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Summary. The problem of relaxation of stellar systems is investi-
gated from the point of view of ergodic theory. It is shown that
an exponential instability peculiar to Kolmogorov K-systems
and leading to equilibrium exists in general stellar systems. The
relaxation time for real stellar systems is calculated. That time is
substantially smaller than the binary relaxation time. The physi-
cal difference between the two relaxation times is discussed.
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1. Introduction

Real stellar systems — globular clusters and galaxies — are known
to be generally in equilibrium. This is reflected in the high degree
of regularity of some basic physical characteristics of the stellar
systems, i.e. surface luminosity, dispersion of velocities, geometric
shapes, etc.

Jeans, Schwarzschild, Eddington, Ambartzumian, Chan-
drasekhar, Spitzer and others have applied many fundamental
principles of statistical mechanics to stellar systems. Thus, Chan-
drasekhar (1942) has considered in detail a relaxation mechanism,
based on the most natural process-stellar binary encounters.
However the magnitude of the relaxation time of real stellar
systems (especially elliptical galaxies), due only to binary en-
counters, turned out to be more than 103 yr, i.e. it exceeded the
Hubble time.

An important step to eliminate this paradox was Lynden-
Bell’s paper (Lynden-Bell, 1967) in which the theory of the
collisionless violent relaxation was developed. This theory,
although it has a great heuristic advantage and has stimulated
a lot of papers, nevertheless could not avoid certain difficulties.
Being a theory describing essentially the non-equilibrium phase
of evolution of stellar systems, it cannot describe their quasi-
equilibrium phase. Among many further attempts to understand
the mechanics of collisionless stellar systems, it is worth mention-
ing the paper by Severne and Luwel (1980), wherein the contri-
bution of fluctuations of the self-consistent field to the relaxation
process has been considered.

The interest in the relaxation problem and in the dynamical
evolution of stellar systems has grown sharply due to a number
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of recently obtained interesting observational data. Thus, at the
centre of the globular cluster M 15, an anomalous excess of
brightness is observed, whose explanation by the presence of a
central black hole (Newell et al, 1976) encounters certain diffi-
culties (Gurzadyan, 1982; see also Illingworth and King, 1977).
The existence of a “rapid” mechanism of relaxation could be the
possible explanation of this fact. The problem of the shape of
elliptical galaxies has also acquired a new content (Binney, 1982).

The difficulties for a satisfactory understanding of the dy-
namics of stellar systems are due to the well-known fact that in
a system of N gravitationally interacting stars Debye screening,
as distinct from plasma, is absent. This circumstance makes the
statistical description of gravitational systems more complicated
and requires special methods.

All that points out to the crucial role of collective effects in
the process of relaxation of stellar systems.

The present study is aimed at the investigation of this problem
from the viewpoint of the ergodic theory which in a way takes
into account the collective nature of interaction.

In the ergodic theory (Hopf, 1937; Halmos, 1953; Arnold,
1979; Kornfeld et al, 1980) a great progress is achieved in the
investigation of the statistical properties of dynamical systems
described by differential equations. A classification of noninte-
grable dynamical systems by increasing the degree of their statis-
tical properties is obtained. The K-systems (Kolmogorov, 1958)
possess the strongest statistical properties. These systems tend to
equilibrium with an exponential rate. In this paper we shall
inquire into the relation of K-systems with gravitating ones.

Originally the methods used below had found their appli-
cation in N.S. Krylov’s (1950) outstanding investigation on
gas relaxation. Recently by means of these methods one of the
authors (Savvidy, 1983, 1984) has studied the statistical prop-
erties of a non-Abelian Yang-Mills gauge field. The latter, was
shown to be Kolmogorov K-system.

The content of the paper is as follows. In Sect. 2 the prob-
lem of N gravitating bodies is reduced by means of the Mau-
pertuis principle to the problem of the geodesics of a Reimannian
manifold and its main geometrical characteristics are represented.
It is shown why the negativity of the two-dimensional curvature
is a sufficient condition for an exponential divergence of the
geodesics.

In Sect. 3 the relation between the exponential divergence
of geodesics and the statistical properties of an N-body system is
discussed. It is shown that it is possible to define a collective
relaxation time as the index of the exponential deviation. In
Sects. 4 and 5 after the calculation of the scalar curvature of the
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manifold, the collective relaxation time is estimated. Its difference
from the binary relaxation time is discussed and the existence
of three scales of length and time for stellar systems is demonstrated.

In Sect. 6 the sign-definitness of the two-dimensional cur-
vature is investigated. It is shown that in general this curvature
can be both negative and positive, however in spherical and re-
lated systems it is strongly negative. Therefore the latter systems
possess properties similar to those of K-systems.

A discussion of our results is presented in Sect. 7 and the
calculation of the two-dimensional curvature as an effective method
for the numerical investigation of stochasticity of dynamical sys-
tems is proposed.

2. Reduction of the N-body Problem to the Study of a
Geodesic Flow in a 3N-Dimensional Riemannian manifold.

Denote by r, (a=1,...,
potential of interaction is

N) the coordinates of stars. The

MM
U=Y Ur,—r)=—-G Y =2,

a<b a<b Tgp 0

Fop =F, — Fp

where M, is the stellar mass.
The equations of motion in Hamiltonian form are

0H 0H
b ra = b
or, op,

where H is the complete Hamiltonian of the system and p, is the
star’s momentum. As H is explicitly time-independent, H(p, r) is
an integral of motion, hence the equation H(p,r) = E = const
determines a 6N-1-dimensional energy hypersurface in the 6N-
dimensional phase space.

By means of the variational principle of Maupertuis the tra-
jectories of the system (2) may be presented as geodesics of
some Riemann metric given in a region of the configurational
space (ry,..., ry) € Q defined by the inequality U(r,) < E. The
line element in this metric is given by (Arnold, 1979)

ba=— )

3N
=(E-Uydp*=W ; (dg™)?, ©)

where
W=E-U
and {¢°} is defined as

{0} = {Mi%ry, .

The main idea is that the study of the behaviour of the geo-
desics, and hence of the trajectories of the system (2) reduces
to the investigation of the geometrical properties of the Riemann
manifold prescribed by the metric (3).

The equation of the geodesics on the Riemann manifold
(3) is

d*q” , 49" dgq’ B
ds?

Mi?ry}a=1,...,3N 4)

B s ds %)

(I'y, are the Cristoffel symbols). If we set

1
af _
9w

Jap = Wéa/} > 5aﬁ (6)

we can write Eq. (5) in the form

¢ 1 oW dq’ dg*
a1,
> T2 |:

0q’ ds ds
Equation (7) coincides with equations of motion (2) if the proper
time ds is replaced by \/— 2Widt.
The global properties of the geodesics are defined by the
linear deviation dq between close by geodesics. This deviation
satisfies the equation

D%5¢q* d¢f . dq°
i S - N a1
Ds? 5a(4) as °1 s

o OW  dg’ dg ] ™

aqy 98035 ds

®

where R} ; is the Riemann tensor and D/Ds denotes the covariant
derivative.
The measure of the deviation is given by the relation

|0a]* = 9309”04 )
and satisfies the following equation

d?|6q? dq dq" Ddql?

e e PR S (10

From Eq. (10), one can see that the linear deviation of the geode-
sics depends on the geometry of the Riemann manifold through
the Riemann tensor.

Indeed, the curvature K of the Riemann manifold along the
directions dq and dg/ds is defined by (Arnold, 1979)

a dqﬂ 6 ' dq&

K(6q. dg/ds) - |0gAdg/ds|* = R,g,s00> - 09" L. 1y

where

dq° dq’ dg*\2
[6adg/ds|* = (g.43¢°54") <gay = d—qs) - (ga,,aq“ d—qs) . (1)
If K is negative in all directions dq and dg/ds then the linear
deviation will change by an exponential rate.
Let us present the linear divergence of the geodesics as the
geometric sum of the longitudinal and normal components to
the velocity vector

0q = dq, + 5‘1” > (12)
where
|5‘1L4| = (13)

Then, one can see from (8) that the longitudinal component
satisfies the trivial equation
D364
Ds?

and the normal component the same Eq. (8), where dq is replaced
by dg,. Thus now in (11a) we have

d
694 % 4° _ 15 |2 (14)
Equation (3) can be written in the form
dq? dq\?
ol = W<g> =1 (15)
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therefore

2
dgA dq = |og|?

s (16)

Now, if K in Eq. (10) is always negative, this equation gives

d2|5q|2
P = o, (17)
where
k= min |K(dq,dq/ds)|. (18)
(q.dq, dq/ds)
Thus we have
. d|og]
> 2ks [ ]
[69(s)] 2 |8(0)]e i = s=o>0, (19)
dlé
6g(s)| < |0gO)je™~* if ddl .
dS s=0

Analogous relations can be found for the deviations in the mo-
mentum (dq*/ds) = p,.
Hence one can define a relaxation time

T =(2k)" V2, (20)

which coincides with the Kolmogorov entropy (Kolmogorov,
1958). Thus, the negativity of the two-dimensional curvature of
the Riemann manifold defined by the metric (3) is a sufficient con-
dition for the exponential instability of a stellar system.

The next section deals with the statistical properties of the
dynamical systems having an exponential instability (19), from
the viewpoint of the ergodic theory, and their relation with the
relaxation time.

3. Statistical properties of the dynamical systems:
definition of the relaxation time

The dynamical systems can be divided into two classes-integrable
ones, i.e. when the number of conserved integrals is equal to
the number of degrees of freedom, and the phase trajectories lie
on N-dimensional tori, and non-integrable ones. The classifica-
tion of non-integrable dynamical systems is given in the ergodic
~ theory by increasing the degree of their statistical properties.
Those are systems with divided phase space (i.e. containing both
motion on N-dimensional tori and chaotic motions), ergodic
systems, systems with weak mixing, with n-fold mixing, and
finally K-systems. The physical aspects of the classification are
treated in more details in Savvidy (1984).

K-system possess maximally strong statistical properties.
One of their main properties is the decay of trajectories in the
phase space into beams of exponentially approaching and ex-
panding trajectories (transversal fibers) (Anosov, 1967; Sinai
1970). Therefore K-systems tend to an equilibrium state (micro-
canonical) with an exponential rate.

The question is what is the rate at which an initial cell of
phase space will tend to cover uniformly the energy hypersurface
H = const. In the ergodic theory it is shown that in mixing
systems an initial cell complicates its shape so much (preserving
its volume) so that it covers uniformly the hypersurface H =
constas r — oo. In this sense, a mixing system in non-equilibrium
tends to equilibrium after infinite time. However, if we require
that the mixing occurs with a prescribed accuracy ¢ connected
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with the accuracy of physical measurements, then this time t,
will be finite.

The systems with exponential instability, i.e. those with K-
mixing, tend to the microcanonical equilibrium state with the
exponential rate, i.e. the deviations from equilibriums decrease
proportionally to e", where s is the proper time, and t is the
characteristic time (20). Therefore, if we adopt a certain accuracy
¢, of the equilibrium state then the relaxation time 7, will be
expressed via a characteristic time t:

1, = N(e)r, (21)

where A7(¢) is the number that depends only on ¢ for K-
systems it is

N(e)oclne ™t (22)

It is important to establish to what class of non-integrable
systems belong the stellar systems in general.

In (Hadamard, 1901; Hopf, 1939; Hedlund, 1939; Krylov,
1950; Anosov, 1967; Sinai, 1970) and other studies rather general
criteria were obtained answering the question to what class be-
long the systems with given Hamiltonian. As it was shown in
Sect. 2 if a stellar system with variable negative curvature is a K-
system, the minimum curvature k determines the relaxation time.

4. Sign of the scalar curvature

First, let us discuss the sign-definiteness of the scalar curvature R.
The Riemann tensor R4, for the metric (2) has the form

apy

1
Raﬂy& = ?VI_/ [VVBygaé - VVaygﬂé - I/V;.?égay + VVaégﬂv]

[(WeW, 9,5 — WW, 955 — WyWigs, + W, W;g5,]

4w?
+ W [gﬂygaé - gaygﬂé]de (23)
and the scalar curvature is
AW 1 1\ (Fw)y?
R=3NGN-1)| ——— —|>—=— 5 | 24
INW 4 2N/ W

where

ow P>W
W,=—, AW=—\17, @FWy
oq* 9q"9q"

oW ow
 oq* 0q*

Let us calculate the quantities in (24) for the scalar curvature.
Taking into account Eq. (4) and the relation

A,<#> = —4nd(r — a)
Ir —af

for the term with AW in eq. (24) we obtain for this term the

expression

3IN(3N — 1)
INW?

25)

N
4nG Y MM,8(r, —1,).

a#tb

(26)

The expression (26) is evidently equal to zero in all cases except
those when any two or more stars undergo direct impact. Since
for real stellar systems the time interval between two impacts is
very large, one can neglect direct impacts. Therefore, for R we
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arrive at the expression

R = _3NGN-1) <1 - i)(VW)Z ) @7

w3 4 2N

Note that neglecting the first term in (24) and speaking on the
absence of direct impacts, we nevertheless do not ignore collisions
in the Chandrasekhar sense, i.e. close encounters between stars,
during which the direction of motion changes by a finite angle.
Thus in (27) the effect of binary stellar encounters as well as possi-
ble collective effects is taken into account.

One can see from (27) that for N = 2, R = 0 and this reflects
the fact that the problem of two bodies is integrable. For N > 3
(W > 0) we come to the important conclusion that R is negative
and the system may have exponential instability and is a candi-
date as a K-system. More precise statements will be made by ana-
lyzing the sign of the two-dimensional curvature (11) in Sect. 6.
But now already we can claim that stellar systems may belong to
the class of systems with strongly developed statistical properties.

5. Estimation of the collective relaxation time

According to the results of the previous section, stellar systems
may possess exponential instability, and the relaxation time is
determined by the minimum value of the curvature along all two-
dimensional directions (19).

It is helpful, first, to estimate the mean scalar curvature (27).
One can readily see that

N1 [oU\? X
VYWw)? = =Y Mg2,
( ) agl Ma <ara) agl “
where g, is the field strength.
To estimate the quantities in R — W and AW we shall proceed
from the fact that W is the kinetic energy

(28)

2,2
W=T= i <M"”“>=N<M><v2>/2.

2\ (29)

We assume that the force follows a Holtsmark distribution
(Holtsmark, 1924; Chandrasekhar, 1943; Chandrasekhar and
von Neumann, 1943)*.

Using the Holtsmark distribution #(¢) we find the mean
square force affecting a single star

y 2 w
&) = [ H(e)de = a*® | y2dy — [ ™ &M xsin xdx
0 Ty o

=a*? [ H(y)y*dy = ca*?, (30)
0

where

a=(2nG)¥*(M)3?n, (31)

n is the stellar density and (M) is the mean star mass. From
(28-31) we have

(VW)? = Nca*3¢{M . (32)

! The fact that stellar systems posses exponential instability may
justify the Holtsmark-Chandrasekhar-von Neumann probability
approach.

Substituting (29), (32) into (27) we get the desired expression
for R, namely

3N?(3N — 1) aafl 1 IN3ca*3{ M)
= {M>ca AT )T a3

Note that calculating the mean square force using the Holts-
mark distribution, we obtain a divergent quantity, because the
constant ¢ in (30-33) is formally equal to infinity. This is due to
the fact that the Holtsmark distribution predicts too high prob-
abilities for > at |¢) — oo. This fact in turn is connected with the
long-range Coulomb character of the interaction.

In order to avoid the divergence of ¢ we introduce a cutoff?
for the forces of the order of Chandrasekhar (1943)

GM
Igcutoffl ~ 3 s (39)
cutoff
where
26(M, + M,)
Teutoft = T

is the distance at which the escape velocity (from a star) equals
the average velocity (v). Thus we find a finite value for ¢ ~ 1.
Now using the above-obtained result for R we can estimate
roughly the index of the exponent in Eq. (19).
Using (11) we estimate the mean curvature over the two-
dimensional directions

_ R
k(g,0q,dq/ds) ~ —— 35
(9,69, dq/ds) GNY (35)
and from (3), (15) we have
dql|? R
k-16gA —| ~——15¢/?; 36
‘q ds (3N)2| 4 (36)

for details see Sect. 6. _
Having in mind Eq. (36) and that ds = \/2Wdt we rewrite (17)
in the form

d? 4RW?
— |og|* ~ 5ql? 37
and for the relaxation time we have
1
3N (38)

IR

Using the previously obtained expression of the mean curva-
ture radius (33) for the relaxation time we finally have (see also,
Gurzadyan and Savvidy, 1984)

T vz 15\ 1 (o)
T ={— Y EVINIEL
a**(MYN 4 2m/2 G{Myn??
The relaxation time (39) normalized by using characteristic

values of the parameters of stellar systems like globular clusters
and galaxies is

vy n \TPP MY\
10k_m 1pc™3 My )

S

(39

T~ 108yr (40)

2 A similar divergence takes place in electrodynamics, which in
particular arises when calculating the Lamb shift and is overcome,
as it is well known, by a cutoff of the contributions at small
distances.
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For clusters of galaxies this formula yields 101°-10*2 yr.
Compare the relaxation time t with 7, taking into account
the binary encounters only:

V2%

= . 41
= G My In(N)2) (1)
The ratio of these relaxation times is

25/GM 1 d 1
W 0/ N )

T n? WN r,InN’

where r, = GM/{v*) is the radius of the gravitational influence
of the star and d is the mean distance between stars.

The expression (42) reflects the main physical difference be-
tween the relaxation times 7 and 1, which is the following: as we
have already mentioned, the relaxation time 7 is defined by the
curvature of the Riemann manifold, the contribution to which is
determined by the presence of neighbours at mean distances d,
whereas the contribution to 7, is determined by binary encoun-
ters only, characterized by the effective radius r,. Since for the
real stellar systems d >» r, we have

TKTy.

43)

Note that in the mechanism of collective relaxation discussed
above we take essentially into account the multiple mutual scat-
tering of all N bodies. With increasing density, d decreases and
approaches r,, so that the binary encounters become dominating
in the relaxation mechanism.

The times 7 and 7, are related to the dynamical time 1,4, =
D32/(GMN)? by the relations

- D - D
T —Etdyn’ Ty —Zrdyna
where D is the characteristic size of the system. The relations
(44) reflect the fact that there are three scales of time and length
for stellar systems:

{D o d r*}
Tagn T Tp)

In the following chapter the curvature over two-dimensional
directions is investigated and the relations (35), (36) are derived.
Several physical consequences are discussed.

(44)

6. The mean radius of curvature along
two-dimensional directions

In the previous two sections we have dealt with the scalar curva-
ture R, whereas actually in the equation for the geodesic diver-
gence we need the two-dimensional curvature K given by (11).
Below, we give the calculation of the two-dimensional curvature.
Let us calculate the right-hand side of (11) using the expres-
sion for the Riemann tensor (23). After substitution we obtain

Ruﬂyééqaqﬂ oq¢’°
1 3 1" .. . 1" s
= 5377 [2law"dd||6ad| — |6aW"5q]|dd] — 14V 4] 0a54]]

3
4aw?

[2l4w||W"5q||6ad] — |6gW"||5aW"|4d]

1

~ law Wl asal] + 35

5 [|d04]> — |ddl|oadq] - [W'W"|,
45)
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where the dot over g(4) denotes differentiation with respect to s,
a dash over W(W") differentiation with respect to g, and the ver-
tical bars denote

i W ow
iW"oq| = — ———64°; |0gqW'| = 6¢° —;
§W"3q ds 0q°0q® 1 [04W"| = 54 oq*

oW ow

W =___ """ aﬂ‘
W= 5

As it was shown in Sect. 2 only the normal component of
0q (12—-14) has a physical interest. Hence, in Eq. (45) dg may be
treated only as the normal component, and therefore, using (13)
we arrive at

5 1 1" .. . 1.
Ros,s04°¢°0q°¢° = ~ 5y L16aW"éql dd| + [aW"q||5454]]
3 2] 4 4 3 2
+ gz L0aWPladl + 14w *164dq]]

1 . ..
2w UV W1 l5a54ll4q[]- (46)
The first two terms of (46) are of the same nature. They con-
tain the second derivatives of the potential and they correspond
to the first term of (24) with the Laplacian AW. The third, fourth
and fifth terms of (46) have the first derivatives of the potential
and correspond to the second term of (24), with the gradient AW.
We calculate explicitly the expressions

. 0*U
—|0gW"oq| = ot —— ork
| q ql ;;:,Zk Ta ar;arﬁ b
MM 3(67 7 ab)*
=G Y { 2 b[arabarab———;’ >
a<b Tap Tap
4n

= MM b(5rab5rab)5‘3’(rab)} ; 47

3
and
|qW//4I - léqwuéq,

(using the substitution § — dq), where the second-derivative mat-
rix is defined by

+ 4% 5ik5‘3)(rab)} , a#b (48)
and
2 i
+ 4?7:- 5ik6‘3)(ra¢)}; a=b (49)

has been used.

Note that the term without the §®)(r) function corresponds
to the quadrupolar moment of the gravitational system whose
trace is zero, so that the total trace of this matrix is

AU = —AW = 41G Y M M,6%r,,). (50)

a#*b
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(see (24)—(27)). The last three terms can be obtained by means
of the first-derivative vector.

ouU L MM, .
=Y ULt Y G

(51)
or,  bh#a Tap  bb#a Top
Let us introduce the notation
o*U _ Y B 5
aqaaqﬂ = “aB> aq" =~ Pa- (52)

Consider the case when r,, # 0. Then the singular part of
Ay turns into zero, while the remaining real part is symmetric
and by virtue of (48), (49) has a zero trace. Among its eigen-
values 4, there are both positive and negative terms, the difference
between their numbers being the invariant of this matrix by
virtue of the law of inertia. In fact, we are interested in the sign-
definiteness of the quadratic forms |9gA4dq| and |§A44| composed
by means of 4,4 in the 3N-dimensional spaces d¢* and 4* This
matrix has eigenvalues of different signs. Therefore the forms
|6gAdq| and |§Aq| are sign-indefinite, so that a surface where
such a quadratic form is zero is a hypersurface given by an
expression of the form

210GF + -+ Ap0qhy — Aags10G3 11— — Aandqiy = 0. (53)

For N =1 this equations represents a conical surface (Fig. 1).
At certain instants of time r,, may become zero. Then singular
terms will also contribute to (46). However, as was mentioned
before, such events take place extremely rarely.

To study the sign-definiteness of the last three terms of Eq.
(46) we write down the scalar products in the 3N-dimensional
spaces dg* and ¢* in the form

3q°B, = |698q|'"*|BB|'"* cos 9,,,
4*B, = |44|"*|BB|'* cos 3,,

(54
(55)

[\

— +singular part

\
(8q,4d)

singular part only

+ singular port
— T Tl

4
- ~

Fig. 1. Schematic representation of the regions of positive and negative
sign of the first two terms from Eq. (46)

27 T T T
'ﬁy
3n/2 + -
n | + + + —
/2 |~ + -
I x

0 | ! ]

/2 b14 3n/2 27t

Fig. 2. Regions of positive and negative sign of the last three terms from
Eq. (46)

where 9;, and 9, are the angles between the vectors 4% B, and
4% B, respectively. Then these terms can be rewritten in the form

3
aw?

1
|6gd4||BB| [cosz.'},,q + cos?9; — 5]. (56)

Figure 2 shows the positive and negative regions of the expres-
sion in the square bracket of (56). The null line is determined by

the equation
c0s?9;, + cos?9; =3 (57)

and the maximum and minimum are achieved at the points

X =9 =0, m, 2m, . . ., (58a)
. . m 3m

31qm=9rénm=5’7...' (58b)
The maximum and minimum equal to

5 ..
+4—t W?2|BB||6444] |44
and

1 .

— 77 |BBI|6a%4||4d] (59)

respectively.

Thus, during the evolution of the system, at different times
the form (46) can take both positive and negative values.

However with increasing N for spherically symmetric systems,
the time the system spends in the region of negative values
starts to prevail strongly. In order to make sure of that let us
choose an assembly of systems with spherically symmetric initial
velocities and shifts and average (46) over them. We use here
the following relations:

—_ 1
8q°6q" = N 916404,

— 1
Y] - aB| s 4
¢ =359 |gq| . (60)
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As a result of such an averaging, the first two terms in (46)
transform into the expression

AW
TINW? |qu| |5q5‘1| . (61)
The last three terms in (46) after averaging are equal to
1 1\ (FW)?
—— o - 44| .
<2N 4> 773 9adq] - |ad| (62)

One can see that, with increasing N, the system spends most of
the time near the negative values (58a) equal to —4B?|6gdq|.
After averaging, the expression (48) becomes

Raﬂvééqaqﬁéqvqa
B 14w (1 1\("W)?
=+ oy 1) e J oo

R
= 3NN = 1) 999l = K- [badd]
wherein we have used the relations (15), (24) and (50). Thus, the
validity of the relation (35) is shown.

Thus, accurately speaking, the dynamics of the system is not
determined by the scalar curvature R only. However, as is seen
from (63), the averaged curvature over two dimensional direc-
tions K is proportional to the scalar curvature and turns out
negative in view of our analysis above. On the other hand the
dynamics of non-spherical systems is determined by the two-
dimensional curvature K which may be both positive and
negative.

(63)

7. Discussion and conclusion

The statistical properties of stellar systems have been investigated
from the point of view of the ergodic theory. The first step was
to reduce the N-body problem to the investigation of the be-
haviour of the geodesic flow on a Riemann manifold. An ex-
ponential divergence of the geodesics was formed with an
exponent determined by the curvature of this manifold. We use
the index of this exponent as the relaxation time.

We compare this definition of the relaxation time with that
of Chandrasekhar (1942). Our definition depends on a trajectory
instability which implies that a change of the initial data by
5g(0) develops in time at an exponential rate: dg(s) ~ 8g(0)e".
As an example let us consider the binary encounters of 2 pairs of
stars with initial scattering angles ¢,, and ¢;, + 4¢;,. Then
the exponential instability means that the difference between
the scattering angles after one encounter is

AQou = kA@y, (64)
and after n encounters the angle divergence is

490, = K" Apy, = Apye™ ™. (65)
Therefore the relaxation time is:

t=1/Ink. (66)
On the other hand Chandrasekhar (1942) considers the difference
49 = Gout = Pin>» (67)

and he defines the relaxation time as the time after which

Ao® ~ /2
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owing to binary encounters, i.e. when the change of the angle of a
single star will become of the order of 7/2, so that |4¢|cyandraseknar
increases linearly for n and not exponentially!

In conclusion we mention several additional astrophysical
consequences. As is well known, if the velocity distribution
of stars is maxwellian, some stars evaporate from the system
(Ambartzumian, 1938). As the time is much smaller than the
Chandrasekhar relaxation time, the role of the evaporation pro-
cess in the evolution of the stellar system increases sharply. The
results obtained can also serve as a foundation to the hypothesis
of the local equilibrium of the stellar systems (Gurzadyan and
Kechek, 1979).

The recent progress of computer techniques (Hamann, 1983)
greatly increases the possibility of numerical investigation of the
gravitational N-body problem. Two main difficulties arise here.
The first is the necessity of integration of too many differential
equations. The second occurs even we partially overcome of the
first one: it is the problem of understanding the basic meaning
of the numerical information. The formalism described here al-
lows one, using the numerical information, to compute the two-
dimensional curvature as an effective criterion of stochasticity.
The latter difficulty is also overcome in a number of papers
(Hénon and Heiles, 1964; Miller, 1964; Benettin et al. 1976;
Contopoulos et al. 1978; Zaslavsky and Chirikov 1971; Pesin,
1977; Contopoulos 1983; and others), where effective numerical
criteria are found by means of the Liapunov characteristic num-
bers. Both our method, and the use of the Liapunov characteristic
numbers give estimates of the experimental deviations of the
orbits. However, in spite of the similarity of the aims of the two
methods as regards the study of the stability of the systems, our
scheme, as it is noted in the Introduction, has a clear geometrical
interpretation.

The results of the numerical experiments will be published
elsewhere.
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