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ABSTRACT 
Exact interior and exterior solutions to Einstein’s field equations are obtained for vacuum strings. For a 

uniform density vacuum string the interior solution (in cross section) is a spherical cap while the exterior 
solution is conical. If the mass per unit length in the string is expressed in units of Planck masses per 
Planck length, then for 0 < /* < ¿ the exterior metric ds2 = —dt2 + dr2 + (1 — 4¿i)2r2d</>2 + dz2. A maximum 
mass per unit length for a string is found: /imax = 6.73 x 1027 g cm-1. Grand unified vacuum strings with 

~T024 g cm-1, consistent with the observed isotropy of the microwave background and large enough to 
promote galaxy formation, would produce equal brightness double images of QSOs with separations of up to 
6'. Formulae for lensing probabilities, image splittings, time delays, etc., are derived for strings in a reasonable 
cosmological setting. String searches using ST, the VLA, and the CO BE satellite are discussed. 
Subject headings: gravitation — quasars — relativity 

I. INTRODUCTION 

Zeldovich (1980) proposed that vacuum strings produced in 
the early universe could provide the fluctuations necessary to 
produce galaxies. Kibble, Lazarides, and Shaft (1982), have 
shown that in the symmetry breaking of SO(IO) via SU(5) 
stable strings can appear which survive subsequent transitions. 
In a vacuum string the only component of pressure Pz = —p is 
along the direction of the string. The string is characterized by 
a mass per unit length p and a tension t — p produced by the 
negative pressure. (We use units where G = c = h = l.) In 
general relativity mass has units of length, so mass per unit 
length is a dimensionless quantity; p = 1 corresponds to one 
Planck mass per Planck length = 1.35 x 1028 g cm-1. For 
grand unified strings we expect p ~ a~1m2, where a ~ 10“2 is 
the coupling constant and m is the typical boson mass in units 
of the Planck mass; the diameter of the string is of the order 
m-1 (cf. Vilenkin 1981a). For m ~ 1016 GeV, p ~ 10-4. With 
Pz = —p strings just satisfy the weak energy condition (cf. 
Hawking and Ellis 1973). Strings stretch during the cosmo- 
logical expansion preserving p since the PdV work done by the 
expansion against the negative Pz = —p pressure is exactly 
that required to produce the new mass in the additional length 
of string. On scales larger than the horizon, strings are confor- 
mally stretched (cf. Turok 1983). Within the horizon, if the 
string is curved the tension will bring about relativistic motion 
straightening out any kinks. Closed loops will contract rela- 
tivistically. A perfectly circular loop would contract to form a 
black hole, but a general loop may cross itself in a figure eight 
pattern. If the loop elements interchange upon crossing as 
envisaged by Zeldovich (1980) then two smaller loops will be 
formed with the process leading to a cascade of loops and 
formation of black holes. Thus in the Zeldovich scenario loops 
coming within the horizon are rapidly destroyed and we 
should expect to find within the horizon today of order one 
string, reasonably straight. (For convenience we shall adopt 
Q0 = $np0/3H0

2 = 1 and H0 = 50 km s-1 Mpc-1 in what 
follows.) The mass currently within the horizon is MH = 
P0(4tu/3)V = (3H0

2/Sn) x (4n/3)(2H0-
1f = 4H0-1. A 

straight string within the horizon can have a maximum length 
of 2Rh = 4//0

-1 and mass Ms = 4pHq~1. Thus in the Zeldo- 
vich scenario MS/MH ~ p. Such a relativistically moving string 
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can produce observable fluctuations in the microwave back- 
ground of order (ÔT/T) ~ p so the observed isotropy of the 
microwave background to one part in 104 sets the limit 
p < 10-4. Random fluctuations in the mass within the horizon 
of order p = 10” 4 can be sufficient form galaxies (cf. Zeldovich 
1972; Gott and Rees 1975; Gott 1977). However the dynamics 
of loops is such that in general they are not expected to cross 
themselves in a figure eight pattern (cf. Kibble and Turok 1982) 
so that as Vilenkin (1981b) and Turok (1983) have argued the 
loops within the horizon will continue to oscillate until they 
radiate away their energy by gravitational radiation. Hogan 
and Rees (1984) have discussed the possibility of detecting such 
gravitational radiation using the millisecond pulsar. In this 
long-lived loop scenario the total mass of loops within the 
horizon is of the order MJMH ~ —p\np. Curvature fluctua- 
tions on the scale of the horizon are dominated by the largest 
loop size / ~ Rh. The smallest surviving loops are of size l ~ 
pHq-1 and mass M ^ p2H0~i. A final possibility is that 
strings can pass through each other without inter-commuting. 
In this case (cf. Vilenkin 1984) the universe eventually becomes 
string dominated: MS/MH ~ 1, with p~l approximately 
straight strings within the horizon. In this scenario Vilenkin 
finds exceedingly small values oip < 10-20 are plausible. 

Vilenkin (1981a) has calculated the exterior gravitational 
field of a vacuum string in the weak field limit and finds that it 
corresponds to a conical space. He notes that this can produce 
double images of objects behind the string and that this may be 
relevant to the double quasar. In this paper (§ II) we shall 
present exact solutions to Einstein’s field equations for both 
the interior and exterior geometry. We shall show how the 
solutions look in both the limit of large and small p. In § III we 
will examine in more detail the gravitational lensing properties 
of these solutions in a realistic cosmological setting. 

II. EXACT SOLUTIONS 

These are solutions of Einstein’s field equations R/ 
— ^ô/R = SnTv

ß with the appropriate values of T/ for a 
string in the interior solution and T/ = 0 for the exterior solu- 
tion. The interior solution is: 

ds2 = —dt2 + r0
2(d62 + sin2 Odcj)2) + dz2 (1) 
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with —ooctcoo, 0 < 6 < 0M, 0 < (j) <2n, — oo < z < oo, 
and r0 = const. For this metric the only nonzero connection 
coefficients are F0^ = sin 6 cos 0, and F^ = F0

00 = cot 0; the 
only nonzero components of the Ricci tensor are Re

6 = = 
r0~2. Thus R = 2r0

-2, and the only nonzero components of 
the energy momentum tensor are T/ = Tz

z = —(l/87cr0
2). 

Since 77= —p and TZ
Z = PZ this corresponds to p = 

(l/87ir0
2) = const and Pz = — p as desired. The geometry of a 

section t = const, z = const of this solution is that of a spher- 
ical cap with a radius of curvature of r0. The circumference 
of the string (measured around its waist) is C = 2nrb = 
2nr0 sin #M. 

The exterior solution is 

ds2 = —dt2 + B0dr2 + r2d</>2 + dz2 , (2) 

where B0~l/2 = cos 0M and —oo<i<oo, —oo<z<oo, 
0 < <p < 2n (the coordinates t, z, and </> correspond exactly to 
those in the interior metric) and r0 sin 0M = rb < r < 00 if 
Om < tt/2. We can adopt new coordinates r' = (B0)1/2r and 
</>' = (J50)~1/2(/). In terms of these new conditions the exterior 
metric is : 

ds2 = —dt2 + dr’2 + r,2d(j)'2 + dz2 (3) 

with 0 < <// < (#0)_1/227l Equation (3) is just the metric of 
Minkowski space in cylindrical coordinates. Thus Ra

ßyö = 0 for 
the exterior solution (it is locally flat) so R^ = 0, R = 0, and 
T/ = 0. 

If we set z = const, t = const we may visualize the two sur- 
faces defined by the interior [ds2 = r0

2(d62 + sin2 #d</>2)] and 
exterior (ds2 = B0 dr2 + r2d(¡)2) metrics by embedding them in 
a Euclidean 3-space with ds2 = dw2 + dr2 + r2d(j)2. We may 
embed the exterior solution as the surface w(r) = (B0 — l)1/2r. 
This is the surface of a cone which if extended would have its 
vertex at r = 0. The interior solution is a spherical cap of 
radius r0 with 0 < 6 < 6M. The entire embedding diagram for 
6m < tt/2 is shown in Figure 1. The appropriate matching con- 
ditions at the boundary (cone tangent to sphere) are rb = r0 sin 
6m, B0~1/2 = cos 0M. The metric (3) corresponds to cutting the 
cone and laying it flat. Now 0 < </>' < B0~ll22n so the cone has 
an angle deficit D = 2tz(\ — B0~

1/2) = 2tc(1 — cos 6M). The 
mass per unit length in the string is 

H = pr0
2 

2n Ç0\t 
d(j) sin 6d6 = ¿(1 — cos 0M) , (4) 

0 Jo 
using the value of p = (l/87rr0

2) = const from the interior solu- 
tion. Note that the value of p is independent of r0 and depends 
only on 6M. The angle deficit in the cone is 

D = %np for p < ^ . (5) 

We will now show that the O’Brien-Synge-Lichnerowicz 

Fig. 1.—Embedding diagram for the cross sectional geometry of a uniform 
density vacuum string showing the interior and exterior solutions. 

jump conditions are satisfied at the boundary between the inte- 
rior and exterior solutions. With these we can guarantee that 
the boundary does not contain a surface layer but is just a 
boundary surface. The criterion is that the extrinsic curvature 
of the boundary should be the same whether measured in the 
interior or exterior solution. Geometrically it is clear that the 
cone tangent to sphere condition adopted above does exactly 
this, and we can prove it by adopting “ natural ” cylindrical 
coordinates with grr = 1 for both the interior and exterior 
metrics as described by Israel (1966). Then the desired jump 
conditions are that dgßü/dr \ ~ = dg^Jdr |+ , i.e., that these deriv- 
atives of the interior and exterior metrics match as the bound- 
ary is approached from each side. To rewrite metric (1) in 
“ natural ” coordinates adopt a new coordinate r = r0 6: 

ds2 = —dt2 + dr2 + r0
2 sin2 (r¡r0)d(¡)2 + dz2 (6) 

at the boundary r = r0 0M, and dg^/dr = 2r0 sin 0M cos 0M, all 
other dgßV/dr terms are zero. Now from equation (4) we find 
(1 — 4p) = cos 0M = B0~1/2 so for the exterior solution (2) we 
adopt a new coordinate r" = (1 — 4p)- V. Substituting this and 
for convenience dropping the double primes makes equation 
(2) become : 

ds2 = —dt2 + dr2 + (1 — Ap)2r2d(j)2 + dz2 . (7) 

Note that this exact solution applies for 0 < p < ¿ and rep- 
resents a conical space with angle deficit D = Snp. [Setting 
</>' = (1 — 4p)</> brings us directly to the Minkowskian form of 
eq. (3); since 0 < </> < 271, 0 < </>' < 2n(l — 4p), giving D = Snp 
as expected.] Now the circumference at the boundary must be 
2nr0 sin 0M so as to agree with the value from the interior 
solution. So in the exterior coordinate system of equation (7), 
the value of r at the boundary is r = r0(l — 4p)~1 sin 6M. Now 
at the boundary all components dgßV/dr are zero except 
àg^/dr = 2(1 - 4p)2r = 2r0(l - 4p) sin 6M = 2r0 cos 0M sin 
0M. So the values of dg^/dr agree on both sides of the bound- 
ary, and the jump conditions (for a boundary surface with no 
surface layer) are satisfied. As this example should illustrate the 
jump conditions will be satisfied in the p > ^ cases we discuss 
below as well. 

In the limit p 1 equation (7) reduces to the metric 

ds2 = —dt2 + dr2 + (1 — 8p)r2i/02 + dz2 (8) 

found by Vilenkin (1981a) in a weak field limit. 
For0<p<i, 0M< nß and the spherical cap is less than a 

hemisphere and the external cone opens out extending to infin- 
ity with an angle deficit 0 < D < 2tl For p = tt/2; in 
this limiting case the embedding diagram for the interior solu- 
tion is a hemisphere and the external solution is a cylinder of 
radius r0. The external metric in this case is ds2 = — dt2 + dw2 

+ r0
2d(¡)2 + dz2. One can think of this as a cone with an angle 

deficit of D = 2n. For ¿ < p < tü/2 < < tt; the spherical 
cap is more than a hemisphere and the external conical solu- 
tion is like a dunce cap sitting on top of the sphere. The 
exterior metric 2 still applies with B0 = (cos 0My2 still posi- 
tive. But now r starts at rb = r0 sin 6M and decreases as one 
moves away from the string. The coordinate r reaches 0 at the 
apex of the dunce cap. The line singularity at r = 0 contains 
nonregular points (the circumference C of a small circle drawn 
around such a point does not approach 2nr as the radius 
r—>0), but the Riemann curvature tensor is bounded as one 
approaches arbitrarily close to the singularity. Thus it is a 
quasi-regular singularity (cf. Ellis and Schmitt 1980). Now 
quasi-regular singularities are produced by cutting up perfectly 
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regular spacetimes, and no previous examples of physically 
reasonable quasi-regular singularities had been found. In this 
case the singularity may be considered as a singular vacuum 
string with zero radius, infinite density, and a mass per unit 
length of = i — /*. If H> h the string and its associated 
singularity together have a mass per unit length which add up 
to The external cone (dunce cap) has an angle deficit 

D = 87c(| - ¿í) for ¿ < /¿ < i . (9) 

If we want to avoid the presence of a singularity we can always 
do this by capping the dunce cap with a small spherical cap 
with r0' < r0, and 0M' = n - 0M. Then we would have two 
parallel strings with /x2 + Mi = I and some empty space 
between them if r0' <r0.Iï fi = % then 0M = n and the interior 
solution closes completely on itself so that the cross section is a 
complete sphere. In this case the string occupies all of space- 
time and there is no exterior solution. 

Thus there is a maximum mass per unit length that a string 
can have ¿ímax = i = 6.73 x 1027 g cm-1. If we demand that 
the string exist in a large external spacetime (as our observa- 
tions suggest), then/x < ¿¿crit = i = 3.37 x 1027 gem-1. 

Since gtt= — 1 in both the interior and exterior solutions 
one can show that í(t) = t, r(r) = r1 = const [or 0(z) = 01 = 
const], 0(t) = </>i = const, z(t) = = const, is a geodesic. 
Thus the string exerts no Newtonian attraction on a particle 
that is at rest with respect to it. Two strings may be placed 
parallel at rest with respect to each other and they will remain 
where they are without any force needed to keep them apart. 
That is why no radial pressure terms Pe are needed in the 
interior solution to produce a static solution. In fact a string of 
mass per unit length g can be composed of a set of parallel mini 
strings with g— 'Lui. In this case the spherical cap interior 
solution is approximated by a convex polyhedron where each 
ministring is at a vertex and the angle deficit at each vertex is 
Df = 871/if. The faces and edges are locally flat, therefore solving 
Einstein’s vacuum field equations. (For example the case /¿ = i, 
6M = n [complete sphere], may be approximated by a cube. 
Three squares meet at each vertex giving each an angle deficit 
of D = 7t/2. Each vertex is a ministring with ¿¿f = 1/16. The 
eight together add to give fitot = ^.) This makes it clear that we 
can find general solutions for strings that need not have cylin- 
drical symmetry or uniform density, but which have Pz = —p 
at each point (we assume p > 0 everywhere). Such models have 
metrics of the form ds2 = —dt2 + ds'2 + dz2, where ds'2 = 
gxx dx2 + 2gxy dxdy + gyy dy2 is the metric of an arbitrary 
spacelike two-surface a2, where the Gaussian curvature K can 
vary with position but is never negative. The density at each 
point is p = X/8tü and Pz= — p. The form of the metric guar- 
antees that the only nonzero components of R* are Rx

x = 
Ry

y = \R = K. Substituting in Einstein’s field equations gives 
T/ = Tz = —K/8n or p = +K/%n — —Pz. If cr2 is compact 
the Gauss-Bonnet Theorem guarantees that ptot = (1 — p)/2, 
where g is the genus of <t2. If p > 0 everywhere and singularities 
with negative mass are not allowed, ptot > 0; thus p > 1 is not 
allowed. There is one trivial case with p = 0, p = 1, where 
<j2 = T2 (torus) and p = 0 everywhere. This is a flat geometry 
with a complex topology; it is square with opposite sides iden- 
tified. The general compact solution c72 has p = 0 and ptot = 
equal to the maximum allowed valve of p obtained in the 
cylindrically symmetric case (eq. [1]), 0M — n. Solutions with 
0 < p < 4 and having a large external space of infinite extent 
may be constructed by cutting out part (having p < i) of a 

compact solution and attaching to it a conical exterior solu- 
tion. 

It is interesting to note that in cross section the interior and 
exterior solutions for vacuum strings are exactly equal to the 
solutions for extended masses in a (2+ l)-dimensional space- 
time (flatland) previously found by Gott and Alpert (1984). In a 
(2 +l)-dimensional spacetime, curvature has dimensions of 
(length)-2 so density must also have units of (length)-2, but it 
also has units of mass x (length)-2 so mass must be dimen- 
sionless. The external field of a point mass is a cone with an 
angle deficit proportional to the mass. In a (3 4- l)-dimensional 
spacetime, the mass per unit length in a vacuum string is also a 
dimensionless quantity. The string is invariant with respect to 
velocity boosts in the z-direction. A simple rod of mass per unit 
length p but Pz> 0 would not be. So it is the vacuum string 
that is the higher dimensional analog of a mass in flatland 
rather than a massive rod. 

III. GRAVITATIONAL LENSING PROPERTIES 

On a cone with angle deficit D, two geodesics that are orig- 
inally parallel but pass on opposite sides of the vertex will 
eventually meet at an angle D. This can be shown simply by 
noting that geodesics are straight lines on the flattened-out 
cone which does not cover the plane but which has a wedge of 
angle D missing. This focusing effect was noted by Gott and 
Alpert (1984) in the (2+l)-dimensional case and by Vilenkin 
(1981a) for strings. He noted that this would cause observers to 
see double images of objects behind the string. He calculated 
the bend angle of each image to be = 4tcp and noted that 
this can give rise to double images of objects situated behind 
the string within the angle of order 0(f) from the string. He 
further noted that this might be relevant to the double quasar. 
We shall examine the gravitational lensing properties in more 
detail. 

First, consider the situation with observer, QSO, and string 
at rest in an otherwise empty spacetime. (We shall assume that 
the string is of negligible width so that eq. [3] applies down to 
r' = 0 and p < ¿.) Let the observer and QSO be on opposite 
sides of the string at z = 0, and let the proper distance from the 
observer to the string be rs and the proper distance from the 
QSO to the string be rq. If the observer is at </>' = tt — (D/2) 
then the QSO is at = 0 and (j)' = 2n — D (recall that the 
range of </>' is 0 to 27r — D). The observer sees two QSO images, 
at an angle 0^ on each side of the string. 

sin 0^ — rq sin r/ + r2 + 2rs rq cos - 
D\ -1/2 

(10) 

in the relevant limit where D is small, 0X = (j)Drq(rs + r^)-1. 
The two images are separated by A0 = 20x in the sky. A0 < D 
with maximum separation occurring when rs rq. 

To examine the gravitational lensing properties in the 
cosmological context we shall utilize formulae derived by 
Turner, Ostriker, and Gott (1984). We shall consider first the 
scenario proposed by Zeldovich where there is one relatively 
straight string within the current particle horizon. The cosmo- 
logical metric (for simplicity adopting Q0 = 1, matter- 
dominated) is 

ds2 = -dt2 + (t/t0)4/3ldr2 + r2(d02 + sin2 0#2)] , (11) 

where t0 = fH0 -1 is the current age of the universe. If we 
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are located at r = 0 an object with comoving radius r appears 
at redshift z where 

r = 2H0~1[1 — (1 + z)-1/2] . (12) 

The particle horizon (z = oo) is at rH = 2H0~l. We take the 
string to lie on a random geodesic which crosses within the 
horizon. Since the geometry of a spacelike slice in this cosmol- 
ogy is Euclidean, this is a straight line. Let rs (with correspond- 
ing zs given by eq. [12]) be the minimum distance r between us 
and the string, i.e., its point of closest approach. Then the 
probability that rs < r is P(rs <r) = r2/rH

2. Thus the probabil- 
ity that zs (the minimum redshift of the string) is less than z is 

P(zs < z) = 1 + (1 + Z)“1 - 2(1 + z)-1/2 . (13) 

The string acts like a gravitational lens producing a deflection 
of ±(^)D cos cc in its rest frame, where cc is the angle between 
the string and the plane of the sky (which is perpendicular to 
the line of sight). The string shows up in the sky as a sequence 
of double QSO images stretching along part of a great circle in 
the sky. Let a measure the angle in the sky as measured along 
the great circle and let a = 0 denote the closest point in the 
string at z = zs. Then (assuming D 1) we show after some 
algebra using filled beam formulas in Turner, Ostriker, and 
Gott (1984) that QSO double images with separation in the sky 
of A6 will be formed where 

A6 = D cos a — 
1 -(1 +zs)-

1^ 
i - a + z,)-l/2_ • 

(14) 

The formula applies and double lens images will be formed 
only for values of zq (QSO redshift), zs, and a such that the term 
in brackets in the equation above is positive. Let the first image 
be at an angle 0! to one side of the great circle and the second 
image at an angle 02 to the other side. Then + 02 = A6(ol). If 
a QSO has one image which lies at a distance 6 > A0(a) from 
the great circle, then no secondary image will be formed. 

The most favorable case for lensing occurs when zs 1. In 
this limit A0(a) = D[cos a] and —n/2<cc<n/2. Choose 
spherical coordinates (6, (p) in the sky such that the line of sight 
from us to the pole (6 = 0) is parallel to the string, and the 
point of nearest approach to the string at zs is at 0 = 7r/2, 
0 = 0. Thus a = 6 — tt/2. The string itself, if we could see it, 
would be the half great circle 0 = 0, 0 < 0 < n. All QSO 
images in the wedge 0 < 0 < tt, 0 < 0 < D are double lensed 
with second images in the wedge 0<#<7r, —D<0<O. The 
same wedge of sky simply appears twice. With the value of 
¿i = 10 ~4 (consistent with fluctuations in the microwave 
background) D = Sn/j. = 8!6. So double lens with separations 
of up to 8!6 could be seen. The optical depth for double lensing 
is i = D/2n = 4iu = 4x 10-4 (equal to the fraction of QSOs 
which are double images). Turner, Ostriker, and Gott (1984) 
calculate that a fraction of between 10 ~2 and 10 “3 of random- 
ly selected QSOs (zq > 1) are multiply lensed >0'.T by ordinary 
galaxies and clusters. In a flux-limited sample the fraction is 
considerably higher because the magnification produced by 
galactic lenses brings fainter QSOs into the sample which 
would have otherwise been unobservable. They estimate that 
this enhancement may be as much a factor of 25 for reasonable 
luminosity functions. Thus in a flux-limited sample of QSOs 
perhaps as many as 2.5% are multiply lensed (>0'.T) by ordi- 
nary galaxies and clusters. Now for QSOs doubly lensed by the 
string there is no magnification (the conical space is locally flat) 
so both images are of equal brightness ^ = /2 = (original 

brightness), and there is no magnification selection effect aiding 
their inclusion in a flux-limited sample. However if fi = 10 ~4, 
the images are widely enough separated so that each image 
could be detected individually so that there are twice as many 
to be detected. Thus if we pick out individual QSOs from a 
flux-limited sample and then check each one for multiple 
imaging we expect to turn up > 30 multiply lensed by galaxies 
and clusters for every one lensed by the string. Thus we would 
not expect a string-lensed case to be among the first discovered. 
Put another way, for n = 10 "4, we would have to find ~ 1250 
QSOs placed randomly over the sky and search each for twin 
images out to 8!6 before we would expect to find one double 
lensed by the string. This does not look too bad. We have 
already discovered over 2000 QSOs (although a number of 
these are in selected fields rather than being randomly scat- 
tered over the sky). About 700 QSOs are found in VLA 
surveys, so a detailed study of VLA QSOs for double images at 
minutes of arc would be interesting. 

Because gtt = — 1 throughout the string solution, it is easy to 
compute the time delay between the two images; there is no 
potential delay, only a geometric delay. Using the law of 
cosines we compute the difference ôr in the comoving distances 
to the two images. A given event at the QSO will be observed 
with a time delay i2 

— L = We find 

i2 - fi = h0-\o1 - e2)D[\ - (i + zsy
il2l ■ (is) 

As an example note that the absolute maximum time delay 
(t2 — tiLax = ¿T/q 1D2 occurs when oí = 0, 91 = A6, 02 = 0, 
zs = 3, zq = oo. For g = 10~4 this is 3.1 x 104 yr. Over such a 
period of time the QSO properties, line strengths, brightness, 
etc. may change appreciably, so we must be tolerant of some 
differences in the images. Since we are now seeing the QSO as 
it appeared at two different times in the past and the universe is 
decelerating, the two QSO images will show differing redshifts 
with ¿Zq related to ôr through equation (12). Thus 3zq = 
(6l — d2)D(l + z03/2[l — (1 + zs)

-1/2] ~ 0(D2). However, this 
is calculated in the approximation that the string is at rest 
with respect to the comoving coordinate system, if the string 
is moving relativistically ôzq ~ O(D). In the rest frame of the 
string, comoving geodesics having relativistic velocities v ~ c 
with respect to the string that are parallel but on opposite 
sides of the string will have a relative velocity ôv ~ Dc after 
passage of the string. This effect will cause an observed tem- 
perature shift in the microwave background ÔT/T ~ D from 
one side of a nearby string to the other (this point has recently 
been noted independently by Kaiser and Stebbins 1984). Thus 
a single string within the horizon moving relativistically (as 
expected) should be detected by the COBE satellite, provided 
H Since P(zs < 4) = 0.31, there is an appreciable 
chance that the string is simply more distance than any QSO 
and therefore no double QSO images will be seen. However, 
P(zs < 103) = 0.94 so the string will very likely be seen in front 
of the microwave background radiation. 

Let us consider the long-lived loop scenario. Since curvature 
fluctuations on the scale of the horizon are dominated by the 
largest loop of size l ~ RH ~ 2H0 "1 the isotropy of the micro- 
wave background demands that g < 10_4 just as in the Zeldo- 
vich case. However in the long-lived loop case the COBE 
satellite will see fluctuations of order ¿T/T ~ on all angular 
scales larger than 6 ~ jn. This complex pattern could be diffi- 
cult to distinguish from a simple Zeldovich (1972) fluctuation 
spectrum. The smallest loops are of size / ~ ~1 and mass 
M ~ fi2El0~

1. Thus the typical loop has an angular size in the 
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sky (6 ~ fi) which is of the same order as the lensing deflections 
its string is capable of producing (AO ~ ß). Thus the lensing 
may be complicated. No exact solutions are available for such 
closed relativistically moving loops of string, but in general it is 
thought (cf. Vilenkin 1981a) that the exterior solution when the 
string is not straight need not be locally flat, and that at large 
distances from a closed loop the geometry approaches the 
Schwarzschild geometry. Thus there could be in principle some 
image amplification. The optical depth for multiple lensing 
distant QSOs is of order t ~ — ¿i In ¿í < 10“3. This is some- 
what more optimistic than the Zeldovich case which gives 
T ~ 

As an example of the added complications of loops consider 
a case we can compute, namely that of two parallel strings 
separated by a distance b and each with an angle deficit 
D = %n[i. This may be thought of as an infinite elliptical loop 
with minor axis b and major axis a = cc. The external metric is 
then of the form ds2 = —dt2 + dz2 + ds'2, where 
ds'2 = dx2 + dy2 is the metric for the surface <72, where g2 is a 
plane with two wedge-shaped pieces with opening angle D 
excluded. String 1 is located at x = b/2, y = 0, string 2 is 
located at x = —b/2, y = 0. A cut in the plane is made along 
ray la: x = h/2 with y > 0, and a cut is made along ray lb: 
x = b/2 + y tan D, with y > 0. Ray la and lb are then identi- 
fied producing an angle deficit D at string 1. Similarly cuts are 
made along ray 2a: x = —b/2, with y > 0 and ray 2b: x = 
— b/2 — y tan D, with y > 0, and these two rays are also joined 
producing an angle deficit at string 2 also. An observer located 
at x = 0, y = — y0, where y0 > b/(2 tan D) will see three images 
of a quasar located at x = 0, y = yi for y^^ > b/{2 tan 
[D — tan-1 (h/2y0)]}. The observer sees one direct image, one 
image deflected around the left side of string 2, and one image 
deflected around the right side of string 1. The observer begins 
to see triple images of distant QSOs when the angular separa- 
tion of the two strings in the sky is less than 2D. As we have 
noted, in the long-lived loop case, we expect the typical loop 
angular size to be of order D. Thus we can expect triple or more 
complex images from loops. 

Are any already known or proposed gravitational lens cases 
actually due to vacuum strings? There are five known gravita- 
tional lens cases with image separations ranging up to 7'.'3. If 
any of these were due to strings then /x ~ 1.5 x 10“6. This is 
probably too small to be interesting for galaxy formation. Vil- 
enkin (1981b) estimates /x ~ 10“5 in the long-lived loop sce- 
nario would be sufficient to promote galaxy formation. Of 
course strings may be present even if they are not of sufficient 
mass to aid in galaxy formation. Now with /x as small as 
1.5 x 10“ 6 if there were only one string within the horizon the 
total optical depth to lensing t < 4/x ~ 6 x 10 6 is so low that 
it would be unlikely for us to have discovered one after only 
inspecting 2 x 103 QSOs. Even with the long-lived loop sce- 
nario we would expect only t ~ 2 x 10“5. 

Consider each of the five known cases. 
1. 0957 + 561 (cf. Walsh, Carswell, and Weymann 1979): 

the two images A and B are not of equal brightness, the 
luminosity ratio in the emission lines is quite stable with 
time giving B = 0.75 A, besides a lensing galaxy at appropri- 
ate redshift has been found (cf. Young et al. 1981). 

2. 1115 + 080 (cf. Weymann et al. 1980): four images of 
widely different brightness. 

3. 2345 + 007 (cf. Weedman et al. 1982): a widely separat- 
ed double (7,.'3) with no known lensing galaxy or cluster, but 
the two images are of rather different brightness. 

4. 2016+112 (cf. Lawrence et al. 1984): this is a double of 
relatively equal brightness, but a lensing galaxy is seen. 

5. 1635 + 276 (cf. Djorgovski and Spinrod 1984): here, the 
two images are of rather unequal brightness. 

The burden of proof clearly rests on the side of showing that a 
vacuum string is more attractive than the more conservative 
possibilities such as galaxies and clusters. 

At present there are no compelling or even telltale signs that 
these may be due to strings, and in fact in each system there are 
at least some counter indications. Then there is the proposed 
gravitational lens case of Paczynski and Gorski (1981). These 
are three QSOs with redshifts = 2.048, z2 = 2.054, z3 = 
2.040 that lie in a somewhat bent line with 612 = 22 and 023 = 
Y.9. Now these separations appear quite reasonable for strings 
with /x ~ 2 x 10“5, a value of /x that is large enough to be 
interesting as far as growth of structure in the universe is con- 
cerned and not big enough to be inconsistent with the isotropy 
of the cosmic microwave background. Now the redshifts of 
these QSOs differ by about 103 km s“ \ rather too large to be 
explained by relativistic movement ofa/x~2xl0“5 string. 
But as pointed out by Paczynski and Gorski (1981), the red- 
shifts are not too well determined, and the time delays between 
the images would be of the order of 102-103 years and the 
emission lines could have changed over this long a time period. 
Paczynski and Gorski proposed that the lensing was done by 
two extremely rich clusters of galaxies. The required line of 
sight velocity dispersion for each cluster is > 1600 km s“1 if the 
cosmological constant is zero (as compared to 1000 km s“1 for 
Coma). Thus, this is a system whose separation is so large that 
we have difficulty explaining it in terms of known objects. Since 
three images are seen we can not do the lensing with one string 
and must use a loop. As we have seen, loops are indeed capable 
of producing a triple image. The three images are not of equal 
brightness, but this is not a problem since the QSO may vary in 
brightness over the time delay time scale. The images are 
approximately equally separated, and the bent line could 
undoubtedly be explained by some loop geometries. In this 
system, however, the most conservative assumption, of course, 
is that the three images are simply of three different QSOs 
which lie in the same supercluster. This would explain the 
differences in redshifts. (Undoubtedly this would be a much 
stronger lensing candidate if the three redshifts were closer to 
each other.) Here the Space Telescope (ST) will be most useful 
in studying this system. If the lensing is done by rich clusters at 
intermediate redshift (z < 1), then ST will certainly be able to 
see them. If the QSOs are part of a supercluster at z = 2.047, 
then depending on galaxy evolution the ST may even be able 
to see some of these galaxies. (They would be much fainter and 
suffering a much larger K-correction than galaxies at z ~ 1.) 
Finally if a string is indeed lensing these QSOs, then ST may 
detect other faint galaxies (z > zj that are multiply lensed by 
the string. A number of such cases could really elucidate the 
nature of the lensing. ST may also uncover other cases like this. 

IV. CONCLUSIONS 
Vacuum strings may arise naturally as a consequence of 

symmetry breaking in the very early universe. We have derived 
exact interior and exterior solutions to Einstein’s field equa- 
tions for vacuum strings. For 0 < /x < ¿ the external metric is 
ds2 = —dt2 + dr2 + (1 — 4fj)2r2d(j)2 + dz2, where /x is the mass 
per unit length in the string in» Planck masses per Planck 
length. We have examined the gravitational lensing properties 
of vacuum strings in some detail. Strings can cause tem- 
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perature fluctuations in the cosmic microwave background 
which could in principle be detected by COBE, and they can 
produce double QSO images separated by up to several 
minutes of arc. Thus gravitational lensing offers a promising 
way to detect vacuum strings. 
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