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Summary. We present a detailed analysis of the expected temperature distri- 
bution of the cosmic microwave background radiation in flat, open and 
closed universes possessing small anisotropies. We predict the most general 
temperature patterns on the sky and their associated angular correlation 
functions. We use these results to evaluate the largest level of cosmic vorticity 
compatible with existing observations of the dipole and quadrupole fluctua- 
tions in the microwave background. This analysis extends previous work by 
employing the quadrupole observations and calculating all observable 
quantities. It is found that the asymmetries in radio-source orientations 
measured by Birch cannot be due to universal rotation. Detailed limits on the 
allowed cosmic vorticity and large-scale velocity field are given for all possible 
homogeneous cosmological models close to isotropy. We also study in detail 
the geodesic spiralling effect predicted to occur in the most general flat and 
open homogeneous anisotropic universes. The nature of this feature is inde- 
pendent of the total density in these universes and offers a new means of 
determining by direct observation whether or not the Universe is closed no 
matter how close the density is to the critical density. 

1 Introduction 

In this paper we shall derive upper limits to any large-scale rotation of the Universe by using 

the current observations of the dipole and quadrupole structure of the cosmic microwave 
background radiation. This work was provoked by a controversial paper (Birch 1982) 
claiming to detect a systematic trend in position angles and polarizations of high-luminosity 
double radio sources. It was argued that such an asymmetry can only be explained by the 
existence of a universal vorticity of order KT^radyr“1. Such a uniform vorticity implies 
that the dimensionless ratio of the voriticity, co, to the current Hubble expansion rate, H0, is 

of order (co///0) ~ 10'3 but, although this is extremely large, it is not ruled out by the micro- 
wave background observations used by Collins & Hawking in their 1973 study of the rotation 
and distortion of the Universe (Collins & Hawking 1973). 
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918 J. D. Barrow, R. Juszkiewicz and D. H. Sonoda 1 

It is not our intention to enter here into a discussion of Birch’s observations or their 
statistical significance (Phinney & Webster 1983; Birch 1983; Kendall & Young 1984; 
Kendall 1984). We shall show that a universal vorticity at the level claimed by Birch is 
incompatible with existing observations of the microwave background and we shall also 
produce detailed temperature maps for models containing rotation and show that a 
detection of large-scale rotation in the Universe has a number of important consequences for 
determinations of the total density of the Universe and elementary particle physics. 

Our analysis of the evolution and structure of vorticity in the Universe will assume, to a 
first approximation, that this vorticity is spatially homogeneous. This will allow us to model 
it using linearizations of homogeneous, anisotropic cosmological models about the isotropic 
Friedmann universes. This is the approach used first by Hawking (1969) and then by Collins 
& Hawking (1973) in their earlier studies. Our analysis improves and extends these papers in 
a variety of ways. We employ the most recent observations of the quadrupole variation of 
the microwave temperature anisotropy and not simply the weaker, dipole fluctuation limits 
(Fixsen, Cheng & Wilkinson 1983; Lubin, Epstein & Smoot 1983). Besides improving the 
upper Emits sufficiently to rule out Birch’s claim this refinement also allows us to use 

linearized theory self-consistently [this was not possible in earlier studies (Collins & Hawking 
1973) as their authors’ point out: microwave background fluctuations could be large enough 

to allow the shear anisotropy to have been of order unity at redshifts less than that of last 
scattering, zE^ 103]. Whereas Collins & Hawking concentrated upon deriving approximate 
analytic limits on the magnitude of the vorticity, we have performed detailed numerical 
computations of the limits and have also determined the angular temperature profiles, 
r(0,0), over the sky. In order to relate our predictions more closely to the quantities 

actually measured we have also indicated the smoothing effects introduced over small 
angular scales by finite beamwidths and cosmological reheating. 

It is clearly of considerable cosmological importance to determine whether or not 
universal rotation exists at a measurable level. Besides shedding further light on the physical 
significance of Mach’s Principle (Raine 1975; Raine & Heller 1981), it has consequences for 
our understanding of high-energy physics and processes occurring in the neighbourhood of 
the initial singularity. If the ‘inflationary’ picture (Gibbons, Hawking & Siklos 1983; Barrow 
& Turner 1982) of the very early Universe is correct then quantum fluctuations of a self- 

interacting scalar field can be inflated to create a spectrum of scalar density (Hawking 
1982a; Starobinskii 1982) or tensor gravitational wave fluctuations with virtually (Abbott & 
Wise 1984; Starobinskii 1979) a constant curvature form. However, the scalar nature of the 
Higgs field that leads to those large-scale perturbations ensures that any velocity perturba- 
tions generated by the inflation process must be curl-free and any vorticity existing prior to 
the process of inflation should be exponentially damped (Barrow 1977, 1983; Ellis & Olive 
1983) if it has not already been dissipated by particle creation effects (Lukash, Novikov & 
Starobinskii 1976) or excluded ab initio by boundary conditions required for the consistency 
of quantum theory and general relativity (Barrow 1978; Penrose 1979; Hawking 1982b 
Barrow & Tipler 1985). The absence of universal rotation is a prediction of the inflationary 
universe picture. 

In order to study the evolution of vorticity in universes that resemble our own we shall 
investigate the behaviour of the most general anisotropic, spatially homogeneous generaliza- 
tions of the Friedmann universes in the approximation of small anisotropies. We shall 
calculate the microwave background temperature profiles and multipole moments as 
functions of the induced shear and determine the maximum vorticity allowed in open, 
closed and flat Friedmann background universes by confronting these predicted tempera- 
ture profiles with observation. In Sections 2 and 3 we introduce, with a minimum of detail, 
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Universal rotation 919 

the basic equations and quantities necessary to present our results. In Section 4 we present 
and discuss the results for the cases of open and flat universes, while in Section 5 we do the 
same for the case of a closed universe. Then, in Section 6 we discuss the effects of cosmo- 
logical reheating and finite antenna beamwidth upon our results before summarizing our 
conclusions in Section 7. 

2 Basic equations 

We shall employ the formalism introduced by Collins & Hawking to consider the most 
general spatially homogeneous perturbations of the Friedmann models. For the flat, open 
and closed Friedmann universes these perturbations are presented by linearizations about the 
Friedmann models of the Bianchi VII0, VIIh and IX models respectively. We shall compute 

the angular variation of the microwave background temperature, 7(0,0), over the sky 
relative to the mean temperature r0, and put 

A7_ 7(0,0)-Tq (21) 

7 70 

The associated angular correlation function 1^(0) is defined by 

IV(0) = <A7’(7)Ar(y)> (2.2) 

where 7 and 7 are unit vectors and 7*7= cos 0. The average <.. .> is over all pairs of points 

on the celestial sphere having angular separation 0. 

Observational constraints on the allowed deviations from isotropy caused by cosmic 
vorticity will be imposed by comparing the predicted and observed dipole and quadrupole 
fluctuations in 7(0, 0). The required decomposition of 7(0, 0) into spherical harmonics is 

AT 00 1 

— =I I (2.3) 
^ /= 1 m - — / 

where 

lm 
(21 + !)(/— \ m I)! 1/2 

477 (/ + I m [)! 
p\m '(cos 0) exp (zm0) * 

m> 0 

m <0 
(2.4) 

with 

alm (2.5) 

where Pf1 are Associated Legendre Polynomials and * denotes complex conjugation. 
The spatially homogeneous models admit a 3-parameter group of symmetries on a family 

of space-like hypersurfaces (MacCallum 1979). These surfaces can be labelled by a time 
parameter t such that g^n^^ - 1, where na = - t;0L is the normal to the hypersurface 
(; denotes covariant differentiation and Greek indices run 0 to 3). The metric can be written 

8iiv~ ~ n¡jinv + gAßE^ Ep , (2-6) 

where gAB is a 3 x 3 matrix depending only on t. The are three invariant covector fields 
on the surfaces of homogeneity chosen to obey the relations 

F Si _ r si 
^ H;v ^ v, 

A _ /^A 
- lBC E

b Ec 
^ ii1^ v •> (2.7) 
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920 J. D. Barrow, R. Juszkiewicz and D. H. Sonoda 

where the Cqc are the canonical structure constants for the symmetry group (upper case 
latin indices run 1 to 3). Following Misner (1968), we can decompose the metric as 

= exP (2a) lexP (2-8) 

where the scalar a represents the volumetric expansion whilst the trace-free symmetric 
matrix [exp (2ß)]AB includes the anisotropy. In the orthonormal basis of Collins & Hawking 

the shear tensor is given by the matrix equation, (• = d/dt), 

Oii=l/2[(eßy (e-íi) + (e-íi)(eíi)']ij. (2.9) 

In this basis i, j run 1 to 3 and are unchanged under raising and lowering operations whereas 
the 0 component changes sign. For small anisotropies 

Oij~hr (2-10) 

We shall consider the Universe to be dominated by pressureless matter after recombination. 

The stress tensor is therefore 

Tab = pu3uh, (2.11) 

where p is the energy density and na the fluid four-velocity vector. Since our models will 
possess small anisotropies we require 

ßif<l, I Mí I « 1, I Oy I <« à. (2.12) 

We shall be especially interested in the vorticity 

w = (g/4fi^cuB)1/2 = (w1coi)1/2. (2.13) 

In the £% basis we have 

coA = % exp (-3a)eABC [VjCbc«/)“0 + (2-14) 

from the conservation equations = 0, where eABC is the completely antisymmetric 
tensor of rank 3. For small (non-relativistic) velocities w°~ 1 and uA is small, so 

gja ~ % exp (~3a)eABC CbCpd. (2.15) 

The angular dependence of the cosmological redshift is given by 

1 + ze ” 
(Kßuß)E 

(Kßuß)0 

(2.16) 

where is the tangent vector to the null geodesic from the observer in a given direction. 
The subscripts E and 0 refer to the photon emission and reception events respectively. This 
expression can be related to the temperature anisotropy since 

1 + zE(0o> 0°) 

To first order, (2.16) and (2.17) give 

AT(60,0O) . / x / / x f° / k 
 z =(p w/)o-(p*a/)E- pp Ojkdt. 

To JE 

(2.17) 

(2.18) 
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Universal rotation 921 

The pl = (cos 0, sin 0 cos 0, sin d sin 0) are the direction cosines of the null geodesics 
towards the observer in the unperturbed Friedmann model. Since 0O and 0O specify the 
direction of the incoming photon they are not the observing angles on the sky (dob, 0ob)> 
but they are related to them by 

0ob = ^ - 0o, 0ob = 7r + 0o- (2.19) 

For convenience we shall perform calculations using 60 and 0O and only convert to 0ob and 

0ob when we display the temperature patterns expected on the celestial sphere. 
The first term on the right of (2.18) gives a dipole temperature variation due to our 

motion relative to the hypersurfaces of constant time in the Universe when the photons are 
received. The second term on the right of (2.18) is an analogous ‘Doppler’ variation due to 
the peculiar motion of the source at the last scattering redshift which we take to be 
1 + zE = 103; it will not, in general, contribute a pure dipole temperature variation. These 
two contributions will be absent in models where the matter flow is orthogonal to the hyper- 

surfaces of homogeneity, in which case the velocities ul are comoving, but they will be 
present in ‘tilted’ models (Ellis & King 1974) with non-comoving velocities. The final 
integral term in (2.18) gives the distortion anisotropy in the temperature profile introduced 
by the anisotropic expansion. Only in special models is this purely a quadrupole variation. 

The time-dependence of Ui and o^.are obtained from the Einstein equations whilst the 
geodesic equations (see Appendix A) give the variation of 6 and 0 with time. If we then 
express everything in terms of 0O and 0O we obtain the pattern that would now be seen after 
using (2.19) to convert to the observing angles 6oh and aob. 

In fact, before displaying predictions of T(0ob, 0ob) and W(6oh) we should account for 
the smoothing effects of finite antenna beamwidth and reheating of the cosmic medium. If 

Ar(0,0)/ro and W(Q) describe the temperature anisotropy after Gaussian smoothing, we 
calculate them from Ar(0, 0)/7,

oand W(d) using 

AT(0, 0) 

To ÍJ 
sin e’ —y-y' ly)de,d¿, 
To 

(2.20) 

W(0) =•—T- (w(a)a exp 
2y2 J 

_<Ar(y)Ar(V)) 

n 

where /(I Y — y' I • >’) is the two-dimensional Gaussian 

f(x, y) = (2Try2)-1 exp 
2r 

(2.21) 

(2.22) 

and /0(x) is the modified Bessel function with y' = (sin dr cos 0', sin 6' sin 0', cos 6f) and 
7* 7= cos 0. Fixsen et al (1983) use an antenna with a beamwidth of A^ = 7°. If 

ARt= 5°£2o 3 is the angular scale of smoothing due to secondary ionization of the intergalactic 
medium, then we can simply interpret A in (2.20)—(2.22) as an effective A = (A R:+ A^)1/2 

in order to include the effects of reheating and beam smoothing; this will be discussed in 
Section 6. 

3 Quasi-Friedmann universes 

We shall be interested in the most general spatially homogeneous universes that contain the 
Friedmann models as special cases. These are the Bianchi types VIIh and IX which contain 
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the open and closed Friedmann models respectively. The less general type VII0 model 

contains the flat Friedmann model as a sub-case. The extensively studied cosmological models 

of Bianchi types I and V are just special subcases of the VII0 and VIIh models. The type I 
geometry is so special that no vortical motions of perfect fluid are allowed, Ta0 = 0. We shall 
consider microwave background profiles in type VIIh and IX models, and by suitable 
specialization of parameters the results for types I, V and VII0 perturbations of Friedmann 
models can be read-off as required. To give this specialization procedure we note that 
Bianchi types VII0 and VIIh contain a free parameter, x, identified by Collins & Hawking. It 
is related to h in the VIIh model via 

1/2 
(3.1) 

(—y \l-í2o/ 

Its physical meaning is related to the characteristic wavelength over which the principal axes 
of shear and rotation change orientation, 

comoving scale on which basis vectors change orientation 
x =     . (3.2) 

horizon size 

To be in accord with observations of the Universe’s large-scale uniformity, and to justify a 

homogeneous model as a description, one should restrict interest to models with x ^ 0.04 
where the lower bound is given by the scale of observed superclustering. We shall, however, 
examine the influence of a wide range of values of x on the A T/To predictions. 

A type VIIh solution is partially described by the parameters ^0<1 and x{oih). By 
taking various limits of these parameters the I, V and VII0 solutions can be obtained, as 
shown in Fig. la. 

In previous investigations (Barrow, Juszkiewicz & Sonoda 1983) of the possible micro- 
wave background patterns arising in anisotropic models we showed there exists a division 
between those producing pure quadrupole variations and those open (f20<l) models which 
exhibit a focusing of the quadrupole pattern into a ‘hotspot’. We shall see that the VII0and 

VIIh models introduce another effect which is superimposed upon the basic quadrupole or 

(a) (b) 
Figure 1. (a) The relationship of the Bianchi I, V, VII0 and VIIh cosmological models employed in the 
text (Sections 4 and 5). The VIIh models are parametrized by O0 and x, which are related to h by 
equation (3.1). The types V, VII0 and I are derived from VIIh hy taking the limits indicated in the figure, 
(b) The qualitative form of the microwave temperature pattern, AT(6, (¡))IT0, arising in the Bianchi types 
I, V, VII0 and VIIh close to isotropy. Positions of models are as in Fig. 1(a). The open (f20<l) universes 
exhibit ‘hotspots’ and the type VII universes ‘spirals’. 
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Universal rotation 923 

hotspot pattern: a spiralling effect introduced by the intrinsic handedness of their three- 
geometrics. This spiral effect was noticed first by Collins & Hawking and later by Doroshkevich, 
Lukash & Novikov (1975) but temperature maps including this feature have not been produced 

before. The possible combinations of microwave features are exhibited schematically in 
Fig. lb. 

The Blanchi type IX model is distinct from those of type VIIh and so closed universes will 
be discussed separately in Section 5. We shall see that investigations of vorticity may offer a 
means of distinguishing between open and closed universes no matter how close Í20 lies to 
unity. 

4 Open and flat universes 

In this section we shall give explicit results for the VIIh universes linearized about the open 

Friedmann model. The unperturbed Friedmann model is described by an expansion scale 
factor 

N0(l - £2o)3/2 \ 2 / dr 
(4.1) 

The present value of the scale factor can be arbitrarily chosen, but 

n h1/2 x 
ea0 = —  =—. (4 2) 

H0(\ — Í20)
1/2 H0 

1 J 

So, the parameter x has no physical meaning in the Friedmann models. It can be scaled out 
of the solution but it is included to establish continuity with the VIIh models where the 

shear is non-zero and it does have an invariant physical interpretation (3.2) (see Collins & 
Hawking 1973). 

We shall calculate the contribution to AT/T0 from the vorticity alone. The inclusion of 
other pure shear distortions which are independent of the rotation could only make AT/T0 

larger. Hence, our results will give the maximum level of vorticity consistent with a given 

value of A 7/To. 
In VHh cosmological models we have two independent vorticity components, co2 and co3, 

and they can be described in terms of the off-diagonal shear modes, a^and a13, which they 
induce, 

co 2 — 
(3h - 1) a13 - 4h1/2ol2 

3x2i20 

(4.3) 

co3 

(1 — 3h) a12 — 4/z1/2a 13 

3x2i20 

(4.4) 

There are two dimensionless amplitudes to be constrained by observation: (tf^/TOo and 
(o13/H)0. They are related to the present dimensionless measure of vorticity scalar to Hubble 
rate, (co///)o> by the velocity components u2 and w3 via 

co = V2 ^ a(l + h)1/2 [(w2)2 + (1/3) v2il/2 (4.5) 

where 

(^2)0 = 

(^3) 

_L[3»"=(ÍIí) 

3xil0i \h}0 \h!0\ 

— [(^) 
3xi20 lAtf/o \H/0Ï 

(4.6) 

(4.7) 
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924 J. D. Barrow, R. Juszkiewicz and D. H. Sonoda 

and hence the present vorticity is given by 

(\+h)in{\ +9K)in r'2 '2',1/2 

6x2i20 (&)■©] 
(4.8) 

Using the solution of the geodesic equations given in the Appendix we find the expected 
temperature anisotropy in terms of Í20, h (a12//0o and (ax a/ZOo as 

M (l-i2o)1/2 

3i20/z 
J^3/z1/2 _ (^) ] ^SÍn C0S _ SÍn C0S ^ + Ze^ 

+ [(+ ^12 (^) ] ^SÍn SÍn ^ ~ SÍn ^E sin ^E^ + 

^■o/z1/2(l - Í20)3/2 

f JrE 
sil 

si„2»[(^cos*+(^s
in*] 

sh4(/z1/2r/2) 
(4.9) 

where 

To =2/f1/2sh-1 [(Í2ól-l)1/2], 

ZE 
rE = 2ft'1/2 sh’1 

Ol 
(4.10) 

The qualitative behaviour of the geodesics can be seen from equations (A. 10). There is a 
focusing effect due to the variation of 6 with r which is similar to that calculated for type V 
in the absence of rotation. In addition, there is a spiralling of the geodesics created by the 
variation of 0 with r. The formulae given above give the correct results for VII0 in the limit 

Í20 ^ 1 with x finite, and for type V as /z 00 (see Fig. la) and include various minor 
numerical and algebraic corrections to the earlier calculations in ref. (2). 

It is convenient to decompose (4.9) into the form 

AT 
— (0o, M = [{~)n

A (0o> + (^)o
5(0o)] sin « 

+[(”#). 

where we have defined A (0O) and B (d0) by 

A (0O) = Q [sin d0 — C2(cos 0E — 3/z1/2 sin 0E)] 

>ro ¿-(l — s2) sin 0(ir 

cos 0o> (4.11) 

+ Cq 
J J T Te (1 + 5 ) sh (/z 2r/2) 

^(^0) = Ci [3/z172 sin d0 — C2(sin 0E + 3/z172 cos 0E)] 

r0 5(1 — s2) cos 0 dr 

(4.12) 

- Cc 
! Jte ( 1 + s2 )2 sh4 (ft1/2 r/2) 

(4.13) 
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with Ch C2, C3, 5, and \¡j defined by 

C^CSfto*)-1; C2=]SF'(1
2 
+Ze); C3 = 4ft1/2(l — £20)3/2^ö2; (4.14) 

1 + 4 

s = tan tan ^jexp [-/z1/2(r - r0)], (4.15) 

i// = (r - To) — h~1/2 In jsin2 + exP [2/z1/2(t - t0)] cos2 (4.16) 

Thus, numerical computations of AT(6, 0)/ro due to rotation in all the Bianchi types V, 
VII0 and VIIh just involve computations of y4(0o) and Æ(0O) f°r ¡hz appropriate choice of 
zE, Í20 and x [or h, if we recall equation (3.1)]. The required system of equations linking the 
vorticity, (co///)0 to the temperature profile is given by (4.8) and (4.10-4.16). 

Since we shall be confronting the theoretical predictions with observations of the dipole 
and quadrupole moments of AT/To, it is expedient to express all temperature anisotropy 
moments in terms of the vorticity. Using (4.11) and (2.3)-(2.5) we can calculate the 
multipole moments which we write as aï± since only the sign of m matters in (2.4), 

(4.17) 

where we have defined 

A{Q)P\ (cos 0) sin 6 dd 

i?(0)P/(cos 6) sin Odd. 

Therefore, if we define 

(4.18) 

(4.19) 

3- 1 V , «/=— L I alm 
47T m = -/ 

(4.20) 

we have 

(4.21) 

Observational limits on the dipole and quadrupole moments of the background radiation 
anisotropy, ai and a2, will therefore give us upper limits on [(u12///)o + (a13//f)o]1/2 and 
hence on the vorticity (co/ZOo using (4.8). We note that using 60 and 0O instead of the 
observing angles 0ob and 0ob, (see 2.19) only introduces a factor of (— l/ into the formula 
(2.5) for aim. 

In Figs 2 and 3 we show plots of 7X0, 0) for the VII0 and VIIh models with x = 0.067 
(this is the smallest value of x that is realistic). The qualitative features shown there are not 
peculiar to the presence of rotation but would appear in VII0 and VIIb models containing 
pure shear anisotropy with zero vorticity also. 
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926 J. D. Barrow, R. Juszkiewicz and D. H. Sonoda 

Figure 2. The temperature pattern, T(Ö, 0), predicted in a type VII0 universe (O0 = l) in the region 
0 < 0ob < Irr, tt/2 < <90b < 7T. The radial distance represents the magnitude of T(0ob, 0ob)- The profile is 
for a model with the maximum vorticity compatible with observation when* = 0.067 (see Table 3). The 
redshift of last scattering is 1 + zE = 103. For simphcity we have chosen (a12///)0 = (<713///)0 but choosing 
differently just rotates the whole pattern in the angle 0O -^ 0O + constant. The left-handed geodesic 
spiralling effect discussed in the text is clearly evident. 

Figure 3. As Fig. 2 but for an open VII^ Universe with Í20 = 0.7 and x = 0.067. The negative curvature is 
responsible for a ‘hotspot’ effect which focuses the left-handed spiral temperature pattern towards the 
axis (90b = Tr. The total number of spiral twists is determined by x, equation (4.25), and is unaffected by 
Í20. 
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Universal rotation 927 

Fig. 2 is the pattern created in a flat (Í20=l) universe containing small-amplitude 
vorticity or shear. The underlying quadrupole plus dipole pattern is modulated by the spiral- 
ling effect of the geodesics in the 0 plane; as x -> 00 the spiral spacing increases and the entire 
pattern approaches the pure quadrupole expected in Bianchi type I. In Fig. 3, we see the 
same spiral phenomenon is displayed by the open (Í20 < 1) universe of Bianchi type VIIh 

when close to isotropy. In this case the geodesic focusing in the 6 coordinate, discussed in 
detail by Barrow et al (1983), squeezes the spiral quadrupole and dipole seen in Fig. 2 into a 
region of smaller angular scale. As x -*00 the spiral spacing grows and the pattern becomes 
identical to that found in Bianchi type V models containing vortical modes. From these 
figures one can see how a very small value of x would create extremely irregular temperature 
profiles over small angular scales. Notice that the spirals have a definite handedness; this 
arises because of the intrinsic group of motions underlying the Bianchi type VIIh geometry. 
A similar effect was noted in connection with the polarization of the microwave background 
by Matzner & Tolman (1982). 

At this juncture it is worth discussing the ‘spiral’ geodesic effect in more detail. In the 
models we have been describing in this section the temperature patterns can all be expressed 
in the form (4.11) with A(0O) and 5(0O) differing from model to model as prescribed by 
(4.12-4.16). We can rearrange (4.11) as 

—- = 042 + B2)1'2 (—') cos (0o + 0) (4.22) 
io \H/ 0 

where 0 is given by 

cos 0= j B - j {A2 + B2)"1'2. (4.23) 

So, if we look around any circle of given 0O on the sky, the temperature variation will 
possess a pure cos 0O dependence. The type V, VII0 and VIIh temperature patterns differ 
only in the amplitude of this cos 0O variation and in the relative orientation of adjacent 

0o = constant rings, which are labelled by 0. For type V we have A (0O) = 0 so 0 is constant 
and there is no spiralling; the amplitude of A77r0and the focusing into a hotspot are deter- 
mined by £(<9o).* For type VII0 and VIIh universes the parameters A (do) and B(d0) are 
both non-zero and this leads to the twisting of the overall profile. For a large redshift of last 

scattering, A and B are approximately of the form 

{A(d),B(6)} 

\ 
sin [(2 cos do)lx] 

or 
cos [(2 cos S0)/x] 

'fix, d0) (4.24) 

for some function/(x, d0). Hence, we wee there will be roughly A^ complete twists of the full 

spiral pattern with 

2 
N  (4.25) 

TTX 

since there is a complete spiral twist whenever 2 cos 00
= 2mirx, m integral. The smaller x, 

so the smaller the scale over which the shear and vorticity basis vectors change their orienta- 

tion (see equation 3.2), and the tighter the resulting spiral. These cosmological models have a 

*In the limit Í20->1, [(1+ Z£>3/2 - 1] sin 20o and the type V pattern reduces to the pure 
quadrupole of type I. 
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928 J. D. Barrow, R. Juszkiewicz and D. H. Sonoda 

Figure 4. The unsmoothed correlation function, h/(0), defined by equation (2.2) for a type VII0 universe 
with n0 = l and jc = 0.067. W(d) has been scaled so W(0) = 1 and, in line with observers’ practice, the 
dipole component of AT/T0 was subtracted before calculating ^(0). The observations of Fixsen et al. 
(1983), and Lubin et al. (1983) give limits of W(0)<9XlO-10 for 0>1O° which limits the allowed 
vorticity in this model today to (u>//7)0< 10-7 and the associated peculiar velocities to (u)0<2 XlO-8 (in 
units of c). 

Figure 5. The unsmoothed correlation function, H/(0), as Fig. 4, for a type Vllh universe with £l0 = 0.7 
and x = 0.067. The observational bounds on W(0) limit the presently allowed vorticity and peculiar 
velocities to (cj///)0<7 X10-7 and (w)o<10-7 (in units of c). 

definite handedness and an observer looking at the centre of the pattern would see a left- 
handed spiral (Barrow & Silk 1983) — we transform to the true observing angles (0Ob> 0ob) = 

(n — 6o, n + Q0) to determine this. The value of the constant x determines the angular 
separation between successive twists. When x 00 we regain the type I quadrupole. 

In Figs 4-6 we display the results of calculating the correlation function W(0) for various 
models/ Fig. 4 displays W(d) for the VII0 model with x = 0.067. Figs 5 and 6 give the open 

*We consider the contribution of the first 100 components in the multipole expansion (/ <100) to W(0). 
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Figure 6. The unsmoothed correlation function, W(d), as Figs 4 and 5, for a type V universe with 
Í20 = 0.3. The observational limits on W(Q) bound the presently allowed vorticity and peculiar velocities 
by (w///)0<5 XlO-9 and (w)0<10"*(in units of c). 

Figure 7. Upper limits on the present value of the vorticity parameter (oj/H)0, compatible with observa- 
tions of the dipole (d) and quadrupole (q) observations of the microwave background in the type VII0 

universe (Í20 = 1) as a function of x<l; realistic models have a: >0.04, see equation (3.2). The quasi- 
periodic behaviour of the curves is a consequence of the geodesic spiralling effect which is more pro- 
nounced as x 0. Precise numerical limits from this plot are given in Table 3. 

type Vllh correlation function in the case Í20=0.7 and the type V correlation function 
when r20= 0.3 (see figure captions for details). The limits on rotation given in the captions, 
which are derived from W(0), differ slightly from those obtainable from the dipole and quad- 

rupole observations alone (Tables 1—4). In the high density case shown in Fig. 6, it is 
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930 J. D. Barrow, R. Juszkiewicz and D. H. Sonoda 

virtually a pure quadrupole together with a dipole associated with the rotational velocity 
effects, whereas in Fig. 5 this pattern has been focused by the negative curvature into a 
hotspot. 

In Figs 7—9 we display the largest values of the vorticity parameter (oo/H)0, that are 
compatible with the observed limits on the dipole (d) moment and quadrupole (q) moment 
of the microwave background radiation: these we take as tfi<10-3 and tf2<7xl0-5 

(Fixsen et al 1983; Lubin et al 1983). Fig. 7 shows the upper limits on {üú¡H)q as a 

function of x in the VII0 model where Í20 = 1. Fig. 8 shows upper limits on (co///)0 in type 
VIIh models with Í20=0.1 as x varies. Fig. 9 shows the variation of the upper limit on 

Figure 8. As Fig. 7 but showing the upper limits on (to///)0 in a type VII^ universe with Í20 = 0.1 foi 
various x <\. Precise numerical limits from this plot are given in Table 4. 

^0 

Figure 9. As Fig. 6 and 7 but showing upper limits on (co///')0 in a type VII^ universe with x = 0.067 as í 
function of the total present density, i20. Precise numerical limits fr0m this plot are given in Table 2. 
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(<jû/H)0 with Í20 for = 0.067. The n0 ^ 1 limits reduce to those of the VII0 model with the 
same value of x. 

Two things are apparent from these figures: first, by using upper limits on the quadrupole 
fluctuations in the background radiation we can considerably improve earlier limits calcu- 
lated using the dipole term alone. Secondly, the geodesic spiralling creates oscillatory 
behaviour in the multiple moments that then shows up in the upper limits. For comparison 
we show, in Fig. 10, the upper limits on the present value of (o;/7/)oas a function of Í20in 
Bianchi type V obtained by letting x ^ 00 in the VIIh models above. In this limit the geodesic 
spiralling effect disappears. As Í20 ^ 1 in type V we see that (co///)0 0 because vorticity is 
excluded from Bianchi I models by geometrical effects and therefore upper limits on (co///)o 
obtained using the type V models (Hawking 1969; Batakis & Cohen 1975; Ruzmaikin & 
Ruzmaikina 1969) are rather misleading when Í20^ 0.1 : the vorticity is forced to assume low 
values by artificial constraints imposed by the fact that the geometry is not the most general 
homogeneous perturbation of an open Friedmann universe model. The VIIh limits as ÍZq-* 1 
do not suffer from this defect for x <l, and smoothly approach the vortical VII0 model. 

However, the geometrical suppression of vorticity would occur in the limit x ^ 00 when we 
regain type I from type VII0. Since the limits we give on (co///)o today are based upon the 
observed dipole and quadrupole components, the best limits are expected in models which 

possess a pure quadrupole variation, i.e. the cases with FZ0^1 an(i * ^ 00. This sheds light 
upon the general trends seen in the results figured above. As FZ0 falls there is an enhanced 
focusing effect and the pattern contains more high-order spherical harmonic components 
and the limits obtained on rotation are weaker. Likewise, if x is small the tightly wound 
spiral pattern is not well represented by either a dipole or a quadrupole. The type VIIh limits 

are the weakest because of the simultaneous effects of spiralling and focusing for small x and 
small ULq. The quasi-periodic changes in the components of the spherical harmonic expansion 

as f2o and x vary also explains the sensitivity of the limits on (co///)0 to small changes in the 
parameters. From equation (4.24) one sees that the general trends in the upper limits are 

Figure 10. As Figs 7, 8 and 9 but giving upper limits on (cj/i/)0 in type V universes for n0 in the range 
0.05 to 1. The limits approach zero as n0-*l for geometrical reasons (see text). Precise numerical limits 
from this plot are given in Table 1. 
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932 J. D. Barrow, R. Juszkiewicz and D. H Sonoda 

Table 1. The maximum present vorticity parameter, (u>///)0, and associated peculiar velocity, {u)0 in units 
of c, allowed by observations of the dipole {ax) and quadrupole {a2) components of the microwave back- 
ground anisotropy in Bianchi type V universes with different values of the total density Í20. 

Í2, Dipole limits Quadrupole limits 

0.05 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
0.98 

3.5 X10"6 

1.3 X10"6 

4.7 X10"7 

2.6 X10‘7 

1.6X10T7 

1.2 X10"7 

8.6 X10~8 

6.7 X10'8 

5.4 X10'8 

4.5 X10'8 

4.2 XlO-8 

(W/Oo 

1.7 XlO'6 

6.2 XlO'7 

2.1 XlO'7 

1.1 XlO-7 

6.3 XlO“8 

4.1 XlO"8 

2.7 XlO"8 

1.8 XlO"8 

1.2 XlO"8 

7.2 XlO’9 

3.0 XlO"9 

3.4 X10-7 

1.3 XlO"7 

5.2 XlO'8 

3.2 XlO“8 

2.6 XlO’8 

2.5 XlO“8 

3.6 XlO'8 

1.3 XlO-7 

1.1 XlO“8 

3.6 XlO'9 

i.oxio-9 

1.7 X10“7 

6.2 XlO"8 

2.3 XlO-7 

1.3 XlO"8 

9.9 XlO'9 

8.9 XlO'9 

1.1 XlO'8 

3.5 XlO'8 

2.6 XlO'9 

5.6 XlO'10 

7.1 XlO-11 

Table 2. As Table 1 but for Bianchi VII^ universes with jc = 0.067. 

ft, 

0.05 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
0.98 

Dipole limits 

1.1 XlO”3 

1.6 XlO'3 

4.9 XlO'4 

1.2 XlO-3 

1.2 XlO'3 

1.5 XlO-4 

1.2 XlO-4 

1.7 XlO-4 

9.6 XlO"5 

6.6 XlO"5 

1.4 XlO"4 

1.03 XlO-7 

1.5 XlO"2 

4.6 XlO’3 

1.1 XlO’2 

1.1 XlO'2 

1.3 XlO-3 

1.0 XlO"3 

1.5 XlO-3 

8.2 XlO"4 

5.4 XlO’4 

1.3 XlO"3 

Quadrupole limits 

«0 

6.1 XlO-5 

7.7 XlO'5 

1.2 XlO-5 

2.7 XlO"5 

2.0 XlO"5 

4.6 XlO'6 

4.4 XlO-6 

4.6 XlO-6 

5.4 XlO-6 

3.6 XlO’6 

1.1 XlO'5 

(W^)„ 

5.8 XlO'4 

7.3 XlO'4 

1.1 XlO'4 

2.5 XlO'4 

1.7 XlO-4 

4.2 XlO'5 

3.9 XlO'5 

4.0 XlO'5 

4.6 XlO'5 

3.0 XlO'5 

8.5 XlO'5 

Table 3. As Table 1 but for Bianchi Vllguniverses (no = 1) for a range of values of the constant parameter 
x. 

0.07 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

Dipole limits 

“o 

6.6 XlO"5 

5.9 XlO"5 

5.6 XlO"6 

1.2 XlO"6 

3.1 XlO"7 

1.2 XlO"7 

8.0 XlO"8 

6.4 XlO"8 

5.6 XlO"8 

5.1 XlO"8 

4.8 XlO"8 

{w/HX 

4.7 XlO’4 

2.9 XlO'4 

1.4 xlO-5 

2.1 xlO'6 

3.8 XlO'7 

1.2 xlO'7 

6.7 xlO'8 

4.6 XlO'8 

3.5 XlO’8 

2.8 XlO'8 

2.4 XlO'8 

Quadrupole limits 

2.7 XlO'6 

6.0 XlO'7 

8.0 XlO'8 

2.9 xlO'8 

8.6 XlO'9 

7.9X10'9 

1.1 XlO'8 

3.0 xlO'8 

3.2 XlO'8 

1.0 XlO'8 

c 'i w i rv- 9 

(u/HX 

1.9 xlO'5 

3.0 xlO-6 

2.0 XlO’7 

4.8 XlO’8 

1.1 XlO"8 

7.9 xlO'9 

9.2 xlO'9 

2.1 xlO"8 

2.0 xlO'8 

5.6 xlO-9 

3.2 xlO’9 
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Universal rotation 933 

Table 4. As Table 3 but for Blanchi VII^ universes with Í20 = 0.1, 

Dipole limits Quadrupole limits 

0.07 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

2.3 X10-3 

2.7 X10"4 

6.3 X10~5 

1.6 X10"4 

2.4 X10"5 

5.0 X10'6 

5.1 X10“6 

1.5 X10“5 

9.6 X10"6 

4.0 X10“6 

2.8 X10“6 

2.1 X10"2 

1.8 X10"3 

2.5 X10“4 

4.4 X10"4 

4.9 X10“5 

9.3 X10'6 

6.7 X lO"6 

1.6 X10“5 

9.0 X10“6 

3.2 X10“6 

2.0 X10“6 

2.9 X10“5 

9.5 X10“6 

1.4 X10“4 

7.7 X10“7 

3.7 X10“7 

1.4 X10“6 

3.5 X10“7 

2.0 X10“7 

1.7 X10“7 

1.7 X10“7 

1.7 X10“7 

(oj/H)0 

2.7 X10“4 

6.5 X10“5 

5.4 X10“4 

2.1 X10“6 

7.5 X10“7 

2.3 X10“6 

4.6 X10“7 

2.2 X10“7 

1.6 X10“7 

1.4 X10“7 

1.2 X10“7 

caused by the f(x, d0) components of ^4 (60) and 5(00), whereas the quasi-periodic variations 

are created by the sin, cos [(2 cos doj/x] variations. The difference between the limits that 
can be placed on (00///% from ^ dipole and quadrupole observations arise primarily from 
the different magnitudes of the observational data (¿?i < ICT3, a2< 7 x lO”5). However, even if 
a i and a2 were equal, the limit on (co/Z/^o derived from a2 will still be slightly stronger. When 
comparing our limits with those of Collins & Hawking (1973) it should be noted that for 
Bianchi types V and Vllh they take T20

= 10~2 throughout. We do not consider here the case 
of last scattering occurring at low redshift (1 + zE~ 10) because of reheating since observa- 
tions over angular scales exceeding that subtending the particle horizon at zE ~ 9, 0 ^ 5 i2o 3°, 
will measure anisotropies unaffected by moderate reheating, but see Section 6. 

In Tables 1—4 we summarize the upper limits on the present vorticity to Hubble rate 

(cj/Zf)0, and the associated peculiar velocity scalar, (w)0, imposed by the dipole and 
quadrupole observations in the flat and open universes we have examined. 

5 Closed universes 

The most general spatially homogeneous universe model that contains the closed Friedmann 
model as a particular case is that of Bianchi type IX. We shall linearize the Einstein equations 
for the type IX model about the Friedmann model as we did for the type VII models about 
the open Friedmann models. However, the situation turns out to be more complicated than 
was the case in the type VII0 and VIIh universes. There exist three non-zero velocity com- 
ponents Ui, which are not related to the induced shear in a straightforward manner. The 
closed Friedmann background universe is described by 

1 dt 
e = — eam (1 - cos r) =—, (5.1) 

2 dr 

with present value of the scale factor given by 

ea° = (F20 — 1)-1/2. (5.2) 

The scale-factor at the moment of maximum expansion, rm, is denoted by o:m and 

e
am = ÇIqITo1 (Í20 ~ 1)~3/2- (5.3) 
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934 J. D. Barrow, R. Juszkiewicz and D. H. Sonoda 

One can show (see Appendix B), that the dependence of the velocity components, Uf, on 
the shear tensor is given by a complicated expression of the form (B.12)-(B.14) 

Ui oc eABi 
, (G) (D). 

l H2 Jo 
(5.4; 

where [B, A] = Vi {BA - AB) denotes index antisymmetrization and the shear consists of 
growing (G) and decaying (D) modes. The most general models with vorticity have all three 
ui components non-zero. Nevertheless, the geodesics propagate in a particularly simple 
fashion along the 6 and 0 directions with no focusing and no spiralling (see A. 11 ). 

For type IX universes the temperature anisotropy, given in general by the master 

equation (2.18), simplifies to 

AT 
-zr=pl[(ui)o-(ui)E]-p

Jp(ßo-ßE)jk- (5.5; 
*0 

If the radiation was emitted at a large redshift, zE, then (w¿)o is negligible compared to (w¿)E 

and if (f20 — 1) Í201 is small compared to unity then we have that 

AT 
-pl(Ui)E-p’pkQlk 

*0 

where (w/)E reduces, in this approximation, using (BJ4), to 

5 î7t(g) r/0).Ï \1/2 

(i^l) Ze 

(5.6; 

(5.7; 

and the quadrupole distortion tensor, ß,y, is just the matrix 

Qi) = (ßo — Pe)//c 

which, from Appendix B equations (B.6—10), is calculated to be 

'aiP»\ 2 /a(P> K- \ , 2 /a , \ 

The present vorticity is given by 

/co\ _(f20-l)1/2 

\///o 2 

3/2 
1). 

[(Ul)2 + (U2)2+(U3)2K 

(5.s; 

(5.9) 

(5.10) 

where the u¿ are given in Appendix B by equations (B.12)—(B.14). Unlike in the open and 
flat universes discussed in Section 4, the closed universe does not admit a simple relationship 
between the vorticity and the induced shear; the best that can be done is the system (5.10) 
and (B. 13)/ 

Since Q.. is a traceless symmetric matrix we can expand (5.6) using the explicit forms of 

the direction cosines pl to give 

AT 
- - {ux)^ cos d - (w2)e sin 0 cos 0 - (w3)E sin 0 sin 0 

To 
Qn 1 

+ —(1 — 3 cos2#) sin2# cos 2 0 ((?22 - ßss) 
2 2 

— sin 2 # (Q12 cos 0 + ß13 sin 0) — ß23 sin2# sin 2 0. (5.11) 

* Whereas our calculation in Section 4 calculated only the distortions to the temperature profile con- 
tributed by the vorticity, for type IX we shall consider the general form of the distortions due to shear 
and rotation because they are intertwined in this case. 
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Now, using (2.5), we can calculate the dipole and quadrupole coefficients in the spherical 
harmonic expansion of (5.11). We find* 

{2it\1/2 

«1,±1 =|—I (+U2 + iU3)E 

= i ( n° ) 

12 \ 3 / \ H2 Jo \Í20 — 1/ 

MttV ' 
aio~ I I ßn 

= (?)lfV—n 

/Stt) 1/2 

,±i = ^ Qn - IQ13] 

ZE' 

1/2 
ZE: 

2 r± 

3 1 H J0 

[(1+ze)3/2-1] 

*2, ±2 = (l?) [2(033 ^ 022) ± '023] 

2iV2(a^-a(?))±M?) 

H H 
[(l+zEf

2-l] 
] 

Hence, using (4.20), we find the dipole and quadrupole moments, ax and a2, to be 

i)2 + (^)2 + (^)2l1/2 (a)E 
a\ = ^ 

F \/3 

"2 = Ê)12(ôi/Ôy)1/2’ 

(5.12) 

(5.13) 

(5.14) 

(5.15) 

(5.16) 

(5.17) 

(5.18) 

We include several corrections to expressions obtained by Fabbri, Pucacco & Ruffini (1984). 
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936 J. D. Barrow, R. Juszkiewicz and D. H. Sonoda 

where the w and Qij are given explicitly by (5.7) and (5.9). Equations (B. 13) and (B.14) 
relate the velocity scalars, (n)0 to through 

/ l+zE\
1/2 (16-13flo)(M)E 

\1 + QqZ]?/ (16 — 13 Mo 3 r2oZ£) 
(5.19) 

so 

(«)o“ 
(1^E)1/2 

(i + sVe)3/2 
(W)E. (5.20) 

Observational limits on the dipole moment, ah give us an upper limit on the present velocity 
when we use (5.19) and take 1 + zE = 103 because we have 

(w)o = 
\/3(l +zE)1/2a1 

(1 + £20ze)3/2 
(5.21) 

Equation (5.10) gives a limit on the vorticity parameter (co/i/)0 in terms of any limit onaj 
since we have that 

/w\ _\/3(n0- 1)1/2(1 + zE)1/2ai 

U/V (l + i20zEf
2 

V3(i2o-l)1/2
gl 

2(1 + í20ze) 

(5.22) 

(5.23) 

We see that the limit on the velocity scalar, (5.21), is virtually independent of Í20^ 1. Fo 
1 -i- zE = 103 and ¿q < 10"3, as observed, we calculate therefore the maximum present velocity 
and vorticity compatible with the dipole observations to be 

(w)o< 1.7 x 10-6 (5.24; 

(—) <8xl0"7(i2o-1)1/2 (5.25; 
Jq 

when Í20 is close to unity. 
We would expect that other limits on (w)0 and (co///)o, derived from the observationa 

upper limits on the quadrupole component of the background radiation of a2<l x 10"5 

would considerably strengthen (5.24) and (5.25). However, the observational limit on a2 i 
not so easily related to the present vorticity because the dependence of ß// on the shea 
differs from that of the velocities; therefore, we can obtain order of magnitude estimate 
only. Using (5.18), we know that if the decaying mode were zero (ojP^ = 0) in (5.9) then w< 

have the inequality 

H' Jo 
[1 -(1 +zE)_1] < (5.26 

whereas if we set the growing shear mode, o^, equal to zero then the corresponding limit i 

2 

3 
[(1 +ze)3/2 

-1]< 

1/2 

a2. (5.27; 
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The velocity scalar today has the form, (B,13), 

5(16 —13£20) [ 
(u)o   x l antisymmetric terms like 1^-1—j— 

36i7o(^7o — 1)1 ' H 

5 (16 — 13i20) / 45 (¿z2)
2 \ 

< 36i20(^o-l)1/2 14 [(l+zE)3/2-l]J 

5(^)2 

(Í20 — 1)1/2Z£2 

(5.28) 

(5.29) 

(5.30) 

Hence, for last scattering at 1 +zE= 103 the observational upper bound on a2 of 7 x 10 5 

gives very powerful upper limits on the present velocity and vorticity [from (5.30) and 
(5.10)] of 

(w)o< 7.8 x 10_13(i2o — 1)-1/2, (5.31) 

< 3.9 xlO-13. (5.32) 

These limits are nearly two orders of magnitude stronger than those given earlier by less 
detailed analyses (Collins & Hawking 1973). They show that a closed, approximately 
Friedmannian universe can have rotated through less than 4 x 10-é seconds of arc since the 
expansion began. We notice that the type IX limits with £20 very close to unity are not the 
same as the VII0 vorticity limits unless the parameter x is chosen to have a specially large 
value. One might have expected that the VII0 and IX limits on the vorticity would have been 

comparable when x = 1 in type VII0 but we can see from Table 3 that, whenx = 1 the VII0 

limit is (u>/H)0< 3.2 x 1CT9, considerably weaker than that in type IX given by (5.32). We 
note also that the limit (5.32) is independent of Í20when Í20is close to unity (see equation 
B.7), but the limit imposed by the dipole temperature fluctuations (5.25) is proportional to 

(Í20 — 1)1/2. In view of the possibility that our Universe may well possess a value Í20 = 1 ± e 
where e>0is very small it is extremely interesting that there appears to exist a large discrete 

difference in the level of vorticity compatible with a given amplitude of background 
radiation fluctuation in universes with Í20 = 1 + e and n0 = 1 - e as e ^ 0. It may be possible 
to determine observationally whether a Friedmann universe is open or closed no matter how 
close £20 is t° unity. For example, the detection of the spiral geodesic effect described in 
Section 4 would enable us to distinguish a flat universe with Í20 = 1 from a closed universe 
with £2o = 1 + e, e> 0 no matter how small the value of e, because the spiral effect will not 
occur in a closed universe. This is interesting if only because it is often claimed that we will 
never be able to tell whether the Universe is open or closed if £20 is arbitrarily close to unity. 

Of course, if the anisotropy and vorticity modes we have been studying in this paper have 
very small amplitudes their contribution to AT/To will be undetectably small. If‘inflation’ 
occurs in the way predicted by simple models then this should predict that no large-scale 
rotation exists. 

6 Effects of smoothing 

The temperature distributions and correlation functions derived in Sections 5 and 6 are 
those that would be found by ideal measuring devices. However, in practice, detectors have a 
finite beamwidth which allows the signal to be contaminated from other directions. If the 
beamwidth is Aa then this will lead to significant effects on W(6) on angular scales 6 ^ Aa. 
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938 J. D. Barrow, R. Juszkiewicz and D. H. Sonoda 

Bajtlik et al (1985) have examined this effect in detail using the Gaussian convolutioi 
outlined in equations (2.20)—(2.22). They find the peak in W(6) at small angles, 0 ^ Aa 

seen in Figs 4—6, to be reduced and slightly broadened. Typical values of Aa are of order 7° 
and for this choice the reduced quadrupole moment, a2, calculated from the smoothec 
correlation function, W(6), differs from the a2 calculated from W(Q) by less than 5 per cent 
The effects of reionization of the universe at a redshift z* such that the optical depth i 
unity at z* erases fluctuations in AT/Jo on angular scales less than that subtending thi 
horizon at z*, that is less than AR = 15i2o/3 degrees (Bajtlik er #/. 1985). The effects ar 
found by Bajtlik et al to be similar in character but slightly less significant than those o 
finite beam-width. Both effects can be well accounted for by convolving the unsmoothe» 
predicted patterns with a Gaussian of half-width (AR + Aa)1/2, equations (2.20-2.21). 

Both of the above effects have negligible effects upon our conclusions since they produo 
effects on scales 0 ^ (AR + Aa)1/2 ^ 16° The dipole and quadrupole components are no 

strongly affected by smoothing over these scales and hence our limits on vorticity an 
essentially unaffected. Also, the limits given in the captions of Figs 4—6 derived from 1^(0 
were derived from observations of the correlation function for 0>1O° and should b 
essentially unchanged by smoothing effects. The reheating considered above, with uni 
optical depth r, for Thomson scattering arising at a redshift z* due to reheating of th 

cosmic medium, are moderate. The case of strong reheating has been considered b; 
Negroponte & Silk (1980). They find that when reionization at z* leads to t(z*)> 1 then ; 
smoothing of large-scale anistropy occurs. [This was also assumed by Collins & Hawkin; 
(1973).] However, a saturation of the damping effect is attained when t(z*)~ 30 and ; 
further increase of r does not deplete the residual anisotropy by a significant factor. In orde 
to attain an optical depth, r, due to electron scattering when the present density of ionize« 
gas is Í2g (we assume the total density £20 = 1 ; this is the most favourable case 

//o = 100 kni s“1 Mpc-1) then one must ionize the Universe at a redshift 

1 +z;{;> 613 (6.1 

Nucleosynthesis of helium and deuterium (Pagel 1983) limits the total baryon density ii 
the Universe, and hence the gas density, to 0.01 ^ Í2g< 0.05 (Yang et al 1984). The majo 
component of a universe containing Í20 ~ 1 would have to be in a non-baryonic form whid 
plays no role in the thermal history and rescattering of the background radiation. If (6.1 
holds, then the anisotropies in the background radiation due to shear and vorticity woulc 

evolve as though isotropic until a redshift Z\ where t(z¿) = 1 determines zx. 
The most favourable case for reheating, Í20~ 1, gives 

/0.05\2/3 

'tz''6oy <6'2 

and this results in a weakening of the limits calculated on the cosmic vorticity in Sections 
and 5 from the dipole, quadrupole and correlation functions by at most a factor ~ 50. Th: 
factor can also be seen in some numerical results of Bajtlik et al (1985). If Í20< 1 the effecl 
of a strong reheating are less significant. 

7 Conclusions 

We have provided a detailed analysis of the angular variations to be expected in the mien 
wave background radiation if the universe contains small homogeneous anisotropies. Wherei 

© Royal Astronomical Society • Provided by the NASA Astrophysics Data System 



19
8 

5M
N

RA
S.

21
3.
 .

91
7B

 

Universal rotation 939 

previous investigations have concentrated upon calculating bounds on the amplitudes of the 
allowed anisotropic distortions we have given detailed predictions of the angular variations 
expected on the sky together with the angular correlation functions. We have also indicated 
the effects of beam-smoothing and reionization of the cosmic medium. In addition to the 

‘hotspot’ effect found in open universes and discussed earlier (Barrow ei ¿7/. 1983), we have 
calculated the details of the geodesic spiralling that occurs in the most general flat and open 
Bianchi-type universe models. These models are parametrized by a constant, x, which 

measures the characteristic pitch angle of the spiralling on the sky. 
We used these analyses to calculate the maximum level of homogeneous vorticity that is 

permitted in the Universe by the current observations of the microwave background dipole 
and quadrupole moments. Previous analyses had used only the dipole limits whereas present 
upper limits on the quadrupole moment allow for stronger limits to be placed on the level of 
any cosmic vorticity. 

Recent studies of the position angles and polarization of double radio sources have led to 
the suggestion that the Universe is rotating with a vorticity to expansion rate ratio of 

(co///)o~ 10-3 (Birch 1982). This claim is based upon observations of 137 radio sources 
which display a systematic anisotropy in the value of a measure of the orientations of the 
major axis of each radio source relative to the polarization of the radio emission. This 
anisotropy has been found to be statistically highly significant (Kendall & Young 1984), but 
its status as evidence for large-scale vorticity is ambiguous (Phinney & Webster 1983; Birch 
1983). We have found that the current observations of the microwave background permit 

(co/ZOo t0 be no larger than 3.9 x KT13 if the Universe is closed with Í20< 2, no larger than 
1.9 x KT5 if it is flat (Í20= 1) and no larger than KT4 if it is open (Í20^ 0.05). These are the 
limits for the least favourable choices of the spiralling parameter x, complete results can be 
seen in the figures and Tables 1—4. These results indicate that if the effect found by Birch is 
real it cannot be attributed to cosmic vorticity. 

The limits we have found depend strongly on whether the Universe is open or closed. The 
vorticity modes permitted in closed universes differ significantly from those allowed in flat 
and open universes and the vorticity level that is compatible with microwave background 
observations is significantly different in the two cases no matter how close f20 is to unity. 
Furthermore, the geodesic spiralling effect occurs only in flat and open universes and its 
detection would give definite proof that the Universe is not closed. The hotspot effect also 
allows one to infer that the Universe is open if it is detected, but a significant hotspot 
focusing requires 0.1. It offers no hope as a means of distinguishing between open and 
closed universe when f20 is arbitrarily close to unity. However, the spiral effect has the same 
qualitative form however close Í20is to unity and only occurs if Í20< 1. 

Acknowledgments 

We would like to thank P. Amsterdamski, S. Bajtlik, P. Birch, C. Frenk, F. Graham Smith, 
B. Lovell, R. Matzner, I. Silk, J. Stein-Schabes, R. J. Tayler, D. W. Sciama and B. Tolman for 

discussions. DS was supported by an SERC postgraduate studentship and RJ by an SERC 
visiting fellowship and DOE grant 84-ER40161 at Berkeley whilst this work was completed. 

References 

Abbott, L. & Wise, M., 19%4. Astrophys. J., 282, L47. 
Bajtlik, S., Juszkiewicz, R., Proszynski, M. & Amsterdamski, P., 1985. Astrophys. J., in press. 
Barrow, J. D., 1911. Mon. Not. R. astr. Soc., 179, 47P. 
Barrow, J. D., 191%. Nature, 272, 211. 

© Royal Astronomical Society • Provided by the NASA Astrophysics Data System 



19
8 

5M
N

RA
S.

21
3.
 .

91
7B

 

940 J. D. Barrow, R. Juszkiewicz and D. H. Sonoda 

Barrow, J. D., 1983. In: The Very Early Universe, eds Gibbons, G., Hawking, S. W. & Siklos, S. T. C.. 
Cambridge University Press, Cambridge. 

Barrow, J. D., Juszkiewicz, R. & Sonoda, D. H., 1983. Nature, 305, 397. 
Barrow, J. D. & Silk, J., 1983. The Left Hand of Creation, Basic Books, New York. 
Barrow, J. D. & Tipler, F. J., 1985. The Anthropic Cosmological Principle, Oxford University Press, in 

Press. 
Barrow, J. D. & Turner, M. S., 1982. Afaiwre, 298, 801. 
Batakis, N. & Cohen, J. M., 1975. Phys. Rev. D., 12, 1544. 
Birch, P., 1982. Nature, 298, 451. 
Birch, P., 1983. Afarw/'e, 301, 736. 
Cohins, C. B. & Hawking, S. W., 1973. Mon. Not. R. astr. Soc., 162, 307. 
Doroshkevich, A. G., Lukash, V. N. & Novikov, I. D., 1975. Soviet Astr., 18, 554. 
Ellis, G. F. R. & King, A., 1974. Comm. Math. Phys., 38, 119. 
Ellis, J. & Olive, K., 1983. Nature, 303, 679. 
Fabbri, R., Pucacco, G. & Ruffini, R., 1984. Astr. Astrophys., 135, 53. 
Fixsen, D. J., Cheng, E. S. & Wilkinson, D. T., 1983. Phys. Rev. Lett., 44, 1563. 
Gibbons, G., Hawking, S. W. & Siklos, S. T. C. (eds), 1983. The Very Early Universe, Cambridge Universit) 

Press, Cambridge. 
Hawking, S. W., 1969. Mon. Not. R. astr. Soc., 142, 129. 
Hawking, S. W., 1982a. Phys. Lett., 115B, 295. 
Hawking, S. W., 1982b. Astrophysical Cosmology, Pontif. Acad. Scient. Scripta Varia, 48, 563. 
Kendall, D. G., 1984. Q. Jl R. astr. Soc., 22, 3. 
Kendall, D. G. & Young, G. A., 1984. Mon. Not. R. astr. Soc., 207, 637. 
Lubin, P. M., Epstein, G. L. & Smoot, G. F., 1983. Phys. Rev. Lett., 50, 616. 
Lukash, V. N., Novikov, I. D. & Starobinskii, A. A., 1976. Soviet Phys., 42, 757. 
MacCallum, M. A. H., 1979. In: General Relativity: An Einstein Centenary Survey, eds Hawking S. W. & 

Israel, W., Cambridge University Press, Cambridge. 
Matzner, R. A. & Tolman, B. W., 1982. Phys. Rev. D., 26, 2951. 
Misner, C. W., 1968./Isirop/zys.151, 459. 
Negroponte, J. & Silk, J., 1980. Phys. Rev. Lett., 44, 1433. 
Pagel, B. E. J., 1983. Phil. Trans. R. Soc., A310, 245. 
Penrose, R., 1979. In: General Relativity: An Einstein Centenary Survey, Qàs Hawking, S. W. & Israel, W. 

Cambridge University Press, Cambridge. 
Phinney, E. S. & Webster, R. L., 1983. Nature, 301, 735. 
Raine, D. J., 1975. Mon. Not. R. astr. Soc., 171, 507. 
Raine, D. J. & Heller, M., 1981. The Science of Space-Time, Pachart, Tucson. 
Ruzmaikin, A. & Ruzmaikina, T. V., 1969. Soviet Phys., 29, 934. 
Starobinskii, A. A., 1982. Phys. Lett., 117B, 175. 
Starobinskii, A. A., 1979. Soviet Phys. Lett., 30, 683. 
Yang, J., Turner, M. S., Steigman, G., Schramm, D. N. & Olive, K. A., 198A. Astrophys. J., 281, 493. 

Appendix A 

Light rays follow null geodesics through space-time. If is the tangent vector to one sucl 
geodesic then it satisfies 

(A.l 

In the orthonormal basis of Collins & Hawking we employ, the geodesic equations are 

¿4 = CBca 
KbKc 

K° 
(A. 2 

for a null geodesic 

K°Ko + KaK
a = 0 (A3 
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but, 

so 

K° = (KAKA)in 

and 

KA=gABKB= AB KB (A-4) 

with Ka = {K cos 0, K sin d cos 0, K sin 6 sin 0) where K is constant. For small anisotropies 

Sab~ e20L&ab and A"0“ A^e_0i; the geodesic equations then reduce, to first order, to 

If we use the values of the structure constants for Bianchi types I, V, VII0, VIIh and IX, 
which are those containing Friedmann models as special isotropic cases, the equations and 
their solutions are given as follows: 

Bianchi type I 

0' = 0' = 0 

0 = 0R = constant; 0 = 0R = constant. (A.7) 

Bianchi type V 

0'=-sin0, 0' = O 

(A.5) 

Introducing a new time by d/dr - e^d/dt = (') we have 

J/' ' _ /^B TS IS 1/—\ 
&a-lcakb&ck • (A.6) 

0 = 0R = constant. (A. 8) 

Bianchi type VII0 

0' = 0, 0f = cos 0 

0 = 0R = constant 

0 =0r-O-tr)cos0r- (A.9) 

Bianchi type K//h 

0' = — \Jh sin 0, 0' = - cos 0 

0 = 0R + (r - rR) - In (A. 10) 
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Bianchi type IX 

<9' = 0, 0' = O 

0 = 0R = constant 

0 = 0R = constant. 

Hotspot focusing can be seen in the Q propagation solutions in types V and VIIh. 

(A. 11 

Appendix B 

Bianchi type IX: 

The vorticity components are uA = lUe~3aeABCeDBCuD and hence the individual con: 
ponents in the E1^ basis are 

(as1, a2, ta3) = V2 e’3“ («!, a2, u3) 

and hence the vorticity scalar is 

u=1/2e-2a[(u1)
2 + (ÏÏ2+(iÏ3)2r2 (B.l 

= V2 e~a [(lii)2 + (m2)2 + (m3)2]1/2. (B.2 

The r0/Einstein equations give the constraints 

^ba QiC^AC = — SirGpo exp (3úí0 2o:) u¡. (B.3 

If we expand this to second order (the left-hand sides vanish to linear order about isotropy 
in type IX, where CBC = eABC, then we have 

1/2etjke~a(e2ßa-ae2ß)jk=STrGpu0ui. (BA 

For small anisotropies Wo~ — 1> ~ fty and 

(e2'3)i/-S,7 + 2ft/-, 

SO 

e//fc(oß - ßa)ik = 8nG ea pui. (B.5 

Collins & Hawking give the approximate form for of 

ft; “ Fij “ y exP (a ~ am)j + Ga exp [- % (a - am)] (B.6 

where Fzy and are constant matrices. This is a truncated series and will only be valid i 
exp (a - o:m) is small compared with unity; thus, it is valid only far from the expansioi 

maximum, that is, when 

Í20 — 1 
exp (a0 - O = ——— < 1 (B.7 

so we can consider only models with Í20 very close to unity. Using ay = (jy, we split the shea 

into growing and decaying components, oft’-* and aff*\ so we have 

16 3 
aij =~— Fi/à exP (a “ am) -- Gijà exp [- 3 (a - am)/2] (B.8 
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and we decompose so that the constants and are given in terms of the present shear to 
Hubble ratio, 

(Gh 

(B.9) F = -  
16 (Í2 

%=-- 

ftp 

o-l)' ^ l 

/i2o-l\3/2/gP>\ 

\ Sl0 ) \ /o ’ 
(BIO) 

Equation (B.4) gives 

5 

24 
eABi 

(««j.içrc)'- 
[-3 (a - am)l2\ -16 exp [- (a - am)/2]} 

= SirGp exp (a)w¿. (B.l 1) 

Using p = Po exp [3 (a0 — a)] and SnGpo^ for the Friedmann background, we have 
expressions for the velocity components 

72 l // I 

(i2o-l): 

i2o 
3/2 

x J3 exp [- (a - am)] - 16] [1 - exp (a - am)] 

so the present velocities are given by 

exfiIlàaluî} (16-13 

\ Hl Io í2o(í2q — 
(m/)o 

72 

(16 -13f20) 

ïy^2 

(B.l 2) 

(B.l 3) 

and the velocities at the emission redshift, zE, of last scattering are 

(M.)E=le^. /1 + ^e\1/2(16-13S2o+300z) 
'E 72 ^ \ Hi J0\ l+zE J í2o(í20-l)1/2 (B-14) 

The solution of the geodesic equations for type IX given in Appendix A shows that we 
have constant 0 = 0o and 0 = 0O, so there is neither the geodesic focusing nor the spiralling 
effects found in the type V and VII universe models. 
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