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ABSTRACT 

An approximate method of computing diffusion coefficients for the relatively dense plasmas characteristic of 
white dwarf envelopes is presented. The method is based on the numerical evaluation of collision integrals for a 
screened Coulomb potential, and becomes rigorously valid in the limit of a dilute plasma. In this limit, it is 
shown that the usual analytic formulae of Chapman and Cowling (1970), which have been widely used in 
astrophysical applications, give rise to systematic errors in the diffusion coefficients. These errors can become 
considerable even in low-density stellar plasmas such as those found in the atmospheres of nondegenerate stars. 
The plasmas encountered in white dwarf envelopes are neither weakly nor strongly coupled, and only provisional 
results can be claimed for the diffusion coefficients in this difficult regime. However, a comparison with the 
results of rigorous Monte Carlo calculations (applicable at very high densities) indicates that the region of 
intermediate coupling is probably reasonably bridged. The main results are presented in the form of high-accu- 
racy analytic fits for the collision integrals. The fits can be used within the framework of Chapman-Enskog’s 
theory or Burgers’s method of solution of the Boltzmann equation. 

Subject headings: diffusion — plasmas — stars: white dwarfs 

I. INTRODUCTION 

Diffusion coefficients for stellar plasmas have customarily 
been evaluated in the limit of the dilute-gas approximation. In 
this limit, the colhsions are treated classically and transport 
properties are computed from approximate solutions of the 
Boltzmann equation of the kinetic theory of gases. Two differ- 
ent methods have been used. The Chapman-Enskog theory 
(Chapman and Cowling 1970) assumes that the total distribu- 
tion function of a given species can be written as a convergent 
series, each term representing a successive approximation to 
the distribution function. Transport properties are usually 
computed from velocity moments of the first-order approxi- 
mation to the distribution function. Another level of ap- 
proximation is introduced by expanding the first-order distri- 
bution function on the basis of Sonine polynomials. For 
ionized dilute gases, this series has recently been shown 
(Roussel-Dupré 1981, 1982) to converge very rapidly; terms 
beyond the second one introduce only small corrections to the 
diffusion coefficients, of the order of 10%-20%. Good esti- 
mates of the diffusion coefficients are therefore given by the 
so-called first and second approximations to transport proper- 
ties as introduced by Chapman and Cowling (1970). 

The second method has been developed by Burgers (1960, 
1969) and is based on the Grad 13 moment approximation 
and the use of a Fokker-Planck collision term in the Boltz- 
mann equation. In this approach, the emphasis is on the 
computation of higher order moments of the Boltzmann equa- 
tion, which allows a more direct evaluation of physical quanti- 

1E. W. R. Steacie Memorial Fellow. 

ties of interest than the Chapman-Enskog theory. The main 
advantage of Burgers’s method over that of Chapman and 
Cowling is that it provides a more convenient way for han- 
dling multicomponent gases. In the limit where collisions are 
very frequent and the temperatures of the various species are 
the same (collision-dominated plasma), the two methods are 
equivalent (Burgers 1969; Roussel-Dupré 1981). Thus, trans- 
port properties computed using the network of equations put 
forward by Burgers must, ultimately, be the same as those 
obtained by Chapman and Cowling. 

In both methods, the diffusion coefficients are expressible in 
terms of the so-called collision integrals, which, in turn, de- 
pend on the exact nature of the interaction between colliding 
particles. For a stellar plasma, the physics of colhsion is 
specified by some form of the Coulomb interaction. In par- 
ticular, for a dilute gas, the choice of a pure Coulomb 
potential can provide a good approximation, although, strictly 
speaking, such a potential is not an exact description of the 
interaction between two charged particles embedded in a 
plasma. The interaction cross section for the pure Coulomb 
potential is well known to diverge, but this divergence is 
removed by introducing the concept of a long-range cutoff 
distance to take approximately into account the effects of the 
surrounding plasma. The actual value of this cutoff distance is 
somewhat arbitrary, but the Debye length, XD, is usually 
chosen. To the extent that the derived transport properties are 
not too sensitive to the actual choice of the cutoff distance, the 
procedure is justified. However, the use of a screened Coulomb 
potential would permit, in principle, a better description of the 
collective effects of the surrounding charges and remove the 
need for an ad hoc cutoff distance because the cross section 
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integrals converge naturally in such a case.2 The disadvantage 
of such an approach is that, in general, the collision integrals 
cannot be evaluated analytically. 

Chapman and Cowling (1970) have provided formulae for 
the diffusion coefficients in the case of the pure Coulomb 
potential. It has not been generally realized that, beyond the 
usual arbitrary choice of the long-range cutoff distance, they 
have made further approximations in order to evaluate the 
colhsion integrals analytically. These additional approxima- 
tions are not essential and introduce significant systematic 
errors in the diffusion coefficients, even in cases for which the 
dilute-gas approximation is excellent—as in the atmospheres 
of main-sequence stars. The analytic formulae of Chapman 
and Cowling have nevertheless been very widely used in the 
astrophysical literature. In particular, in addition to numerous 
applications to main-sequence conditions, these formulae have 
also been used in exploratory studies of diffusion processes in 
the atmospheres and envelopes of white dwarf stars (Fontaine 
and Michaud 1919a\ Vauclair, Vauclair, and Greenstein 1979; 
D’Antona and Mazzitelli 1979; Alcock and Illarionov 1980). 
However, in such cases (as pointed out, for example, by 
Fontaine and Michaud 1979û), the relevant densities are so 
high that the validity of the dilute-gas approximation itself 
becomes questionable, the pure Coulomb potential becomes a 
poor interaction model, and the formulae of Chapman and 
Cowling may give rise to serious errors in the evaluation of 
diffusion coefficients. The preliminary calculations of Fontaine 
and Michaud (1979h) have indicated that this is indeed the 
case. These calculations suggest that, under white dwarf condi- 
tions, much more reliable diffusion coefficients could be ob- 
tained through the numerical evaluation of colhsion integrals 
for screened Coulomb potentials. / 

In the present paper, we follow such an approach; and 
compute colhsion integrals appropriate for stellar plasmas in 
general. This has been motivated primarily by our ongoing 
desire and efforts to understand better the atmospheric com- 
positions of white dwarfs. Diffusion is the most important 
mechanism in the spectral evolution of these stars and, as 
indicated by the preliminary results of Fontaine and Michaud 
(19796), there is a clear need for improved estimates of 
diffusion coefficients in their envelopes. Our computations are 
also relevant to other types of stars. In particular, the colhsion 
integrals evaluated here become very accurate for low-density 
stellar plasmas such as those encountered in the atmospheres 
of nondegenerate stars. For applications requiring a high level 
of precision, these integrals are to be preferred to the analytic 
formulae given by Chapman and Cowling (1970). 

2 The situation is directly analogous to the problem of the number of 
electronic bound states in an atom. For an isolated system, described by 
the pure Coulomb potential, it is well known that solving Schrödinger’s 
equation leads to an infinite number of bound states. Several ad hoc 
prescriptions have been put forward to keep the internal partition func- 
tion finite. All of these prescriptions involve cutting off the higher energy 
levels. A much more elegant solution is to invoke the fact that an atom is 
never isolated in nature and that a screened Coulomb potential is a more 
reahstic description of the interaction between an electron and the nucleus. 
For such a potential, there is only a finite number of bound states (cf. 
Rogers, Graboske, and Harwood 1970). This leads to a natural conver- 
gence of the internal partition function. 
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The essential results of the paper are given in the form of 
high-accuracy fits for the colhsion integrals. We have devel- 
oped such fits in order to make our numerical results more 
flexible and generally available to other users. The fits are 
valid in a broad range of stellar parameters (see below for a 
discussion) and can be used within the framework of 
Chapman-Enskog’s theory or Burgers’s method of solution of 
the Boltzmann equation. In related publications, we have used 
them to discuss in some detail the phenomenon of thermal 
diffusion in stars (Pelletier etal 1986) and to present a 
comparative study of diffusion time scale estimates in white 
dwarfs (Paquette et al 1986). We have also used the same fits 
in a number of astrophysical applications ranging from the 
main sequence to the white dwarf regime. Other authors, such 
as Muchmore (1984) and Iben and MacDonald (1985), have 
similarly used fits to diffusion coefficients for screened poten- 
tials in their independent discussions of diffusion in white 
dwarfs. 

In the next section, the assumptions and hypotheses that 
form the basis of our method are discussed. Collision integrals 
for screened potentials are next evaluated (§ III). Section IV is 
concerned with a discussion of the derived diffusion coeffi- 
cients under a broad range of conditions. In particular, a 
comparison with Monte Carlo results (applicable at very high 
densities) is presented. We conclude (§ V) with a few brief 
remarks. 

II. BASIC ASSUMPTIONS ANP FORMULAE 

a) Hypotheses 

The fundamental premise of our approach is the assump- 
tion that reasonable estimates of transport properties can be 
obtained from Boltzmann’s equation according to the theory 
of Chapman and Enskog or the method of Burgers. This is 
certainly the case for dilute plasmas but remains difficult to 
justify for the relatively dense plasmas characteristic of white 
dwarf envelopes. Thus, it is assumed that the coflisions are 
dominated by the classical interaction between two point- 
charge particles. It is possible to estimate the conditions under 
which quantum effects can become important by comparing 
the thermal wavelength \t (2h2/mkT)l/2] of a particle 
with various characteristic lengths. For example, if A, is much 
smaller than the average interparticle distance, degeneracy 
effects can be neglected. Electrons can become degenerate in 
white dwarf envelopes, although they remain only weakly so 
(t? < 5; Fontaine and Van Horn 1976) at the base of the 
superficial convection zones where diffusion time scales are 
evaluated. By contrast, because of their much larger masses, 
ions remain nondegenerate. Likewise, a comparison of \t with 
the characteristic length of the interaction potential (XD) 
indicates that wave mechanical effects can be neglected for 
ionic coflisions (A, AD). The condition A, — AD corre- 
sponds to the equality of the Debye temperature with the local 
temperature for ions; such conditions are usually encountered 
only in the interiors of white dwarfs, not in their outermost 
layers. However, electron-ion collisions can be affected by 
both degeneracy and quantum diffraction effects in white 
dwarf envelopes. To first order, such coflisions do not affect 
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the binary diffusion coefficients for ion-ion interactions. Be- 
cause interionic diffusion is usually the interesting quantity, it 
seems sensible to ignore the quantum corrections arising from 
the electron-ion colhsions. A quantity such as the total ther- 
mal diffusion coefficient—which involves an electronic contri- 
bution—is, however, affected. We present a discussion of 
these effects in Pelletier et al. (1986). 

Another complication due to quantum mechanics is the 
possible presence of bound states, especially for the heavy 
elements which may not be completely ionized. These ions, 
contrary to classical particles, have finite sizes which 
could be handled by introducing the concept of a short-range 
cutoff distance. For charged particles in a relatively dilute 
plasma, this does not have much importance because the 
long-range nature of the Coulomb interactions dominates the 
collision process. Bound states could, however, lead to inelas- 
tic collisions; this is also briefly discussed in Pelletier et al. 
(1986) and shown to be potentially important in dense plas- 
mas. However, no precise estimate of the magnitude of these 
effects is available, and inelastic collisions have been ignored 
here. 

Other assumptions inherent in our use of the methods 
developed by Chapman and Cowling (1970) and Burgers 
(1969) are that (1) the temperatures of all the species are the 
same, (2) the thermal velocity is much larger than the diffusion 
velocities, (3) the ideal gas equation of state applies, and (4) 
the colhsions are dominated by binary encounters. The first 
two conditions are completely satisfied in white dwarf en- 
velopes, but nonideal effects and multiple colhsions can also 
be quite important. To the extent that the concept of partial 
pressures is still reasonably valid under such conditions, as- 
sumption 3 could be somewhat relaxed. Also, as discussed 
below, the use of screened potentials can be expected to 
mimic—again to a certain extent—multiple colhsions. Ad- 
mittedly, in view of these assumptions, our approach can only 
be regarded as yielding provisional results for the transport 
properties of dense plasmas. It nevertheless appears to be the 
best method currently available for describing the difficult 
regime of physical conditions encountered in white dwarf 
envelopes. 

b) Treatment of the Intermediate Regime 

In a dilute plasma, it can be shown (cf. DeWitt 1961,1969) 
that an excehent representation of the interaction between two 
classical particles of charge Zs and Zn respectively, is given 
by a static screened Coulomb potential (SSCP) of the Debye- 
Húckel type: 

Vst{r)=ZsZ, ^, (1) 

where r is the distance and XD is the Debye screening length, 
given by 

kT 

k Antean¡Z} 

where T is the temperature, e the unit charge, and nt tl 

number density of charged particles of species i. The summa- 
tion is taken over all types of particles, including electrons. 
Equation (1) remains appropriate as long as the plasma re- 
mains weakly coupled. This coupling is measured by the 
so-called plasma parameter, given by 

kTXv ^ I,«,, j 

Its physical interpretation is straightforward: A is the ratio of 
an average classical distance of closest approach in the plasma 
to the screening length. Equivalently, it is the ratio of the 
potential to the kinetic energy in the plasma. As long as 
A<$cl, the plasma is weakly coupled; the kinetic energy 
dominates over the interaction energy, Boltzmann’s equation 
is rigorously valid, and the ideal gas equation of state applies 
in this regime. Such conditions are encountered in the atmo- 
spheres of main-sequence stars, for example. 

Transport coefficients have also been computed in quite a 
different regime. The theoretical model is the so-called one- 
component plasma in which classical ions interact strongly in 
a uniform, noninteractive, neutralizing background of degen- 
erate electrons (cf. DeWitt 1976; Hansen 1978). The astro- 
physical conditions under which this model is applicable are 
encountered in the deep interiors of white dwarf stars. In this 
regime, the coupling of the dense plasma is measured by the 
dimensionless parameter 

r = —— 
kTX¿ ’ 

where Z, is the charge of one ion and X1 = (3/47r«i )1/3 is the 
average interionic distance or ion-sphere radius. The parame- 
ter F represents the ratio of the classical distance of closest 
approach of two like charges in a thermal distribution to the 
average interparticle distance. It also gives the ratio of the 
average potential to kinetic energy in the plasma. The latter is 
strongly coupled if F » 1. Because the motions of the ions are 
strongly correlated in this regime, Boltzmann’s equation— 
which intrinsically assumes the predominance of two-body 
encounters—is totally inadequate. Instead, molecular dynamic 
techniques and Monte Carlo calculations have been used to 
describe the thermodynamic and transport properties of the 
one-component plasma. 

In the intermediate regime in which the plasma coupling is 
neither weak nor strong ( A ~ T -1), there exists, to our 
knowledge, no reliable description of the transport properties 
of matter. Boltzmann’s equation is, at best, questionable, and 
the assumption of a uniform background of electrons fails. 
Astrophysical environments characteristic of such a difficult 
regime are found in the envelopes of white dwarfs and the 
interiors of low-mass main-sequence stars. Not surprisingly, 
comparable difficulties are encountered in equation-of-state 
studies under similar conditions. For example, Fontaine, 
Graboske, and Van Horn (1977) were forced to interpolate 
thermodynamic surfaces across the region of intermediate 
coupling between two asymptotically rigorous models: the 
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ideal Maxwell-Boltzmann gas at low densities and the Fermi- 
Dirac electron gas at high densities. Despite this approximate 
treatment, their equation-of-state surfaces are still the best 
available in this regime and have been routinely used in the 
construction of models of white dwarf stars. 

In the same spirit, but following a different approach, we 
extrapolate the techniques that are rigorously valid for dilute 
gases only, to compute diffusion coefficients for the inter- 
mediate coupling region. In effect, we are pushing the 
Chapman-Enskog and Burgers solutions of Boltzmann's 
equation to their limits with the use of screened potentials. 
Some justification for this procedure comes by noting, after 
Burgers (1960), that screened potentials—in the context of 
the Boltzmann equation—represent a crude way of taking 
into account multiple collisions. We assume that the ap- 
propriate interaction potential is of the Debye-Hlickel type. 
However, a physical interpretation of equations (3) and (4) 
clearly indicates that while \D is an appropriate screening 
distance at low densities (XD » X;), the Debye sphere loses 
its significance at very high densities (XD ^ X7), and a more 
relevant screening distance is then Xz itself. Exactly the same 
considerations apply for theories of electron screening for 
nuclear reactions in stars (cf. DeWitt, Graboske, and Cooper 
1973). In practice, we take the larger of XD or Xz. As 
discussed below, a comparison with the Monte Carlo results 
of Hansen at very high densities indicates that our technique 
of coupling Boltzmann's equation with screened potentials 
gives surprisingly good agreement and good overlap of the 
two regimes. This gives us confidence that the intermediate 
coupling region is reasonably bridged. 

c) Diffusion and Resistance Coefficients 

For completeness we reproduce here the basic formulae 
used to compute the diffusion coefficients for colhsions involv- 
ing particles of species s and t. According to Chapman and 
Cowling (1970), the first approximations to the diffusion 
coefficient and the thermal diffusion coefficient are, respec- 
tively, 

[ A,li 
2>E 

2nm 
(5) 

and 

with Mt = mi/m ( / = 5, Q. The other quantities are defined as 
follows: 

5kf 
(i = S,t), (9) 

P.st = 3( M, — M,)2 + 4MSM,A, (10) 

Qs = PS(6M} + 5M¡ -AM¡B + msMtÀ), (11) 

Qsí = 2>{Ms-M,)\5-AB)+AMsM,A{ll-AB)+2PsPt, 

(12) 

Si = A/i/(-M,[3(M,-Ms)+4Mi,4], (13) 

A = ü^/{5^), (14) 

5 = (5í2<7>-ñW)/(5í2(ii))) (15) 

C=(2ñ<)2>/5fíW)-l, (16) 

E=kT/(%ksM,ÜW). (17) 

The quantities Qt and St are, respectively, obtained from 
equations (11) and (13) by interchanging the indices s and t. 
The quantities ( = &\ls

j)) are the collision integrals, given 
by 

with 

and 

(kT \ ^ 
/V-y«*.»*, (i8) 

ti? = 2* r(l-cos* Xst)bdb, (19) y0 

. = tt —2 ( bdrl r »/„min I 
fr2 vJj) 
r2 g2kT 

1/2 -1 

, (20) 

r -i _ 5C(XsSS 
Xt^t) 

L ast J1 — 2/0 I 2/ xsQs + xfQt + xsx<Qs 
(6) 

where n = ns + nn the total particle number density; m = ms 

+ mt, the sum of the masses of the particles; and x¿ = n^/n 
(i = 5,0, the number concentration for particles of species i. 
The second approximation to the diffusion coefficient is given 
by 

[DsAz 1- A ’ (7) 

where 

A = 
5C2(M2Psx} + M?P+ Ps,xsx,) 

xfQs + xjQ, + xsx,Qsl 

(8) 

where Vst(r) is the interaction potential and r^ is the 
distance of closest approach given by the solution of the 
equation 

1- (21) 

These triple integrals describe the classical colhsions between 
particles of species s and t interacting via the potential Vst{r). 
Their physical interpretation is straightforward: the &s\

j) are 
related to the total cross sections after integrating over a 
Maxwellian velocity distribution; g is a dimensionless veloc- 
ity. The (¡y^ are the collision cross sections for a given energy; 
the integration is over the impact parameter b. Finally, is 
the scattering angle whose evaluation requires an integration 
over the distance between the colliding particles. 
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The same collision integrals are used in the formalism of 
Burgers (1960, 1969). His network of diffusion equations 
involves the so-called resistance coefficients. These are given by 

Ks, = xsxln- 
kT 

[Ds,V 

Zs, = ~C, 

z', = — 2B +2.5, 

z'' = 5A, 

(22) 

(23) 

(24) 

(25) 

where the terms on the right-hand side have been defined 
previously. 

energetic cross sections (eqs. [26] and [27]). Chapman and 
Cowling (1970) replace the g2 term by an average value for 
the square of the dimensionless relative velocity ((g2) = 2). 
With this approximation, the cross sections become 

where 

= 2w 

^7 = 2it 

2kT 

z,z,g2\247 

2kT s4 

^Mi + y!), 

(29) 

(30) 

(31) 

III. EVALUATION OF THE COLLISION INTEGRALS 

a) Pure Coulomb Potential 

It is instructive to consider first the case of the pure 
Coulomb potential in order to appreciate the approximations 
that are made in obtaining analytic expressions for the diffu- 
sion coefficients. The scattering problem in a potential Vst(r) 
= ZsZte

2/r is a standard one in classical mechanics, and it is 
easy to show that the <¡>^ integrals assume their usual loga- 
rithmic form: 

<^2) = 477 

ZsZt
e 

2kTg2 

2 \2 

2\2 

where 

ZsZte 

2kTg2 

ßs,= 
2kTŸK 

ZsZ,e2 

(26) 

(27) 

(28) 

The integrations over the impact parameter have been stopped 
at a maximum value of b equal to \D, the Debye length, in 
order to control the well-known divergences of the Coulomb 
cross sections. The actual choice of this long-range cutoff 
distance constitutes a first approximation. To the extent that 
ßst 1, as must be the case for dilute gases (&, ocl/A), this 
choice is not too critical because it enters in a logarithmic way 
into the equations.3 A point of interest here is the fact that the 
scattering angle (in absolute value) is the same irrespective of 
the signs of the charges for given energy and impact parame- 
ter. This is not generally true for screened Coulomb potentials, 
and the cross sections for the attractive and repulsive colli- 
sions differ in such cases. 

To obtain collision integrals in closed forms, a second 
approximation is made. It consists of ignoring the velocity 
dependence of the ßst terms in the expressions for the mono- 

3 Very often, one writes | ln (1 + ß,2,) » ln ß,,. The last expression is 
then known as the Coulomb logarithm. 

and 

4kT\v 

z.z,*2 • 

(32) 

(33) 

The integrations over the velocity distribution can next be 
performed, and it can be shown that the relevant colhsion 
integrals assume the following forms: 

where 

ßi!1* = w 
kT 

2irmMsMt 

1/2 

ö<!2> = ß™, 

ß</ = 2ß</, 

ß(f> = 5J,£e\ 

- 4? 
^, = ^4 = 0.4 

541,» 

2kT 

2 \ 2 

Y,2, 

44 

(l+YÍ0to(l+Y2,) 

(34) 

(35) 

(36) 

(37) 

(38) 

A third approximation is to take , on the assump- 
tion that these logarithmic terms are large and are not sensi- 
tive to the product of the charges. This ignores the differences 
between self-diffusion and collisions between particles of dif- 
ferent species. The approximation leads to 

Equations (34)-(39), with the addition of a fourth approxima- 
tion (the neglect of terms of order the electronic mass 
in front of the ionic mass), constitute the basis for the analytic 
expressions of the diffusion coefficients for a pure Coulomb 
potential. 
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For example, consider the case of trace ions of species 2 
diffusing in a background of electrons {e) and ions of species 
1, a situation often encountered in astrophysical problems. In 
such a case (n2 «: «! = ne/Zl), the binary diffusion coeffi- 
cients of Chapman and Cowling can be written 

3(2kT)5/1 

^ Du^ 16(■7TmMlM2)
l/2’ 

(40) 

[ “izli — 3 
^2 

2 M|/2 

(y/2) Au 

[3(2M2-1)+4^112M1] 

x(6M2
2+2.6M1

2+8M1M2v412) 
1, 

3(1+Zi) 

2.6 + 2.S2Mle/Zl ’ 

Mij 

(41) 

(42) 

[ 31 
1.061ZI 

^e2 
(43) 

The resistance coefficients of Burgers can be written 

Ku = 
n2kT 

TDn\i’ 
(44) 

b) Static Screened Coulomb Potential 

We have computed the colhsion integrals (eqs. [18]-[21]) for 
a static screened Coulomb potential of the form 

e-r/A 
Ki(r) = Zy Z, e2 - , (52) 

where the screening length \ is taken as the larger of \D or 
\l

4 The numerical calculations were carried out with a com- 
puter code which was initially developed by Fontaine and 
Michaud (197%) but which needed substantial improvements. 
The code can now handle collision integrals for any spheri- 
cally symmetric potential that is attractive, repulsive, or both. 
In the cases of Coulomb potentials, we introduce a dimen- 
sionless distance R = r/\c and a dimensionless impact 
parameter B = b/Xc, where 

Ac (53) 

In these units the minimum distance of closest approach, R0, 
is given by the solution of 

l2 tU*o) 
Rl g2kT 

(54) 

where 

zst= 0-6, (45) 

^=1.3, (46) 

(47) 

It is worthwhile to point out that further approximations 
have very often found their way into the astrophysical litera- 
ture. For instance, the logarithmic terms have been 
considered very large in the third approximation, but a fifth 
approximation makes them infinite, so that Ast = 0.4 accord- 
ing to equation (38). A sixth approximation is to assume that 
the mass of ions of species 2 is much larger than the mass of 
ions of species 1. Under such circumstances, some transport 
coefficients reduce to 

Z12 — ^12 • 

Ust{Ro)=VsXr = R0\c). (55) 

Because the integrand of xst 
a singularity at R = R0 (see 

eq. [20]), we introduce a change of variable: 

z = (56) 

The scattering angle is then given by 

tU*o)-**:,(;) 2 2 

sym2 r0 

-1/2 

, (57) 

with 

[«„],-2.65(|) , 

r i 3(1+ Z2) 
laieJl 2.6 + 1.131/Zj ’ 

= 2.65Z2, 

^ = 0.4, 

(48) 

(49) 

(50) 

(51) 

and 

K \ 
r VRo-t2!' 

(58) 

(59) 

The integral of equation (57) is then evaluated with a 6-point 
Gauss-Legendre formula. 

while the others do not change. In the vast majority of 
astrophysical applications of diffusion, these last expressions 
have been used. 

4Note that for a multicomponent plasma, A- is still given by 
(3/4tt«,)1/3, where n¿ is now the total number density of ions. It 
represents an average interionic distance. 
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No. 1,1986 DIFFUSION COEFFICIENTS FOR STELLAR PLASMAS 

TABLE 1 
Spline Coefficients (Repulsive Potential): j =1 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

(1) 
J In 

1.19599E-02 
-2.39198E-02 
-1.48010E-02 
-1.77390E-02 
-1.74423E-02 
-1.80040E-02 
-1.83218E-02 
-1.86847E-02 
-1.90073E-02 
-1.93026E-02 
-1.95555E-02 
-1.97557E-02 
-1.98886E-02 
-1.99373E-02 
-1.98810E-02 
-1.96948E-02 
-1.93486E-02 
-1.88059E-02 
-1.80227E-02 
-1.69459E-02 
-1.55109E-02 
-1.36394E-02 
-1.12361E-02 
-8.18466E-03 
-4.34258E-03 
4.65253E-04 
6.45493E-03 
1.38941E-02 
2.31151E-02 
3.45317E-02 
4.86585E-02 
6.61321E-02 
8.77309E-02 
1.14383E-01 
1.47142E-01 
1.87092E-01 
2.35096E-01 
2.91268E-01 
3.53977E-01 
4.18217E-01 
4.73499E-01 
5.02343E-01 
4.82140E-01 
3.92303E-01 
2.20401E-01 

-5.31156E-02 
-3.94063E-01 
-5.99574E-01 
-4.71033E-01 
-4.68969E-01 

(1) 
:2n 

(1) 

-2.39198E-02 
-1.48010E-02 
-1.77390E-O2 
-1.74423E-02 
-1.80040E-02 
-1.83218E-02 
-1.86847E-02 
-1.90073E-02 
-1.93026E-02 
-1.95555E-02 

.97557E-02 

. 98886E-02 

. 99373E-02 

.98810E-02 

.96948E-02 

.93486E-02 
-1.88059E-02 
-1.80227E-02 
-1.69459E-02 
-1.55109E-02 
-1.36394E-02 
-1.12361E-02 
-8.18466E-03 
-4.34258E-03 
4.65253E-04 
6.45493E-03 
1.38941E-02 
2.31151E-02 
3.45317E-02 
4.86585E-02 
6.61321E-02 
8.77309E-02 
1.14383E-01 

.47142E-01 

.87092E-01 

.35096E-01 

.91268E-01 

.53977E-01 
4.18217E-01 
4.73499E-01 
5.02343E-01 
4.82140E-01 
3.92303E-01 
2.20401E-01 

-5.31156E-02 
-3.94063E-01 
-5.99574E-01 
-4.71033E-01 
-4.68969E-01 
2.34484E-01 

3.02547 E-»-01 
2.94860E+01 
2.87231E+01 
2.79637E+01 
2.72086E+01 
2.64576E+01 
2.57110E+01 
2.49688E+01 
2.42310E+01 
2.34978E+01 
2.27693E+01 
2.20454E+01 
2.13263E+01 
2.06120E+01 
1.99024E+01 
1.91976E+01 
1.84975E+01 
1.78021E+01 
1.71112E+01 
1.64246E+01 
1.57421E+01 
1.50633E+01 
1.43878E+01 
1.37150E+01 
1.30441E+01 
1.23743E+01 
1.17044E+01 
1.10329E+01 
1.03581E+01 

■9.67777E+00 
8.98913E+00 

■8.28881E+00 
■7.57261E+00 
■6.83537E+00 
■6.07066E+00 
■5.27065E+00 
-4.42573E+00 
■3.52439E+00 
-2.55315E+00 
•1.49695E+00 
■3.40379E-01 
9.29832E-01 
2.32060E+00 
3.82709E+00 
5.42773E+00 
7.08127E+00 
8.72205E+00 
1.02683E+01 
1.16706E+01 
1.29598E+01 

(1) 

-2.94860E+01 
-2.87231E+01 
-2.79637E+01 
-2.72086E+01 
-2.64576E+01 
-2.57110E+01 
-2.49688E+01 
-2.42310E+01 
-2.34978E+01 
-2.27693E+01 
-2.20454E+01 
-2.13263E+01 
-2.06120E+01 
-1.99024E+01 
-1.91976E+01 
-1.84975E+01 
-1.78021E+01 
-1.71112E+01 
-1.64246E+01 
-1.57421E+01 
-1.50633E+01 
-1.43878E+01 
-1.37150E+01 
-1.30441E+01 
- 1.23743E+01 
-1 .17044E+01 
- 1.10329E+01 
-1.03581E+01 
-9.67777E+00 
-8.98913E+00 
-8.28881E+00 
-7.57261E+00 
-6.83537E+00 
-6.07066E+00 
-5.27065E+00 
-4.42573E+00 
-3.52439E+00 
-2.55315E+00 
-1.49695E+00 
-3.40379E-01 
9.29832E-01 
2.32060E+00 
3.82709E+00 
5.42773E+00 
7.08127E+00 
8.72205E+00 
1.02683E+01 
1.16706E+01 
1.29598E+01 
1.41366E+01 

183 

The next step is to compute the integrals. The integra- 
tion over the impact parameter B leads to certain difficulties 
because it becomes inefficient to search for the root, R0, of 
equation (54) with a Newton-Raphson technique for very 
small values of B. We avoid these problems by integrating 
over Rq instead of B. Equation (54) yields 

where Rc is equal to zero for an attractive potential and is 
given by Ust(Rc) = g2kT for a repulsive potential. We handle 
the infinite upper limit of the integral by empirically determin- 
ing the value, R/? for which the integral has converged. This 
limiting value of R0 is related to the limiting value of the 
impact parameter, B¡, by 

B = R0 
UÁRq) 
g2kT 

1/2 
(60) 

Bf IM) 
R] g2kT 

(62) 

In terms of this new variable, equation (19) now reads: 

' = 2'ïïX2
cf (l - cos' xs,) R0 JRC 

X 
ta*0) 
g2kT 

Rq dUs,\ 
2g1kTdR0j 

dR0, (61) 

For the SSCP, one can expect that very little contribution to 
the integral will come from colhsions with impact parameters 
much larger than several screening lengths. In practice, we 
have found that the integrals are the same (to the roundoff 
errors) by choosing XcBi =10 \ or Xc5/ = 20 X. With these 
upper limits, a 30-point Gauss-Legendre formula is used to 
evaluate the integrals of equation (61). 
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184 PAQUETTE ETAL. 

TABLE 2 
Spline Coefficients (Repulsive Potential): j -- 

(2) 
' In 

(2) 
' 2n 

(2) 
C3n 

(2) 
C4n 

1 
2 
3 
4 
5 
6 
7 
S 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

1.34102E-02 
-2.68205E-02 
-1.66309E-02 
-1.99547E-02 
-1.96575E-02 
-2.03264E-02 
-2.07272E-02 
-2.11843E-02 
-2.16034E-02 
-2.20005E-02 
-2.23602E-02 
-2.26732E-02 

.29256E-02 

.31017E-02 

.31822E-02 

.31439E-02 

.29591E-02 

.25945E-02 

.20100E-02 
-2.11574E-02 
-1 99787E-02 

1.84040E-02 
1.63488E-02 
1.37108E-02 
1.03658E-02 
6.16232E-03 
9.15489E-04 
5.60137E-03 
1.36664E-02 
2.36209E-02 
3.58820E-02 
5.09546E-02 
6.94376E-02 
9.20141E-02 
1.19403E-01 
1.52233E-01 
1.90763E-01 
2.34333E-01 
2.80392E-01 
3.23003E-01 
3.51091E-01 
3.47S69E-01 
2.93155E-01 
1.77064E-01 
1.68817E-02 
1.37836E-01 
2.36519E-01 
2.49035E-01 
1.95933E-01 
1.60453E-01 

-2.68205E-02 
-1.66309E-02 
-1.99547E-02 
-1.96575E-02 
-2.03264E-02 
-2.07272E-02 
-2.11843E-02 
-2.16034E-02 
-2.20005E-02 
-2.23602E-02 
-2.26732E-02 
-2.29256E-02 

.31017E-02 

.31822E-02 

.31439E-02 

.29591E-02 

.25945E-02 

.20100E-02 
. 11574E-02 
.99787E-02 

-1.84040E-02 
-1.63488E-02 
-1.37108E-02 
-1.03658E-02 
-6.16232E-03 
-9.15489E-04 
5.60137E-03 
1.36664E-02 
2.36209E-02 
3.58820E-02 
5.09546E-02 
6.94376E-02 
9.20141E-02 
1.19403E-01 
1.52233E-01 
1.90763E-01 
2.34333E-01 
2.80392E-01 
3.23003E-01 
3.5109 IE-01 
3.47669E-01 
2.93155E-01 
1.77064E-01 
1.68817E-02 

-1.37836E-01 
-2.36519E-01 
-2.49035E-01 
-1.95933E-01 
-1.60453E-01 
8.02267E-02 

-2.55941E+01 
-2.48408E+01 
-2.40939E+01 
-2.33511E+01 
-2.26130E+01 
-2.18796E+01 
-2.11511E+01 
-2.04276E+01 
-1.97091E+01 
-1.89959E+01 
-1.82879E+01 
-1.75853E+01 
-1.68881E+01 
-1.61965E+01 
-1.55103E+01 
-1.48298E+01 
-1.41548E+01 
-1.34853E+01 
-1.28212E+01 
-1.21624E+01 
-1.15087E+01 
- 1.08598E+01 
-1.02153E+01 
-9.57474E+00 
-8.93745E+00 
-8.30266E+00 
-7.66934E+00 
-7.03625E+00 
-6.40181E+00 
-5.76409E+00 
-5.12070E+00 
-4.46870E+00 
-3.80447E+00 
-3.12357E+00 
-2.42059E+00 
-1.68896E+00 
-9.20788E-01 
-1.06834E-01 
7.63360E-01 
1.70085E+00 
2.71586E+00 
3.81513E+00 
4.99784E+00 
6.25091E+00 
7.54647E+00 
8.84609E+00 
1.01126E+01 
1 . 13224E+01 
1.24724E+01 
1.35754E+01 

-2.48408E+01 
-2.40939E+01 
-2.33511E+01 
-2.26130E+01 
-2.18796E+01 
-2.11511E+01 
-2.04276E+01 
-1.97091E+01 
-1.89959E+01 

.82879E+01 

.75853E+01 

.68881E+01 

.61965E+01 

.55103E+01 

.48298E+01 

.41548E+01 
-1.34853E+01 
-1.28212E+01 
-1.21624E+01 
-1.15087E+01 
-1.08598E+01 
-1.02153E+01 
-9.57474E+00 
-8.93745E+00 
-8.30266E+00 
-7.66934E+00 
-7.03625E+00 
-6.40181E+00 
-5.76409E+00 
-5.12070E+00 
-4.46870E+00 
-3.80447E+00 
-3.12357E+00 
-2.42059E+00 
-1.68896E+00 
-9.20788E-01 
-1.06834E-01 
7.63360E-01 
1.70085E+00 
2.71586E+00 
3.81513E+00 
4.99784E+00 
6.25091E+00 
7.54647E+00 
8.84609E+00 
1.01126E+01 
1 .13224E+01 
1.24724E+01 
1.35754E+01 
1.46398E+01 

Vol. 61 

The infinite upper limit could have been handled by intro- 
ducing a trigonometric change of variable, as is done routinely 
in such instances. However, we found that our technique is 
actually better than the use of angular variables, mostly be- 
cause of the presence of the exponential in the SSCP. The 
trigonometric technique would produce small oscillations in 
the cross sections as a function of the energy, whereas our 
method led to perfectly monotonie relationships, as it should. 
For other types of potentials, the trigonometric techniques 
would produce excellent results. 

The final step in the evaluation of the colhsion integrals is 
an integration over the velocity distribution (cf. eq. [18]). This 
presents no difficulty, and, with the change of variable 

x=g2, (63) 

we obtain 

1 

2 

kT 

27rmMsMt 
e-xXJ+1<¡>¡p dX. (64) 

This is evaluated with a 6-point Gauss-Laguerre formula. 
We have checked our numerical code by comparing its 

predictions with exact analytic formulae that could be derived 
for several types of potentials. For example, we have run 
exhaustive experiments (by changing Zs, Zt,ns,nt, p,T) for 
the case of the pure Coulomb potential with a cutoff at \D. 
Comparison of the ^ integrals evaluated numerically with 
the analytic results of equations (26)-(28) reveals that, in all 
cases considered, the relative differences are less than - 0.1%. 
Similarly, comparison of the total cross sections for repulsive 
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DIFFUSION COEFFICIENTS FOR STELLAR PLASMAS 

TABLE 3 
Spline Coefficients (Repulsive Potential): y = 3 

185 No. 1,1986 

(3) 
^ In 

(3) 
' 2n 

13) 
C3n 

(3) 
C4n 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

1.461306-02 
-2.922596-02 
-1.814726-02 
-2.178976-02 
-2.149056-02 
-2.224636-02 
-2.271346-02 
-2.324576-02 
-2.374126-02 
-2.421836-02 
-2.466136-02 
-2.506156-02 
-2.540576-02 
-2.567876-02 
-2.586236-02 
-2.593476-02 
-2.586976-02 
-2.563626-02 
-2.519706-02 
-2.450756-02 
-2.351466-02 
-2.215446-02 
-2.035036-02 
-1.801046-02 
-1.502366-02 
-1.125566-02 
-6.543786-03 
-6.905186-04 
6.544386-03 
1.545236-02 
2.638486-02 
3.975996-02 
5.606256-02 
7.582596-02 
9.957736-02 
1.277086-01 
1.602076-01 
1.961656-01 
2.329396-01 
2.649856-01 
2.826916-01 
2.724816-01 
2.205886-01 
1.232716-01 
5.641056-05 

-1.016696-01 
-1.453516-01 
-1.126706-01 
-1.255106-01 
4.144716-02 

-2.922596-02 
-1.814726-02 
-2.178976-02 
-2.149056-02 
-2.224636-02 
-2.271346-02 
-2.324576-02 
-2.374126-02 
-2.421836-02 
-2.466136-02 
-2.506156-02 
-2.540576-02 
-2.567876-02 
-2.586236-02 
-2.593476-02 
-2.586976-02 
-2.563626-02 
-2.519706-02 

.450756-02 

.351466-02 

.215446-02 

.035036-02 

.801046-02 

-1 

-1.502366-02 
-1.125566-02 
-6.543786-03 
-6.905186-04 
6.544386-03 
1.545236-02 
2.638486-02 
3.975996-02 
5.606256-02 
7.582596-02 
9.957736-02 
1.277086-01 
1.602076-01 
1.961656-01 
2.329396-01 
2.649856-01 
2.826916-01 
2.724816-01 
2.205886-01 
1.232716-01 
5.641056-05 

-1.016696-01 
-1.453516-01 
-1.126706-01 
-1.255106-01 
4.144716-02 

-2.072366-02 

-1 

1.932126+01 
1.858046+01 

784676+01 
1.711736+01 
1.639316+01 
1.567416+01 

496046+01 
-1.425226+01 
-1 354966+01 

1.285266+01 
1.216156+01 
1 .147636+01 
1.079716+01 
1.012406+01 
9.457096+00 
8.796376+00 
8.141876+00 
7.493586+00 
6.851446+00 
6.215346+00 
5.585136+00 
4.960576+00 
4.341326+00 
3.726956+00 
3.116916+00 
2.510476+00 
1.906746+00 
1.304576+00 
7.025746-01 
9.900386-02 
5.082756-01 
1.121896+00 
1.745046+00 
2.381656+00 
3.036456+00 
3.715166+00 
4.424516+00 
5.172326+00 
5.967206+00 
6.817996+00 
7.732386+00 
8.714616+00 
9.762246+00 
1.086286+01 
1.199306+01 
1.312316+01 
1.422896+01 
1.529986+01 
1.634366+01 
1.735736+01 

-1.858046+01 
-1.784676+01 
-1.711736+01 
-1.639316+01 
-1.567416+01 
-1.496046+01 

.425226+01 

.354966+01 

.285266+01 

.216156+01 

.147636+01 

.079716+01 

.012406+01 
-9.457096+00 
-8.796376+00 
-8.141876+00 
-7.493586+00 
-6.851446+00 
-6.215346+00 
-5.585136+00 
-4.960576+00 
-4.341326+00 
-3.726956+00 
-3.116916+00 
-2.510476+00 
-1.906746+00 
-1.304576+00 
-7.025746-01 
-9.900386-02 
5.082756-01 
1.121896+00 
1.745046+00 
2.381656+00 
3.036456+00 
3.715166+00 
4.424516+00 
5.172326+00 
5.967206+00 
6.817996+00 
7.732386+00 
8.714616+00 
9.762246+00 
1.086286+01 
1.199306+01 
1.312316+01 
1.422896+01 
1.529986+01 
1.634366+01 
1.735736+01 
1.838106+01 

potentials of the type ~l/r4 and ~l/r6 shows a -0.05% 
agreement between the numerical results and the analytic 
values tabulated by Chapman and Cowling (1970, p. 172). We 
have also considered a 12-4 potential that represents the 
interaction between a proton and a neutral atom of helium. 
No analytic solutions exist for this type of potential, but 
Mason and Schamp (1958) have obtained a numerical solu- 
tion. A comparison of our results with theirs indicates relative 
differences less than 0.6%. Finally, some partial numerical 
results are available for the SSCP itself. In fact, evaluating 
collision integrals for a Debye-Hückel potential is nothing 
really new, since Liboff (1959), Mason, Munn, and Smith 
(1967), and, recently, Muchmore (1984) have all done such 
calculations. However, the present calculations apply to a 
much broader range of conditions, and the claim is that they 

are more accurate. In the range where our results overlap with 
those of Mason, Munn, and Smith (1967), the collision in- 
tegrals have average differences of the order of 0.6%. However, 
their cross sections show small oscillatory behaviors for the 
smaller values of \D that they have considered (cf. their 
Tables II and III). Muchmore (1984) has not distinguished 
between the attractive and repulsive cases and has also ex- 
perienced some numerical difficulties at low densities, as evi- 
denced by his Figure 1. Liboff (1959) has evaluated the 
collision integrals through a series expansion and has kept 
only the first-order term. His results are consequently less 
accurate than those obtained from a full numerical integra- 
tion. From this discussion, we conclude that our computer 
code generates reliable collision integrals, and we may expect 
our results for the SSCP to be also reliable and useful. 
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186 PAQUETTE ETAL. 

TABLE 4 
Spline Coefficients (Repulsive Potential): / = 1-4 

Vol. 61 

in 2n 3n 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 1 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

1.18229E-02 
-2.36458E-02 
-1.46794E-02 
-1.76226E-02 
-1.73748E-02 
-1.79780E-02 
-1.83439E-02 
-1.87580E-02 
-1.91359E-02 
-1.94907E-02 
-1.98074E-02 
-2.00758E-02 
-2.02817E-02 
-2.04080E-02 
-2.04344E-02 
-2.03360E-02 
-2.00828E-02 
-1.96388E-02 
-1.89603E-02 
-1.79946E-02 
-1.66781E-02 
-1.49334E-02 
-1.26670E-02 
-9.76488E-03 
-6.08817E-03 
-1.4668SE-03 
4.30758E-03 
1.14919E-02 
2.04026E-02 
3.14302E-02 
4.50547E-02 
6.18616E-02 
8.25526E-02 
1.07939E-01 
1.38897E-01 
1.76234E-01 
2.20387E-01 
2.70814E-01 
3.24880E-01 
3.76096E-01 
4.11895E-01 
4.12194E-01 
3.52176E-01 
2.14860E-01 
1.56932E-02 

-1.84529E-01 
-3.17740E-01 
-3.51796E-01 
-2.86379E“01 
-2.68214E-01 

-1 

-1 

2.36458E-02 
1.46794E-02 

76226E-02 
1.73748E-02 
1.79780E-02 

83439E-02 
1.87580E-02 
1.91359E-02 
1.94907E-02 
1.98074E-02 
2.00758E-02 
2.02817E-02 
2.04080E-02 
2.04344E-02 
2.03360E-02 
2.00828E-02 
1.96386E-02 
1.89603E-02 
1.79946E-02 
1.66781E-02 
1.49334E-02 
1.26670E-02 
9.76488E-03 
6.08817E-03 
1.46688E-03 
4.30758E-03 
1.14919E-02 
2.04026E ~02 
3.14302E-02 
4.50547E-02 
6.18616E-02 
8.25526E-02 
1.07939E-01 
1.38897E-01 
1.76234E-01 
2.20387E-01 
2.70814E-01 
3.24880E-01 
3.76096E-01 
4.11895E-01 
4.12194E-01 
3.52176E-01 
2.14860E-01 
1.56932E-02 
1.84529E-01 
3.17740E-01 
3.51796E-01 
2.86379E-01 
2.68214E-01 
1.34107E-01 

-1 

2.55112E+01 
2.47319E+01 
2.39583E+01 
2.31882E+01 
2.24223E+01 
2.16606E+01 
2.09032E+01 
2.01502E+01 
1.94017E+01 
1.86579E+01 
1.79186E+01 
1.71842E+01 
1.64545E+01 

57298E+01 
1.50099E+01 
1.42949E+01 
1.35848E+01 
1.28796E+01 
1.21790E+01 
1.14830E+01 
1.07913E+01 
1.01036E+01 
9.41952E+00 
8.73845E+00 
8.05974E+00 
7.38248E+00 
6.70557E+00 
6.02763E+00 
5.34694E+00 
4.66134E+00 
3.96821E+00 
3.26426E+00 
2.54546E+00 
1.80685E+00 
1.04234E+00 
2.44487E-01 
5.95659E-01 
1.48870E+00 
2.44673E+00 
3.48274E+00 
4.60901E+00 
5.83413E+00 
7.15818E+00 
8.56675E+00 
1.00269E+01 
1.14908E+01 
1.29104E+01 
1.42538E+01 
1.55127E+01 
1.67029E+01 

-2.47319E+01 
-2.39583E+01 
-2.31882E+01 
-2.24223E+01 
-2.16606E+01 

.09032E+01 

.01502E+01 

.94017E+01 

.86579E+01 

.79186E+01 

.71842E+01 

.64545E+01 

.57298E+01 

.50099E+01 

.42949E+01 

.35848E+01 

.28796E+01 

.21790E+01 
. 14830E+01 

-1.07913E+01 
-1.01036E+01 
~9.41952E+00 
“8.73845E+00 
-8.05974E+00 
-7.38248E+00 
-6.70557E+00 
-6.02763E+00 
-5.34694E+00 
-4.66134E+00 
-3.96821E+00 
-3.26426E+00 
-2.54546E+00 
-1.80685E+00 
-1.04234E+00 
-2.44487E-01 
5.95659E-01 
1.48870E+00 
2.44673E+00 
3.48274E+00 
4.60901E+00 
5.83413E+00 
7.15818E+00 
8.56675E+00 
1.00269E+01 
1.14908E+01 
1.29104E+01 
1.42538E+01 
1.55127E+01 
1.67029E+01 
1.78287E+01 

c) Analytic Fits 

For diffusion applications to stellar plasmas, the collision 
integrals for the SSCP can be evaluated once and for all. 
Clearly, an analytic representation of the results would be 
most useful, and we have, consequently, developed high-accu- 
racy fits for the collision integrals. We define the dimension- 
less collision integrals 

F^ = W>/esn (65) 

where 

and T for the SSCP. To make the correspondence with the 
pure Coulomb potential in the limit of zero density, we choose 
a combination of these variables such that 

AkTX 
Ys'=z^T 

In terms of this dimensionless parameter, the independent 
variable for the fits to the dimensionless collision integrals is 
taken as 

2 \ 2 kT 1/2 
(66) 

2kT j \ 2iTmMsMt¡ 

The values of these integrals depend uniquely upon Z,, Z,, X, 

'Pst = In [in (l+ y^)]. (68) 

This follows from a suggestion of Muchmore (1980). The 
double logarithmic form allows one to cover a very wide range 
of stellar conditions against a relatively small range in \psr 
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DIFFUSION COEFFICIENTS FOR STELLAR PLASMAS 

TABLE 5 
Spline Coefficients (Attractive Potential): y = 1 

, f1' ö) ó) TV 
'in C2n c

3n C4n 

187 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

-4.85605E+00 
9.71211E+00 

-9.31384E+00 
9.24600E+00 

-5.09678E+00 
-3.51130E-01 
-5.73409E-01 

1.83302E+00 
-7.68878E-01 
9.36371E-01 

-8.65172E-01 
-1.42540E+00 
4.34705E+00 
3.61550E-01 

-3.50574E+00 
2.59550E+00 

-1.44563E+00 
-8.64470E-01 
8.82476E-01 
1.35231E-01 
8.48986E-02 

-5.89033E-02 
-1.07275E-01 
"1.53774E-01 
-6.39482E-02 
-1.27604E-01 
“3.16007E-01 
-7.55843E-02 
6.48945E-02 
5.15827E-02 

-4.79565E-01 
3.59783E-01 

“3.04381E-01 
1.12514E-01 
1.90268E-01 
1.96365E-01 
1.78507E-01 
1.77190E-01 
1.92652E-01 
2.20472E-01 
2.52940E-01 
2.82221E-01 
3.00417E-01 
2.99089E-01 
2.69658E-01 
2.08129E-01 
1.12949E-01 
9.86067E-03 

-I.1229ÖE-01 
-2.95924E-02 

9.71211E+00 
“9.31384E+00 
9.24600E+00 

-5.09678E+00 
“3.51130E-01 
-5.73409E-01 

1.83302E+00 
-7.68878E-01 
9.36371E-01 

-8.65172E-01 
-1.42540E+00 
4.34705E+00 
3.61550E-01 

-3.50574E+00 
2.59550E+00 

-1.44563E+00 
-8.64470E-01 
8.82476E-01 
1.35231E-01 
8.48986E-02 

-5.89033E-02 
-1.07275E-01 
-1.53774E-01 
-6.39482E-02 
-1.27604E-01 
-3.16007E-01 
-7.55843E-02 
6.48945E-02 
5.15827E-02 

-4.79565E-01 
3.59783E-01 

-3.04381E-01 
1 . 12514E-01 
1.90268E-01 
1.96365E-01 
1.78507E-01 
1.77190E-01 
1.92652E-01 
2.20472E-01 
2.52940E-01 
2.82221E-01 
3.00417E-01 
2.99089E-01 
2.69658E-01 
2.08129E-01 
1.12949E-01 
9.86067E-03 

-1.12290E-01 
-2.95924E-02 

1.47962E-02 

“2.44778E+01 
“2.50688E+01 
-2.33288E+01 
-2.38242E+01 
-2.21005E+01 
-2.16001E+01 
-2.11839E+01 
-2.09054E+01 
-2.01869E+01 
-1.96529E+01 
-1.88943E+01 
- 1.83432E+01 
-1.81343E+01 
-1.68820E+01 
-1.55430E+01 
-1.50454E+01 
-1.39249E+01 
-1.31513E+01 
-1.25851E+01 
-1.18072E+01 
-1.09968E+01 
- 1.01661E+01 
-9.34947E+00 
-8.55860E+00 
-7.80464E+00 
-7.06602E+00 
-6.35803E+00 
-5.72588E+00 
-5.11188E+00 
-4.48229E+00 
-3.84033E+00 
-3.31347E+00 
-2.70025E+00 
-2.16009E+00 
-1.59292E+00 
-9.80089E-01 
-3.20131E-01 
3.82669E-01 
1.12800E+00 
1.91956E+00 
2.76403E+00 
3.66921E+00 
4.64213E+00 
5.68714E+00 
6.80394E+00 
7.98545E+00 
9.21692E+00 
1.04755E+01 
1 . 17364E+01 
1.29704E+01 

-2.50688E+01 
-2.33288E+01 
-2.38242E+01 
-2.21005E+01 
-2.16001E+01 
-2.11839E+01 
-2.09054E+01 
-2.01869E+01 
-1.96529E+01 
-1.88943E+01 
-1.83432E+01 
-1.81343E+01 
-1.68820E+01 
-1.55430E+01 
-1.50454E+01 
-1.39249E+01 
-1.31513E+01 
-1.25851E+01 
-1.18072E+01 
-1.09968E+01 
-1.01661E+01 
-9.34947E+00 
-8.55860E+00 
-7.80464E+00 
-7.06602E+00 
-6.35803E+00 
-5.72588E+00 
-5.11188E+00 
-4.48229E+00 
-3.84033E+00 
-3.31347E+00 
-2.70025E+00 
-2.16009E+00 
-1.59292E+00 
-9.80089E-01 
-3.20131E-01 
3.82669E-01 
1.12800E+00 
1.91956E+00 
2.76403E+00 
3.66921E+00 
4.64213E+00 
5.68714E+00 
6.80394E+00 
7.98545E+00 
9.21692E+00 
1.04755E+01 
1 .17364E+01 
1.29704E+01 
1.41973E+01 

Formally, however, our fits are valid in the range — 7.0 < ipst 

< oo, and we have divided this interval into three regions. 

i) - 7.0 < xps, < 3.0 

In this region, the functional dependence is relatively com- 
plicated, and we have used cubic spline functions. We have 
considered 50 equally spaced intervals such that \¡/st is in the 
«th interval when 

V'*!«) ^,^,(«+1), (69) 

where ypst(n) and + 1) are the values of the independent 
variable at the boundaries of the «th interval. For example, 
the first interval is bounded by ÿst(l) = -7.0 and \pst(2) = 
-6.8, and the last one is bounded by ^,(50) = 2.8 and 

*//5/(51) = 3.0. The dimensionless collision integrals are given 

by 

In f ( « +1) - ]3 + 4^ [ >/'« - >/'« ( « ) ]3 

+ 4Í)['M«+1)-’/'«] 

+ 4i)[^,-'U«)] (7=1,3) (70) 

and 

In F/(
22) = dln [ xpst( « +1) - 3 + d2„ [ xpsl - tsAn)]3 

+ d3n [ >U « +1) - ^,] + d4n I - >U ")] • (71) 

The values of the coefficients and An (1 = 1,4) are listed 
in Tables 1-8. A distinction must be made between the case of 
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TABLE 6 
Spline Coefficients (Attractive Potential): j = 2 

(2) 
’In 

(2) 
:2n 3n 

(2) 
C4n 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

-3.80453E+00 
7.60906E+00 

-1.00677E+01 
1.09298E+01 

-3.76938E+00 
-2.50868E+00 
2.83415E+00 

-1.06745E+00 
-2.73597E-01 
5.70462E-01 
1 .17072E-01 

-4.26755E-01 
1.84166E+00 

-4.51420E-02 
-1.68106E+00 
7.40637E-01 

-4.15277E-01 
-5.31841E-01 
7.54067E-02 
3.64437E-02 
8.52374E-03 

-5.24956E-02 
-8.76527E-02 
-1.07693E-01 
-1.02441E-01 
-1.04497E-01 
-1.16430E-01 
-8.20446E-02 
-5.53768E-02 
-4.31036E-02 
-8.94580E-02 

1.74820E-02 
-4.17248E-02 
2.16009E-02 
5.02965E-02 
7.34150E-02 
9.68269E-02 
1.25372E-01 
1.59190E-01 
1.96991E-01 
2.35595E-01 
2.69792E-01 
2.92272E-01 
2.95067E-01 
2.70564E-01 
2.20440E-01 
1.38511E-01 
8.80848E-02 

-7.78941E-02 
3.60071E-01 

7.60906E+00 
-1.00677E+01 

1.09298E+01 
-3.76938E+00 
-2.50868E+00 
2.83415E+00 

-1.06745E+00 
-2.73597E-01 
5.70462E-01 
1.17072E-01 

-4.26755E-01 
1.84166E+00 

-4.51420E-02 
-1.68106E+00 
7.40637E-01 

-4.15277E-01 
-5.31841E-01 
7.54067E-02 
3.64437E-02 
8.52374E-03 

-5.24956E-02 
-8.76527E-02 
-1.07693E-01 
-1.02441E-01 
-1.04497E-01 
-1.16430E-01 
-8.20446E-02 
-5.53768E-02 
-4.31036E-02 
-8.94580E-02 

1.74820E-02 
-4.17248E-02 
2.16009E-02 
5.02965E-02 
7.34150E-02 
9.68269E-02 
1.25372E-01 
1.59190E-01 
1.96991E-01 
2.35595E-01 
2.69792E-01 
2.92272E-01 
2.95067E-01 
2.70564E-01 
2.20440E-01 
1.38511E-01 
8.80848E-02 

-7.78941E-02 
3.60071E-01 

-1.80035E-01 

-2.08526E+01 
-2.11137E+01 
-1.95486E+01 
-2.03997E+01 
-1.86277E+01 
-1.77604E+01 
-1.74951E+01 
-1.65496E+01 
-1.58604E+01 
-1.52368E+01 
-1.44762E+01 
-1.36876E+01 
-1.30014E+01 

1 . 18732E+01 
1.07559E+01 
1.00419E+01 
9.15028E+00 
8.35829E+00 
7.69393E+00 
7.01148E+00 
6.32029E+00 
5.62704E+00 
4.94640E+00 
4.28679E+00 
3.65303E+00 
3.04386E+00 
2.45976E+00 
1.90361E+00 
1.36715E+00 
8.43977E-01 
3.31151E-01 
1.60205E-01 
6.55758E-01 
1.14130E+00 
1.63202E+00 
2.13481E+00 
2.65522E+00 
3.19888E+00 
3.77262E+00 
4.38456E+00 
5.04379E+00 
5.75956E+00 
6.54007E+00 
7.39073E+00 
8.31221E+00 
9.29863E+00 
1.03379E+01 
1.14105E+01 
1.25042E+01 
1.35792E+01 

-2.11137E+01 
-1.95486E+01 
-2.03997E+01 
-1.86277E+01 
-1.77604E+01 
-1.74951E+01 
-1.65496E+01 
-1.58604E+01 
-I.52368E+01 
-1.44762E+01 
-1.36876E+01 
-1.30014E+01 
-1 . 18732E+01 
-1.07559E+01 
-1.00419E+01 
-9.15028E+00 
-8.35829E+00 
-7.69393E+00 
-7.01148E+00 
-6.32029E+00 
-5.62704E+00 
-4.94640E+00 
-4.28679E+00 
-3.65303E+00 
-3.04386E+00 
-2.45976E+00 
-1.90361E+00 
-1.36715E+00 
-8.43977E-01 
-3.31151E-01 

1.60205E-01 
6.55758E-01 
1.14130E+00 
1.63202E+00 
2.13481E+00 
2.65522E+00 
3.19888E+00 
3.77262E+00 
4.38456E+00 
5.04379E+00 
5.75956E+00 
6.54007E+00 
7.39073E+00 
8.31221E+00 
9.29863E+00 
1.03379E+01 
1.14105E+01 
1.25042E+01 
1.35792E+01 
1.47406E+01 

Vol. 61 

a repulsive SSCP (relevant to ion-ion collisions) and the case 
of an attractive SSCP (relevant to electron-ion collisions). 
And, indeed, in the presence of screening (contrary to a pure 
Coulomb potential), the interaction is felt more strongly by 
particles that get closer to each other than by particles that are 
repelled for a given energy and impact parameter. The scatter- 
ing angle is larger in absolute value (and so is the cross 
section) for a colhsion involving two particles with opposite 
charges than for a colhsion involving two particles with charges 
of the same sign. 

The lower limit to the range of the independent variable, 
tst = _7A corresponds to (using eqs. [4], [67], and [68]): 

r 132 
ZZ/ 

(72) 

i.e., to the case of the strongly coupled plasma. This is already 

a very generous lower limit, and there is clearly no point in 
extending further SSCP colhsion integral calculations in this 
regime. 

ii) 3.0 < if/s/ < 4.0 

For ÿst > 2.7, the quantities F^t
lj) become essentiahy pro- 

portional to i.e., to In such cases, simple yet 
accurate analytic formulae can be developed. For the repulsive 
potential we find 

^n) =1.00141^-3.18209, (73a) 

= 0.99559e*" -1.29553, (73b) 

F/,13> =1.99814^' -0.64413, (73c) 

F/,22> =1.99016^- -4.56958, (73d) 
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TABLE 7 
Spline Coefficients (Attractive Potential): y = 3 

189 No. 1,1986 

(3) 
; In 

(3) 
' 2n 

(3) 
C3n 

(3) 
C4n 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

.068186+00 

.13636E+00 

.93460E+00 

.08282E+01 

.97377E+00 
-2.25377E+00 
2.79041E+00 

-1.37253E+00 
-3.87183E-01 
3.36588E-01 
2.05509E-01 

-9.13383E-02 
5.02385E-01 

-1.25938E-01 
-6.87925E-01 
8.12958E-02 

-2.46616E-01 
-3.03295E-01 
-9.83392E-02 
-7.94911E-02 
-7.66879E-02 
-8.63431E-02 
-9.05049E-02 
-9.00801E-02 
-8.47287E-02 
-7.78775E-02 
-7.05918E-02 
-5.90727E-02 
-4.74236E-02 
-3.62205E-02 
-2.90446E-02 
-8.69943E-03 
-2.75832E-04 

1.96726E-02 
3.91533E-02 
6.09268E-02 
8.60213E-02 
1.15234E-01 
1.48588E-01 
1.85161E-01 
2.22451E-01 
2.55866E-01 
2.78501E-01 
2.83080E-01 
2.62093E-01 
2.21026E-01 
1.44689E-01 
1.33750E-01 

-1.00279E-01 
7.07988E-01 

4.13636E+00 
-8.93460E+00 

1.08282E+01 
-2.97377E+00 
-2.25377E+00 
2.79041E+00 

-1.37253E+00 
-3.87183E-01 
3.36588E-01 
2.05509E-01 

-9.13383E-02 
5.02385E-01 

-1.25938E-01 
-6.87925E-01 
8.12958E-02 

-2.46616E-01 
-3.03295E-01 
-9.83392E-02 
-7.94911E-02 
-7.66879E-02 
-8.63431E-02 
-9.05049E-02 
-9.00801E-02 
-8.47287E-02 
-7.78775E-02. 
-7.05918E-02 
-5.90727E-02 
-4.74236E-02 
-3.62205E-02 
-2.90446E-02 
-8.69943E-03 
-2.75832E-04 

1.96726E-02 
3.91533E-02 
6.09268E-02 
8.60213E-02 
1.15234E-01 
1.48588E-01 
1.85161E-01 
2.22451E-01 
2.55866E-01 
2.78501E-01 
2.83080E-01 
2.62093E-01 
2.21026E-01 
1.44689E-01 
1.33750E-01 

>1.00279E-01 
7.07988E-01 

-3.53994E-01 

-1.54059E+01 
-1.51150E+01 
-1.38314E+01 
-1.46921E+01 
-1.29540E+01 
-1.19296E+01 
-1.14462E+01 
-1.02930E+01 
-9.46928E+00 
-8.73845E+00 
-7.92684E+00 
-7.06591E+00 
-6.22691E+00 
-5.26733E+00 
-4.33797E+00 
-3.57372E+00 
-2.78995E+00 
-2.06538E+00 
-1.41359E+00 
-7.85408E-01 
-1.76302E-01 
4.14399E-01 
9.84378E-01 
1.53264E+00 
2.05927E+00 
2.56558E+00 
3.05319E+00 
3.52386E+00 
3.98035E+00 
4.42546E+00 
4.86188E+00 
5.29133E+00 
5.71869E+00 
6.14599E+00 
6.57800E+00 
7.01941E+00 
7.47545E+00 
7.95213E+00 
8.45646E+00 
8.99646E+00 
9.58090E+00 
1.02187E+01 
1.09180E+01 

16840E+01 
.25180E+01 
.34149E+01 
.43649E+01 
.53496E+01 
.63664E+01 
.73591E+01 

.51150E+01 

.38314E+01 

.46921E+01 

.29540E+01 
,19296E+01 
.14462E+01 
.02930E+01 

-9.46928E+00 
-8.73845E+00 
-7.92684E+00 
-7.06591E+00 
-6.22691E+00 
-5.26733E+00 
-4.33797E+00 
-3.57372E+00 
-2.78995E+00 
-2.06538E+00 
-1.41359E+00 
-7.85408E-01 
-1.76302E-01 
4.14399E-01 
9.84378E-01 
1.53264E+00 
2.05927E+00 
2.56558E+00 
3.05319E+00 
3.52386E+00 
3.98035E+00 
4.42546E+00 
4.86188E+00 
5.29133E+00 
5.71869E+00 
6.14599E+00 
6.57800E+00 
7.01941E+00 
7.47545E+00 
7.95213E+00 
8.45646E+00 
8.99646E+00 
9.58090E+00 
1.02187E+01 
1.09180E+01 
1.16840E+01 
1.25180E+01 
1.34149E+01 
1.43649E+01 
1.53496E+01 
1.63664E+01 
1.73591E+01 
1.85217E+01 

and for the attractive potential, 

F/r
n) = 1.01101 -3.19815, (74a) 

FW =1.04230^- -1.89637, (74b) 

^13) = 2156126*“ -2.81038, (74c) 

Fsf
2) = 2.08699^' - 5.81444. (74d) 

ni) xpst >4.0 

In this region, the plasma is so weakly coupled that screen- 
ing effects make only small differences between the cross 
sections for the attractive and the repulsive cases. To a good 
accuracy, equations (73a)-(73d) can be used in both cases. 

The accuracy of the analytic fits as compared with the 
results of the detailed numerical calculations is very good, 
especially in region 1, where cubic splines have been used. In 
this region, which applies to most of the astrophysical prob- 
lems, the maximum relative errors between the colhsion in- 
tegrals evaluated analytically and those evaluated numerically 
is 0.01%. In regions 2 and 3 this maximum relative error 
increases to about 0.5%. 

IV. SAMPLE RESULTS FOR DIFFUSION COEFFICIENTS 

a) Self-diffusion of Helium 

As discussed in § II, there exists no exact theory for the 
transport properties of a plasma in the regime of intermediate 
coupling. Results are available from kinetic theory for dilute 
gases and, at the other extreme, from Monte Carlo simulations 
of very strongly coupled ionic systems. The simple strategy 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
8 

6A
pJ

S.
 . 

.6
1.

 .
17

 7P
 

190 PAQUETTE ETAL. 

TABLE 8 
Spline Coefficients (Attractive Potential): 1 = 1-A 

In 2n 3n 4n 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

-1.70341E+00 
3.40681E+00 

-1.49538E-01 
5.36125E+00 

-6.27728E+00 
7.81096E+00 

-6.95942E-01 
-4.07855E+00 
-2.58381E+00 
-9.97977E-01 
5.38341E+00 

-2.04809E+00 
3.50576E+00 

.79359E+00 

.16840E+00 

.19462E-01 

.82778E+00 

.65089E-02 
-4.16448E-01 

1.88821E+00 
8.26616E-01 

-2.03576E-01 
-4.49988E-01 
“3.23824E-01 
-1.52158E-01 
-3.19250E-02 
7.02209E-02 
4.52255E-02 
1.46629E-01 
9.38012E-03 
1.43265E-01 
7.07177E-02 
4.40308E-02 
4.86217E-02 
1.51036E-01 
7.56348E-02 
6.35608E-02 
1.03660E-01 
1.48495E-01 
1.87179E-01 
2.19549E-01 
2.34271E-01 
2.18239E-01 
1.72842E-01 
1.06073E-01 
3.51672E-02 

-3.76546E-02 
-5.81893E-02 
-1.82463E-01 
2.72096E-01 

3.40681E+00 
-1.49538E-01 
5.36125E+00 

-6.27728E+00 
7.81096E+00 

-6.95942E-01 
-4.07855E+00 
-2.58381E+00 
-9.97977E-01 
5.38341E+00 

-2.04809E+00 
3.50576E+00 

-4.79859E+00 
1 . 16840E+00 
8.19462E-01 

-1.82778E+00 
-1.65089E-02 
-4.16448E-01 

1.88821E+00 
8.26616E-01 

-2.03576E-01 
-4.49988E-01 
-3.23824E-01 
“1.52158E-01 
-3.19250E-02 
7.02209E-02 
4.52255E-02 
1.46629E-01 
9.38012E-03 
1.43265E-01 
7.07177E-02 
4.40308E-02 
4.86217E-02 
1.51036E-01 
7.56348E-02 
6.35608E-02 
1.03660E-01 
1.48495E-01 
1.87179E-01 
2.19549E-01 
2.34271E-01 
2.18239E-01 
1.72842E-01 
1.06073E-01 
3.51672E-02 

-3.76546E-02 
-5.81893E-02 
-1.82463E-01 
2.72096E-01 

-1.36048E-01 

-2.30677E+01 
-2.36179E+01 
-2.33505E+01 
-2.31190E+01 
-2.16008E+01 
-2.15892E+01 
-1.97029E+01 
-1.79836E+01 
-1.72432E+01 
-1.71229E+01 
-1.72422E+01 
-1.60694E+01 
-1.53881E+01 
- 1.38655E+01 
-1.34945E+01 
-1.28431E+01 
-1 .19950E+01 
-1 .15856E+01 
-1.11802E+01 
-1.08747E+01 
-1.01161E+01 
-9.15902E+00 
-8.25083E+00 
-7.45064E+00 
-6.72817E+00 
-6.04221E+00 
-5.36392E+00 
-4.66877E+00 
-3.96278E+00 
-3.22158E+00 
-2.47814E+00 
-1.70032E+00 
-9.05521E-01 
-1.00156E-01 
7.16878E-01 
1.57016E+00 
2.44160E+00 
3.32829E+00 
4.23985E+00 
5.18706E+00 
6.17919E+00 
7.22401E+00 
8.32506E+00 
9.47848E+00 
1.06734E+01 
1 .18938E+01 
1.31226E+01 
1.43423E+01 
1.55481E+01 
1.67101E+01 

-1 

2.36179E+01 
2.33505E+01 
2.31190E+01 
2.16008E+01 
2.15892E+01 
1.97029E+01 
1.79836E+01 
1.72432E+01 
1.71229E+01 
1.72422E+01 
1.60694E+01 
1.53881E+01 
1.38655E+01 

34945E+01 
1.28431E+01 
1.19950E+01 
1.15856E+01 
1.11802E+01 
1.08747E+01 
1.01161E+01 
9.15902E+00 
8.25083E+00 
7.45064E+00 
6.72817E+00 
6.04221E+00 
5.36392E+00 
4.66877E+00 
3.96278E+00 
3.22158E+00 
2.47814E+00 
1.70032E+00 
9.05521E-01 
1.00156E-01 
7.16878E-01 
1.57016E+00 
2.44160E+00 
3.32829E+00 
4.23985E+00 
5.18706E+00 
6.17919E+00 
7.22401E+00 
8.32506E+00 
9.47848E+00 
1.06734E+01 
1.18938E+01 
1.31226E+01 
1.43423E+01 
1.55481E+01 
1.67101E+01 
1.79374E+01 

Vol. 61 

advocated in this paper for bridging the region of intermediate 
coupling is to extrapolate the methods of the kinetic theory to 
higher densities through the use of screened Coulomb poten- 
tials. It is therefore of great interest to compare the predic- 
tions of this extrapolation with the more exact results of 
Monte Carlo studies at very high densities. 

In stellar astrophysical problems, the most interesting trans- 
port properties are usually the diffusion coefficient, Dst, and 
the thermal diffusion coefficient, asr The one-component 
plasma studies of Hansen and collaborators (Hansen 1973; 
Pollock and Hansen 1973; Hansen, McDonald, and Pollock 
1975) only provide Dss, the self-diffusion coefficient. Self- 
diffusion is not, by itself, a very interesting transport property, 
but it will provide the basis for a comparison with our results. 
The self-diffusion coefficient for ions of charge Zx and mass 
Ax, within the framework of the one-component plasma model, 

is given by 

Diî = 26.2- 
Zi2 

(AiTT) 
1/2 D* (75) 

where T is the temperature, T the plasma coupling parameter 
defined by equation (4), and D* a quantity tabulated as a 
function of T and resulting from detailed Monte Carlo calcu- 
lations. As an approximation, Hansen gives 

D* « 2.95r-134. (76) 

This analytic formula overestimates D* by ~ 50% when 
T = 1.0 (it should not be used for T < 1.0), but reproduces the 
exact results to within a few percent for r>10. If, as an 
example, we consider helium ( Zx = 2, Ax = 4), its self-diffu- 
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sion coefficient is given by 

jtL.34 
¿>H = 3.98Xl(r9-^. (77) 

Stevenson and Salpeter (1977) have provided another means 
for estimating the self-diffusion of helium at high densities. 
Their model is strictly limited to perhaps 1 < p < 10 and 
103 < T <105, when helium is in a metallic state, but it 
provides another point of comparison. It is interesting to note 
that the interaction model they used is quite different from the 
one-component plasma model. In their case, the electrons are 
never so degenerate as to provide a uniform background. On 
the contrary, they cluster around the ions, and this is ap- 
proximated by a hard-sphere interaction model. From their 
equations (13) and (16), and taking a as one-half of the 
ion-sphere diameter, the helium self-diffusion coefficient is 
roughly given by 

j-1.50 

Du Ä1.20X10“9• (78) 

In Figure 1 we compare the behavior of the helium self- 
diffusion coefficient as a function of density for a typical 
isotherm (T = 105 K) in several theoretical models. First, the 
dashed curve labeled H corresponds to equation (77) and 
summarizes the results of the Monte Carlo computations of 
Hansen and collaborators. The curve does not extend to 
densities such that T <1.0; the vertical dashed line labeled 
“T =1” gives the limiting density. Similarly, the dashed line 
labeled SS corresponds to equation (78), an extension of the 
results of Stevenson and Salpeter (1977) to both lower and 
higher densities than their range of interest. These two dashed 
curves behave approximately the same way and provide the 
best estimates of the helium self-diffusion coefficient at high 
densities. 

As a comparison, we also show the results of other compu- 
tations which have been carried out using the methods de- 
scribed in this paper. The plotted results correspond to the 
first approximation to the self-diffusion coefficient of Chap- 
man and Cowling, as given by equation (5). The continuous 
curve labeled PC shows the self-diffusion coefficient for helium 
nuclei interacting via a pure Coulomb potential. In these 
particular computations, a cutoff at XD has been introduced 
(i.e., the first approximation has been made; see § III¿z), but 
no further approximations have been used. From equation 
(26), the evaluation of the collision integral has been carried 
out numerically. As can be seen, becomes constant at 
very high densities if a pure Coulomb potential is assumed, 
and this leads to serious overestimates of its true value. This 
behavior is easily understood because at very high densities 
ßst <cl. Then, from equation (26), 

('Zi 'Z* \ ^ 
J^j ^ = 2^A2

d. (79) 

log/a 

Fig. 1. — Logarithm of the helium self-diffusion coefficient vs. loga- 
rithm of the density for the isotherm T = 105 K. The dashed line labeled 
H corresponds to the Monte Carlo studies of Hansen and his collabora- 
tors; that labeled SS refers to the metallic helium theory of Stevenson 
and Salpeter (1977). Continuous curves correspond to calculations carried 
out in the present paper using different interaction potentials. The line 
labeled PC refers to a pure Coulomb potential, that labeled SSCP (XD) 
to a Debye-Hückel potential, and that labeled SSCP (A,) to a Debye- 
Hückel potential also, but with the screening length taken as the larger of 
A, or Ad. The dotted line refers to similar calculations with a Thomas- 
Fermi potential. The vertical lines labeled “A, = AD” and “T =1” indi- 
cate, respectively, the densities above which A, > AD and T > L 

From equations (5), (17), (18), and (79), we find that 

T1/2 1 
[A'llCC7^a (80) 

i.e., the diffusion coefficient has lost its density dependence. 
By contrast, the continuous curve labeled SSCP (Xz ) keeps 

a density dependence that compares extremely well with the 
results of high-density models. This curve has been computed 
with the prescription advocated in this paper, i.e., the use of a 
Debye-Hùckel type potential with the larger of \D or Az as 
the screening length. The vertical line labeled = XD” indi- 
cates the density above which XD < X7 . If the Debye length is 
used above this density, the self-diffusion coefficient behaves 
as indicated by the continuous curve labeled SSCP (XD). It is 
seen that the diffusion coefficient keeps a density dependence, 
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TABLE 9 
Diffusion Coefficients (C vh in He m, log T= 5.0) 

[^12] 2 
log P CC PC SSCP CC PC SSCP 

-16   5.36 X1010 5.81 XlO10 5.98 XlO10 5.51 XlO10 5.95 XlO10 6.13 XlO10 

-14  6.31 XlO8 6.93 XlO8 7.18x10s 6.49XlO8 7.11 XlO8 7.36x10s 

-12  7.67 XlO6 8.60 XlO6 8.99 XlO6 7.88 XlO6 8.81 XlO6 9.20 XlO6 

-10  9.76X104 1.13 X105 1.20XIO5 l.OOXlO5 1.16X105 1.23X105 

-8   1.34X103 1.66 XlO3 1.82 X IO3 1.38X103 1.69X103 1.86X103 

-6  2.15X10 3.09X10 3.77X10 2.21x10 3.14X10 3.83x10 
-4  5.33X10“1 1.11 1.39 5.48 X10“1 1.11 1.40 
-2  8.64X10"2 1.92X10“1 5.78X10"2 8.92X10-2 1.92X10"1 5.79X10"2 

0  7.85 X10-2 1.57X10"1 3.68X10'3 S.lOxlO“2 1.57X10-1 3.68xlO~3 

2  7.85 X10-2 1.57 X 10_1 3.23X10'4 8.11X10"2 1.58X10“1 3.23X10“4 

but its behavior deviates systematically from the results of the 
high-density models. Both the SSCP curves converge together 
at the point where X, = XD, and they also converge to the PC 
results—as they should—at very low densities. In this limit, 
screening effects become negligible, and the choice of XD as a 
cutoff distance (first approximation) becomes irrelevant. Fi- 
nally, Figure 1 also shows (dotted line labeled TF) the results 
of Fontaine and Michaud (1979Z>) for a Thomas-Fermi poten- 
tial. As compared with the dashed lines, this approach gives 
intermediate results between the two cases of the SSCP. 

The most interesting result is the surprisingly good agree- 
ment (within a factor of 2) between the helium self-diffusion 
coefficient computed according to the extrapolation methods 
of this paper and the Monte Carlo results of Hansen. We 
emphasize that there is no theoretical justification for such 
good agreement. It may simply be that the diffusion coeffi- 
cient, being a gross transport property (it is related to the 
collision frequency), is not very sensitive to the exact interac- 
tion models being used, as long as the characteristic lengths 
are comparable. On the other hand, this result gives us rather 
strong confidence that the intermediate coupling region is 
probably adequately described. This gives us reason to believe 
that our estimates of diffusion coefficients under white dwarf 
conditions are indeed reasonable. 

b) Trace C vu in a Background of He in 

As another illustrative example, we consider the case of 
C vil ions of negligible abundance diffusing in a background 
of ionized helium. We wish to compare the Chapman and 
Cowling binary diffusion coefficients computed with the meth- 
ods presented in this paper (SSCP) with those obtained using 
a pure Coulomb potential. Two cases are considered for the 
latter: the first one is referred to as the PC case and was 
introduced in the previous subsection. Given a pure Coulomb 
potential, only the choice of XD as the long-range cutoff 
distance was introduced in the evaluation of the collision 
integrals (first approximation; cf. § IIIû). This means that the 
integrations over the velocity distribution were carried out 
numerically. The second case is referred to as the CC case, 
and corresponds to the analytic formulae of Chapman and 
Cowling, which were derived after making four approxima- 
tions as described previously. These formulae are given by 
equations (40)-(43). Comparing the SSCP results with the PC 

TABLE 10 
Thermal Diffusion Coefficients (C vii in He m, log T = 5.0) 

 [«nil  
log p CC PC SSCP 

-16  1.45X10 1.22X10 1.22X10 
-14  1.46X10 1.19X10 1.19X10 
-12  1.47X10 1.14X10 1.14X10 
-10  1.49X10 1.08X10 1.06X10 
-8  1.52X10 9.57 9.14 
-6  1.60X10 7.12 6.11 
-4  2.00X10 2.52 2.54 
-2  1.48 XlO2 -3.28X10"1 1.00 

0  1.26 XlO4 -4.15 2.96 X10“1 

2  1.25 XlO6 -3.45 XlO2 3.41 XlO"3 

results shows the effects of screening. Comparing the CC 
results with the PC results shows the consequences of intro- 
ducing nonessential approximations in the evaluation of the 
collision integrals. The various coefficients are compared over 
a broad range of densities for the isotherm T = 105 K; this 
extends and completes the preliminary work presented by 
Fontaine and Michaud (19796). 

Tables 9-12 give, respectively, the diffusion coefficients 
[D\2\2> znd the thermal diffusion coefficients [«nli, 

[ale]1, and [ae2]1 for densities in the range -16 < log p < 2. 
Some of these results have been presented by Fontaine and 
Michaud (19796), but it is to be noted that they used X — XD 

for all densities. For log p > 4, XD < X/5 and the present 
SSCP results differ from theirs. We discuss first the case of the 
diffusion coefficient 

The behavior of the diffusion coefficient as a function of the 
density is identical with that of the self-diffusion coefficient 
discussed in the previous subsection. In particular, for the two 
formalisms based on the pure Coulomb potential (CC and 
PC), the diffusion coefficient becomes a constant at very high 
densities for a given temperature (see eq. [80]). Taking the 
SSCP results as reference, Figure 2 shows the differences 
between the diffusion coefficients of the various formalisms as 
functions of the density. At low densities (log p < - 4), where 

5 From Table 9 it is seen that, for all three formalisms, the differences 
between the first and second approximations to the diffusion coefficient 
are small, of the order of 2%-3% and less. 
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log/o 

Fig. 2.—Difference between diffusion coefficients as a function of the density for trace C vn ions diffusing in a background of He m at F = 105 K. The 
dotted horizontal line gives the reference level based on SSCP calculations. The curves labeled PC and CC refer, respectively, to calculations based on the 
pure Coulomb potential with one and four (analytic results) approximations. 

TABLE 11 
Thermal Diffusion Coefficients (C vii in He m, log T = 5.0) 

 [fliJi  
log p ~CC PC SSCP 

-16   -2.86 -2.78 -2.75 
-14   -2.86 -2.76 -2.74 
-12   -2.86 -2.75 -2.73 
-10   -2.86 -2.72 -2.71 
-8   -2.87 -2.68 -2.68 
-6   -2.89 -2.59 -2.60 
-4   -2.92 -2.31 -2.47 
-2   -3.07 -1.12 -2.32 

0   -3.43 0.60 -1.82 
2   -3.46 1.13 -0.36 

TABLE 12 
Thermal Diffusion Coefficients (C vii in He hi, log T = 5.0) 

 \.ae2\l  
log P CC PC SSCP 

-16  9.86X10 7.99X10 7.96X10 
-14  9.91X10 7.75X10 7.72x10 
-12  9.99X10 7.42X10 7.36x10 
-10  1.01 X102 6.93x10 6.86X10 
-8  1.03 X102 6.17X10 6.08X10 
-6  1.07 X102 4.76X10 4.91X10 
-4  1.23 X102 2.05X10 3.45x10 
-2  3.80 X102 5.02 X10“1 2.08x10 

0  2.29 X104 -1.64 7.04 
2  2.28 X106 -4.06X10 -2.05 

computations based on the pure Coulomb potential are ex- 
pected to be reasonably accurate, the derived diffusion coeffi- 
cients are seen to be systematically smaller than those obtained 
using a screened Coulomb potential. Of course, screening 
effects become very small at very low densities, and this 
explains the convergence of the PC and SSCP results in this 
limit. Note, however, that even for log p = —16, there still 
exists a 10% relative difference between the CC and SSCP 
results. This difference increases to 62% for log p = - 4, a 
value of the density that is encountered even in main-sequence 
star envelopes. Screening effects are responsible for only one- 
third of this difference, as can be seen by comparing the PC 
and SSCP results at that density. The remainder of the dif- 

ference is due to the additional approximations that have been 
made to obtain analytic formulae. As mentioned before, the 
use of a pure Coulomb potential at very high densities pro- 
duces a theory breakdown, and the diffusion coefficient be- 
comes a constant. Figure 2 shows that, in such cases, the use 
of the PC or CC formalisms can lead to large overestimates of 
the diffusion coefficient, since the difference with the SSCP 
value increases roughly as p°55. 

The thermal diffusion coefficients appear to be much more 
sensitive than the diffusion coefficient to the approximations 
that have been made to obtain analytic formulae, and an 
explanation for this behavior is offered in Pelletier etal. 
(1986). For example, Tables 10-12 indicate that the CC 
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Fig. 3.—Ionic thermal diffusion coefficient as a function of the density for trace C vm ions diffusing in a background of He m at 7 = 105 K. The curve 
labeled SSCP corresponds to calculations carried out according to the methods presented in this paper. The curves labeled PC and CC are as in the 
previous figure. The dashed line gives the Thomas-Fermi results of Fontaine and Michaud (19796). 

thermal diffusion coefficient is always larger (in absolute value) 
than the PC and SSCP values and, more important, that it 
increases (again in absolute value) with increasing density, 
which is contrary to what is observed for the PC and SSCP 
formalisms. This is illustrated in Figure 3, which shows the 
behavior of [a12]i as a function of the density. As expected, in 
the limit of very low densities, the PC and SSCP results 
converge. Up to log p « - 4, the two values of the thermal 
diffusion coefficient remain comparable, but the SSCP values 
are systematically lower. At higher densities, the PC model 
breaks down and [a12]i diverges to large negative values. By 
contrast, the analytic formula (eq. [41]) makes diverge 
to large positive values with increasing density. The use of the 
analytic formula already leads to a relative error of 19% for 
log p = -16, and this error increases very rapidly with den- 
sity, reaching a value of 690% for log p = - 4. Such results 
suggest that the analytic formulae of Chapman and Cowling 
for the thermal diffusion coefficients give values that can be 
large overestimates (in an absolute sense) even under the 
physical conditions encountered in the atmospheres of nonde- 
generate stars. 

It is of some interest to discuss the behavior of [a12]! within 
the framework of the SSCP model at very high densities. 
Table 10 and Figure 3 show that [otl2\i assumes only relatively 
small values for log p > 0. This is also the case for a Thomas- 
Fermi (TF) potential, as indicated by the dashed line in the 
figure (the data were taken from Fontaine and Michaud 
1919b). There is a change of sign for the TF case for log p > 
-1, but we also observe the same phenomenon as the compu- 
tation of an additional point (shown in Fig. 3) gives 

KiMSSCP) = -0.134 for log p = 4.6 The important point, 
however, is that the absolute value of the coefficient remains 
small, which suggests that ion-ion thermal diffusion could be 
negligible in dense plasmas when compared with other phe- 
nomena such as gravitational settling or ordinary diffusion, for 
example. The same could be true for the other two thermal 
diffusion coefficients ([«le]1 and [ae2]i), but the latter suffer 
from additional uncertainties arising from quantum mechani- 
cal corrections associated with electron-ion interactions (see 
Pelletier et al 1986 for a discussion of these points). 

Stevenson and Salpeter (1977) have briefly discussed the 
phenomenon of thermal diffusion for a mixture of hydrogen 
and helium in the metallic phase within the framework of an 
ion-ion interaction model based on hard spheres.7 They con- 
clude that the thermal diffusion coefficient gives rise only to 
small effects as compared with ordinary diffusion, and they 
neglect thermal diffusion in their ensuing discussion. It is also 
noteworthy to point out that thermal diffusion in a H-He 
metallic fluid is such that helium will diffuse toward the cooler 
regions, i.e., the thermal diffusion coefficient has a negative 

6A negative value of [a12]i means that a C vn ion in a He m 
background would move toward the cooler regions in the presence of a 
temperature gradient. 

7They refer to thermal diffusion as a “second-order transport coeffi- 
cient.” In the context of the formalism of Chapman and Cowling, this 
must be understood as meaning that the first approximation to the 
thermal diffusion coefficient actually comes from using the second term in 
the expansion of the first-order distribution function on the basis of 
Sonine polynomials. The first term in this expansion gives a thermal 
diffusion coefficient that vanishes identically. 
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sign (in our convention). Thus, the results of Stevenson and 
Salpeter (1977) give welcome support to our finding that ionic 
thermal diffusion could be neglected at high densities. This 
also gives us added confidence that our method for bridging 
the intermediate-coupling region is adequate, not only for the 
diffusion coefficient but also for thermal diffusion, although, in 
the latter case, other uncertainties related to electron-ion 
colhsions remain. 

V. CONCLUDING REMARKS 

The main results of the present paper are presented in the 
form of high-accuracy fits to the collision integrals for a 
screened Coulomb potential of the Debye-Hückel type. This 
interaction model is applicable to a stellar plasma. The fits are 
given by equations (69)-(74), in conjunction with Tables 1-8. 
The derived collision integrals can be used to compute diffu- 
sion coefficients for stellar plasmas according to either the 
Chapman and Cowling approach (eqs. [5]-[17]) or the method 
of Burgers (eqs. [22]-[25]). For those interested in using and 
programming our analytic fits, the SSCP data presented in 
Tables 9-12 provide specific examples of such coefficients and 
can be used to check the output of their code. The derived 
diffusion coefficients are very accurate for dilute stellar plas- 
mas such as those encountered in the atmospheres and en- 
velopes of nondegenerate stars. For applications requiring 
high accuracy, our diffusion coefficients are to be preferred to 
the analytic expressions of Chapman and Cowling (1970). As 
discussed in this paper, those expressions have been very 
widely used in astrophysical problems, but they have been 
obtained after making nonessential approximations in the 
evaluation of the collision integrals. For dilute plasmas, we 
have found that the analytic formulae of Chapman and Cow- 
ling systematically underestimate the diffusion coefficient, and 
systematically overestimate the thermal diffusion coefficients. 
The differences can become nonnegligible in main-sequence 
stars. Michaud, Fontaine, and Beaudet (1984) briefly mention 
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this point in the context of lithium diffusion in solar-type 
stars. 

The main motivation for the present efforts, however, has 
been the need to obtain more reliable estimates of transport 
properties for conditions encountered in white dwarf en- 
velopes, and under which the analytic formulae of Chapman 
and Cowling fail completely. This is part of our long-range 
efforts to understand better the spectral evolution of white 
dwarf stars. As we have tried to emphasize throughout the 
paper, the values of the diffusion coefficients derived for white 
dwarf conditions can only be regarded as provisional. How- 
ever, as discussed in § IV, there are reasons to beheve that 
these values indeed provide reasonable estimates of the trans- 
port coefficients. Rigorous statistical mechanical treatments 
are clearly needed to describe the transport and thermody- 
namic properties of a plasma in the regime of intermediate 
coupling. It appears, however, that the results of such studies 
are not likely to become available within several years. Under 
such circumstances, we have used, without further apology, 
coefficients computed according to the method presented in 
this paper to study diffusion in white dwarfs. Specifically, and 
in addition to the two papers referred to in § I, we have used 
such coefficients in our recent discussions of the mechanism of 
diffusion-induced hydrogen burning in white dwarfs (Michaud, 
Fontaine, and Charland 1984; Michaud and Fontaine 1984). 
Lacombe etal. (1983) have also used similar coefficients in 
their computations of diffusion time scales in the cool DAZ 
white dwarf G74-7. Finally, diffusion coefficients computed 
from the analytic fits presented in this paper have also been 
used by Lamontagne etal. (1985) and Michaud etal. (1985) 
to discuss abundances anomahes in hot B subdwarf stars. 
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DIFFUSION COEFFICIENTS FOR STELLAR PLASMAS 
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