case of a locally plane shock wave propagating in the minus x-direction with speed Kh in a 
homogeneous plasma in which there is an average magnetic field B which is uniform both behind and in front of the shock. Let the 
projection of B onto the shock define the z-direction. We work in the shock frame, in which the shock is stationary and the flow 
velocity Fi (whose magnitude is F¡h) is normal to the shock front (for the present discussion, we assume that the field is such that it 
has negligible effect on the flow, but merely acts as a passive additive). The parameters in front of the shock are given a subscript 1 
and those behind a subscript 2. The fluctuating magnetic field irregularities are assumed to result in isotropization and consequent 
diffusion of energetic particles. We will come back in § IV to discuss the validity of the diffusion approximation. 
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Energetic particles then propagate according to the standard transport theory (e.g., see Jokipii 1971 for a review). If is the 
diffusion tensor,/is the (nearly isotropic) phase space density, and V is the plasma velocity, the transport equation may be written in 
terms of position xh time t, and particle momentum p, as (Parker 1965 ; Axford 1965) 

dt 
_d_ 
dxi -(^ + K,'i)£;+ P), (1) 

where, for particles of velocity w, momentum p, and charge q, Vd = (pcwßq) V x (B/B2), c is the speed of light, and where Q(xh t, p) 
gives the local source strength. 

The diffusion tensor in equation (1) has in general an antisymmetric part, K¡f\ in addition to the symmetric part, K¡f. The 
antisymmetric part contains the effects of the Alfvénic drifts (Forman, Jokipii, and Owens 1974; Jokipii, Levy, and Hubbard 1977). 
The divergence of the antisymmetric part of the tensor is the usual drift velocity Vd averaged over the nearly isotropic pitch-angle 
distribution and this has been absorbed in the term containing Vd in equation (1). Note that in the diffusion limit the above 
expression is true even at the shock, where the flow velocity and magnetic field are in general discontinuous. 

The term proportional to the divergence of the plasma flow velocity in equations (1) and (2) corresponds to the energy change of 
the particles due to the expansion or compression of the plasma. At the shock, this term is very large (in the limit, a delta function) 
and gives the net acceleration in the diffusion models. Note also, however, that the drift velocity is also very large at the shock if the 
magnetic field changes, as it will in all but purely parallel shocks. 

The value of the drift velocity may be obtained in terms of the magnetic field values on the two sides of the shock. If we regard the 
shock as infinitesimally thin, and using the fact that Bz is the transverse component of the magnetic field, the drift velocity may be 
written in terms of the ratio r = VJV2 (note: 1 < r < 4), and the angle between and the x-direction as (Jokipii 1982) 

pew (r — 1)[1 — (r + 1) sin2 (Ö,)] 
d €y 2qB1 [cos2 (0X) + r2 sin2 (0 J] 

sin (OJÔix - xshock) . (2) 

It is of interest to note that for a given value of r the drift velocity in equation (2) changes sign as changes smoothly from 0 to tc/2, 
reflecting the changing contribution of the gradient drift (which dominates for large OJ and the curvature drift (which is in the 
opposite direction and which dominates for small 0i). 

III. ACCELERATION RATE 

Equation (1) has been solved for many situations (Toptygin 1980). The time for acceleration of particles from an initial momen- 
tum p0 to a momentum Pi may be written as (see, e.g., Forman and Morfill 1979; Morfill et al. 1981; Drury 1983; Forman and 
Drury 1983) 

3 fpi /fq k2\ dp 

Twd k+vj7- 
(3) 

where Tq = kxx as a function of momentum p in the upstream region, and k2 = kxx downstream of the shock. It is clear that the rate 
of acceleration is determined by kxx and the shock velocity and is otherwise independent of the direction of the magnetic field. kxx 
may be written in terms of the diffusion coefficients perpendicular and parallel to the magnetic field, k± and k^, and the angle 6 
between the magnetic field and the x-axis, as 

kxx = K|| cos2 (0) + /q sin2 (0) . (4) 

Clearly, the rate of acceleration may depend in a complicated manner on the direction of the magnetic field relative to the shock 
normal, and on the functional form of the dependence of kl and on particle energy. There is no general agreement on the value of 
k± for particle transport in a turbulent magnetic field. The contribution of the field random walk or meandering, which arises in 
quasilinear theory, is complex and not fully understood (Jokipii 1971 ; Barge, Millet, and Pellat 1984). In view of the uncertainties, it 
is common to take the result from standard kinetic theory, which corresponds to ordinary collisions (see, e.g., Axford 1965), and this 
will also be done here. However, if field-line meandering plays a significant role, some of the following conclusions will change. 
Consider, then, the following specific case. Let the mean free path parallel to the magnetic field, 2||, be a constant factor rj times the 
gyroradius rg9 so that k1{ = r¡rgw/3, and furthermore, take the kinetic theory value for the ratio of /q to Kll9 given by 

*11 1+(^ii/rfii)2 

This corresponds, approximately, to a particle being shifted one gyroradius normal to the magnetic field in one scattering mean free 
path. Finally, let the angle of the magnetic field be 0X as defined above, and again consider a shock ratio r. It is then readily shown 
that 

*1 
pewrj 
MB, [ 

cos2 (0X) + 
sin2 (0^ 

1 + */2 (6a) 

and 

pewrj 
Kl = MB, 

1 
cos2 (0X) + r2 —TT i»,ij L 

cos2 (öi) + r2 sin2 (At)] 
1 + rç2 J ' 

(6b) 
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Then, defining the quantity p~ ^db/dx^ from equation (3) as a rate of acceleration, we may write for this case 

_ VUr - 1) ? 

pdxa 3r(Ki+rK2)’ 
(7) 

with k1 and k2 as given above in equation (6). 
In order to see the effect of the magnetic field, this can be compared with the usual result for the rate of acceleration for the 

quasi-parallel assumption, which has been used in prior discussions of this problem. Denoting by Ra the ratio of the present rate of 
acceleration to that obtained in the quasi-parallel case (where k1 and k2 are set equal to rjrgw/3), one obtains the expression 

Ra = {1 + r[cos2 (OJ + r2 sin2 (flj)] 1/2} / <cos2 (0^ + 
sin2 (fli) 

1 + r¡2 + r\ 
1 

cos2 (fli) + r2sin2 (0 
cos2 (Oi) + r: sin2 (0^ 

1 + tj2 _ 
. (8) 

Values of Ra from equation (8) for n = 10 and rj = 100, and for a strong shock (r = 4) are plotted in Figure 1. It is clear that if the 
angle 0! is 60° or 70° or larger, the acceleration rate can be enhanced considerably over the values used in previous work. In the 
limit that the shock has an angle of 90°, the acceleration rate is increased by a factor of 1 + rj2. Since the mean free path is often 
taken to be a factor of 10 larger than rg, the rate of energy gain can be increased by 100. 

This analysis could be used in situations where kJk^ has a form different from that in equation (5), with similar conclusions if 
kJk\\ 1. Physically, the reason for the increased acceleration rate is that the particle can drift along the shock face, effectively 
colliding with it many times in one scattering mean free path. Since these collisions are not the result of a diffusive process, the rate of 
energy gain is high. 

It should be noted that, for purely normal shocks, this analysis would imply that there is no limit on the energy gain, which 
increases as the square of the ratio of 2(| to rg. In fact, other factors will limit the attainable acceleration rate, and these will now be 
considered. 

IV. LIMITS 

The discussion in the preceding paragraph suggests that for perpendicular shocks, as long as the diffusion approximation is valid, 
the rate of energy gain will increase with the ratio of mean free path to gyroradius. Two effects act to limit the maximum energy gain. 

First, as discussed previously (Jokipii 1982), the finite size of the shock front (transverse to the shock propagation direction) may 
result in a limit to the distance a particle can drift, and hence on the energy increase. For a quasi-normal shock, if k±<k119 the 
energy gain is a constant (of the order of unity) times the potential energy gained in the F x Æ electric field. The finite size of the 
shock then limits the energy gain to a value of the order of the potential energy gain available in drifting along the shock face. 

Second, even if the shock dimension does not provide a limit, the mean free path cannot be taken arbitrarily large. If it were to be 
too large, the distribution function would become highly anisotropic, and the diffusion approximation would no longer be valid. 
Without a complete analysis of the particle trajectories, a precise evaluation of just what the limit on is appears impossible. 
However, some estimates can be made. 

i—Plot of the ratio of energy gain rate with a transverse magnetic field to that neglecting the magnetic field given in eq. (8), as a function of angle between 
the upstream magnetic field and shock normal, 6l. The upper curve is for a scattering mean free path Ay equal to 100 times the gyroradius rg, and the lower is for 
All = 10V 
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Consider, for simplicity, a perpendicular shock. First we note that as a particle interacts with the shock and drifts along its face, it 
gains energy (this energy is mainly in the perpendicular velocity). At the same time its gyro orbit is being engulfed by the shock at 
approximately the shock velocity Fsh. One may estimate that the perpendicular energy of the particle will increase by a factor of the 
order of the shock ratio r in this process. This will produce a substantial anisotropy, and hence the particle must be scattered in the 
time required to drift through the shock to maintain near isotropy. This leads to the criterion 

w 
(9) 

It is also instructive to evaluate the streaming anisotropy parallel to the upstream magnetic field. This comes out to be of order 
riVsh/w. Again, the requirement that this be less than unity leads to the result in equation (9). 

In addition, we should guarantee that the particles can diffuse upstream ahead of the shock, which requires that the “ diffusion 
velocity” KxxJ^1(df/dx) be equal to or of order Fsh. But the gradient length scale [/“VZ/cbc)]-1 cannot be less than the particle 
gyroradius, which then leads to the requirement 

Kxx>rgVsh (10) 

or, for quasi-perpendicular shocks, again using the kinetic theory expression for kJk^ for the case r¡ $> 1, 

which is the same as in equation (9). 
It is possible that a more detailed study of orbits may yield a more stringent condition, but for the present, it appears that w/Fsh is 

a reasonable estimate for the upper limit on À\\/rg, which then gives a new upper limit on the rate of energy gain, which in many 
cases, for high-energy particles, may be much larger than that obtained in previous discussions. In cases where kJk^ is not given by 
the kinetic theory result (if, for example, field line meandering plays an important role), some other constraint would apply, with 
different consequences for the maximum rate of energy gain. 

Applying this to equation (8) we see that the upper limit on the ratio Ra is of the order of (w/Vsh)
2 if k1 is as in equation (5). Since 

typical shock speeds are of the order of 108 cm s"1, and w « c, the rate of acceleration can be as high as 104 times the quasi-parallel 
rate. 

Note that equations (11) and (9) become quite stringent constraints for low-energy particles, where w may not be much larger than 
Vsh. Hence, these considerations lead to the expectation that low-energy injection occurs more readily when the shock is quasi- 
parallel, as suggested previously by other authors (e.g., Pesses, Jokipii, and Eichler 1981). However, if the particle velocity is much 
higher than the shock velocity, very efficient diffusive acceleration can occur at perpendicular shocks. 

Finally, it should be mentioned that the reduction of the effective diffusion coefficient can result, in certain cases, (such as, for 
example, the termination shock of a wind) in the particles being more effectively confined to the region of the shock, which also helps 
increase the maximum energy. 

V. APPLICATIONS 

Now consider briefly the application of the above results to a number of important astrophysical contexts. 

a) Termination Shocks 

The acceleration of charged particles at the termination shock of a wind (first considered by Jokipii 1968, and subsequently 
studied by Cassé and Paul 1980; Volk and Forman 1982; Webb, Forman, and Axford 1985; Pesses, Jokipii, and Eichler 1981; and 
Jokipii and Morfill 1985, 1986) is of considerable current because it may explain the anomalous component and ultra-high-energy 
cosmic rays. Because the magnetic field in the wind is an Archimedean spiral which is tightly wrapped near the termination shock, 
the shock will be nearly normal except for a small region near the rotation axis. Hence the above considerations will apply. Note 
that Volk and Forman (1982) and Webb, Forman, and Axford (1985) explicitly excluded the possibility of perpendicular diffusion, 
so their conclusions differ from those in this paper. Typical wind velocities are a few times 107-108 cm s~ \ so the upper limit on the 
mean free path is perhaps a few hundred times the gyroradius. As demonstrated by Jokipii and Morfill (1986) in detailed numerical 
calculations, the resulting maximum energies in the case of the Galactic wind can be as large as the highest observed energies 
(> 1019 eV). For the case of the solar wind and the anomalous component, as pointed out by Pesses, Jokipii, and Eichler (1981) and 
Jokipii (1986), the implied injection of low-energy particles over the poles of the solar wind terminal shock (where the shock is 
quasi-parallel) appears to be in agreement with observations. 

b) Supernova Blast Waves 
Acceleration at supernova blast waves is generally accepted as the source of the bulk of Galactic cosmic rays. The finite lifetime of 

the blast wave leads to an upper limit on the energy of particles accelerated at a supernova shock. The most thorough and 
comprehensive discussion of this problem was published by Lagage and Cesarsky (1983), who estimated the maximum energy as 
~1014~15 eV. Again, if the supernova occurs in a coherent magnetic field, the blast wave will be quasi-normal over a substantial 
part of its surface (a band near the “equator’), and the considerations of the present paper will be applicable, although a full 
calculation is required to determine the effect. We expect that the maximum energy may be increased by a substantial factor. 
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c) Accretion Shocks 
A number of authors have suggested that accretion shocks around some objects can explain the presence of the high-energy 

particles necessary to explain the high-energy y-rays emitted (e.g., Kazanis and Ellison 1986; Cowsik and Lee 1982). Again, in these 
objects, it is possible that the magnetic field may be quasi-perpendicular to the shock normal, with the consequence that the 
maximum energy of the accelerated particles may be substantially higher than previously estimated. 

d) Interplanetary Corotating Shocks 
Again, the corotating shocks observed in the solar wind are often quasi-perpendicular, and the considerations in this paper must 

be applied. However, in some cases, it appears that the scattering is insufficient and the diffusion approximation is not accurate. 

e) Solar Flares 
Lee and Ryan (1986) have recently suggested that energetic particles associated with solar flares are accelerated by a shock wave 

produced by the flare explosion. The model has many attractive features, but the authors find that the acceleration times are 
somewhat longer than those inferred from particle observations. Again, if the magnetic field were quasi-perpendicular, the acceler- 
ation time could be substantially shortened as discussed above. Application to oblique shocks has recently been explored, from a 
consideration of particle trajectories by Decker and Vlahos (1986). 

VI. SUMMARY AND CONCLUSIONS 
The rate of acceleration and hence the maximum energy attained in diffusive acceleration is quite sensitive to the geometry of the 

magnetic field. If the shock is quasi-normal, the rate of acceleration may be orders of magnitude larger than previous discussions, 
neglecting the magnetic field, would imply. Diffusive shock acceleration therefore is potentially more efficient than previously 
thought. 

The acceleration for a quasi-normal shock is determined primarily by the perpendicular diffusion coefficient k±, which is poorly 
understood. Nonetheless, the present discussion establishes the fact that if k± is finite, the acceleration process may be significantly 
more efficient than previously thought, and the rate of acceleration increases as /c1 decreases down to some minimum value. This 
minimum value of K±is determined by the requirement that the diffusion approximation be valid and that the diffusing particles be 
able to diffuse upstream to encounter the shock repeatedly. 

For the standard kinetic relationship between perpendicular and parallel diffusion, kJk^ = 1/[1 + (Ay/r^)2], the condition 
A\\/rg < w/Vsh must be satisfied. In this case the ratio of the energy gain rate to that for a quasi-parallel shock can be of order (w/Fsh)

2. 
In cases where there are other contributions to the perpendicular diffusion (such as meandering of field lines, etc.), the quantitative 
conclusions will change, but the general result that acceleration can be enhanced in quasi-normal shocks will still be valid. 

This work was supported, in part, by the National Aeronautics and Space Administration under grant NSG-7101 and by the 
National Science Foundation under grant ATM-220-18. I am grateful to Drs. D. Ellison, M. Forman, and G. Morfill for helpful 
discussions. 
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