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Summary. A version of the particle method SPH with greatly
increased efficiency is described. The increase in efficiency is due to
the use of a grid both for the calculation of gravitational forces and
for the determination of nearest neighbours. Sufficient accuracy is
achieved on coarse grids by the use of a short range correction for
the gravitational force. Storage problems are thereby eliminated.
Other improvements include the use of interpolation kernels based
on B-splines, the use of particles with different masses and the use
of a simple efficient artificial viscosity. A wide variety of tests
confirm the overall accuracy.
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1. Introduction

The purpose of this paper is to describe improvements to the
current form of the particle method SPH (Gingold and Mon-
aghan, 1977, 1982), which enable much larger numbers of particles
to be used. The improvements results in the number of computa-
tions per time step being proportional to the number of particles.
This improvement in speed is due primarily to the use of a grid
based method for the calculation of the gravitational forces. A
further substantial increase in efficiency is achieved by using the
same grid to determine nearest neighbours through link lists.

The flexibility of the method has been improved by allowing
the particle masses to be different. This enables complicated initial
states to be set up with negligible fluctuation. An analysis of the
equations of motion when the particles have different masses is
given in Sect. 2. This analysis is particularly important because
incorrect estimates of the errors in particle methods, and incorrect
statements concerning the relationship between particle and finite
difference methods, have appeared in the literature. Finite dif-
ference methods are just particle methods where the particles are
fixed and have a mass which varies with time.

The interpolation kernels differ from those used by other
authors (Gingold and Monaghan, 1977; Lucy, 1977; Wood, 1981).
The kernels are discussed in Sect. 3.

The plan of the paper is to describe the improvements in
sufficient detail to allow the reader to reconstruct the algorithms
we use and to show, by a wide variety of tests, that the algorithms
are efficient and accurate.

Send offprint requests to: J. J. Monaghan

2. The particle equations of motion

In this section we show that particle methods can be established in
a form that allows the particles to have different masses. This leads
to a number of advantages particularly the case of setting up initial
states and the representation of regions with lower than average
density. We base our analysis on the discussion by Monaghan
(1982) which assumed the particle masses were all equal.

The analysis of numerical algorithms for partial differential
equations can be based (Monaghan, 1982) on linear interpolants of
the form

Sy =)W .r, hydr, M

where W(r,r',h) is an interpolating kernel f(r) is the function
interpolated and the integration is over the solution domain. The
parameter h is a measure of the resolution such that features on a
length scale <h are strongly smoothed by the interpolation. For
the remainder of this paper we shall assume the kernel has the form
W(r—r', h) since this form is sufficiently general to include most
interpolation methods and the analysis is greatly simplified. A
further condition on W is that

[ Wu,hdu=1.

When the information (function values) is given on a uniform
grid the kernels can be chosen so that (1) can be written in the form

Soyi=sLwe-r,n, @

where n; is the number density of grid points at the point r; and the
notation A4;=A(r;) has been used. For a uniform grid n; is a
constant.

Derivatives can be estimated in the same way. For example

<%>:=§%W(r—r’, hydr . 3)

To put (3) in a convenient form we integrate by parts assuming that
fW—0 on the boundary. This assumption is satisfied for most
problems since the kernel vanishes rapidly when |[r—r|—co. Thus

I\_ .90 v
<6_x>_ j'fax,W(r ¥, h)dr

or

o\ _ o
<g> =D @
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The expression (4) for the derivative, in conjunction with (2),
reproduces the usual finite difference formula on a uniform grid.

A convenient technique for generating numerical algorithms is
to choose a kernel, multiply the equation of interest by the kernel,
and then integrate over the solution domain (Monaghan, 1982).
The resulting equations can then be transformed, possibly with
some approximations, so that they use interpolated quantities.

For example, starting with the momentum equation for an
inviscid fluid with body force — V&, we obtain

dv 1
<E> =— <5 VP> —(Vo)y, ©)

which can be approximated by

0
T2 107 (ay=—F (PY0y—F @ ©

Other approximations for the nonlinear terms will lead to different
algorithms. Bearing in mind the fact that the constraints on W are
weak it is clear that a wide variety of finite difference algorithms
can be generated in this way.

Suppose now that the data points ry,r,,...,ry are not on a
uniform grid but have a number density that varies in space. The
interpolation formula (1) can still be written in the form (2) but the
approximation is poorer than for the uniform grid. The error
depends on the smoothness of the kernel (assuming f is infinitely
differentiable) and the degree of disorder of the points. Monaghan
(1982) estimates that the variation of the error with N in three
dimensions in O(1/N).

The interpolation points can be fixed or they can be moved. In
the latter case it is common to refer to interpolation points as
particles. Accordingly, we assign to the interpolation point r; a
mass m;, a velocity v; which is the velocity of the fluid at r;, and refer
to it as particle i. The usual finite difference schemes on a fixed grid
can be considered to be particle methods where the particles have
zero velocity and a mass which varies with time.

The mass density g(r) can be estimated using (2) and replacing
n; by g;/m; (this is the crucial step which introduces the particle
masses) then

Cey=2XmWir—ryh), )
and total mass is conserved provided
§o@)>dr= AJ:mj ®)

is constant.

The particle form of the continuity equation has some
interesting features. If the interpolation points move with a
velocity v* that need not be the fluid velocity, the continuity
equation can be written

O+ (@)1 P> =0, o

where 6/0t is the derivative following the motion of the points.
Evaluating (9) at particle i we find

om; ow;
X0 Mt Em Ty Tmiy
VW= Zmpr-V,W;=0, (10)
where W;=W(r,—r). Since W, /ot=(v¥—v¥)-V.W; (10)
becomes
om; "
;WW,TI— ?mj(vj—vjy V.W,;=0. (1)

Equation (11) is a general continuity equation for particle
methods. If the points move with the fluid v} =v;, then

om;

>—="W;=0; i=12,..,N. (12)
7 ot

A natural solution of (12) is

om;

—=0; j=1,2,...,N,

6t s ] 3“5 ,N (13)

so that, as expected, the particles should have fixed masses. In this
case (8) is automatically satisfied.

If the particles are fixed v} =0 and om;/6t=0m;/ot. For each
particle we can allocate a cell of volume ¢;so that m;=g;0;and (11)
becomes

0
o 0tV XoenW;=0, (14
J

ot
which, with an appropriate W, is a finite difference form of the
Eulerian continuity equation.

Various forms of the momentum equation have been discussed
elsewhere (Gingold and Monaghan, 1982; Monaghan, 1982). The
form we use in this paper is

dv. .
Do Zm,(g—; + 5) v Wy~ V., (15)

dr i j i

which, if m;=m, reduces to the equation used by Gingold and
Monaghan. Provided W;;is symmetricin i and j (the usual case) the
pressure forces in (15) lead to exact conservation of linear and
angular momentum.

It might be thought that a calculation with particles having
different masses would lead to non-physical behaviour. There is no
theoretical objection to using different masses, and the tests
described in this paper confirm the theory. In a more stringent test
(Monaghan and Pongracic, 1984) a shock diaphragm problem
with an initial density ratio 4:1 was studied using both an equal
mass configuration (and initial number density ratio 4:1) and a
configuration with mass ratio 4:1 (and initial number density
uniform). Both configurations gave nearly identical results.

In most astrophysical problems the gravitational force is
obtained by solving Poisson’s equation. In our notation

V(@) =4nG{e), (16)
so that
N
VD), =4nG Y mW;. 17
ji=1

A solution of (17) which has been used in particle simulations is
based on the fact that (17) is equivalent to spreading the mass of m;
according to the density W,;. If W;;is a function of |r;—r/| it is easy
to write down the potential and the force at »; due to all other
particles. Unfortunately, the number of arithmetric operations
required to calculate this force for all particles is oc N2, which
means that the computing time becomes prohibitively long for
N 2103.In Sect. 4, a grid based method for the solution of (16) will
be described.

3. Interpolation kernels

The construction of interpolating kernels W (u, h) is guided by the
requirements of accuracy, smoothness and computational effici-
ency. Kernels can be compared by considering how they interpo-
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late when the particles are on a regular grid with spacing h. We
require h~ Ax since if h> Ax the best resolution is not achieved.
The kernel should interpolate with errors not exceeding O (h?) and
at least the first derivative should be continuous so that (a)
derivatives can be calculated and (b) slightly different particle
positions have a negligible effect. Finally the kernel should be
negligible if |u|>ch where o~2 otherwise too many particles
contribute to local properties.

These considerations rule out the kernel ocexp(— [u|/h) used by
Wood (1981) since this kernel only gives accurate interpolation if
g4 (this rule can be evaded for the density estimation by
including a correction but it cannot be evaded for the estimation of
derivatives). They also rule out kernels like A(1—u?/h?)* which
are smooth but require h> Ax in order to achieve approximate
linear interpolation and good derivatives. The gaussian
ocexp(—u?/h?) has many desirable features: it is very smooth, and
it interpolates linearly with high accuracy when h=4x, but it
requires ¢ 2 3. To improve the computational efficiency we look
for kernels which have first or second derivative continuous, but
which have compact support. Such kernels can be based on
B-splines (M,, in Schoenberg’s (1973) notation]. In one dimen-
sional case the B-splines give exact linear interpolation on a
uniform grid and their smoothness increases with n. Furthermore,
they are non zero in a finite domain and this can make the
calculations more efficient. Of particular importance are M; and
M, which take the form

3-x% 0=[x|=3%
My(x)=3G— x> 3I=Ix=3 (18)
0; Ix|=3
which has a continuous first derivative and
$-x+3x?; 0=Ix|=1
M, (x)= 2—x)*; 1=|x =2 19
0; Ix|=2

which has a continuous second derivative. Hockney and East-
wood (1981) recommend the use of M;(x) for calculating the grid
density from the particles. For interpolation in 3 dimensions they
use M3(x)M3(y) M;(2).

It will be seen later that for our gravitational field calculation it
is necessary to have kernels which are spherically symmetric. In
addition, the pressure forces will only conserve linear and angular
momentum exactly if the kernels are spherically symmetric. A
simple generalization of (18) and (19), and the one we adopt, is to
replace them by

| [PG-0%; 0svsd
Wirh=—51G-v)%  i<v<3 (20)
0; >3,
| [3G-otd): 0=v=i
0; v>2,

where v=r/h. The kernels are normalized so that
an | W (r, )ridr=1.
0

These kernels do not achieve exact linear interpolation for all
positions on a uniform three dimensional grid, but the error
(£1 %) varies in such a way that very accurate results are
produced for an ensemble of particles. '
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The kernel W;, is used for assigning a density to the grid points
for the gravitational force calculation. The kernel W, is used for the
density and pressure force calculation. W, could have been used for
the density assignment, but it would require assignment to roughly
double the number of vertices required for Wj.

Kernels which can interpolate with errors O(h®) can be
obtained from the B-splines (Monaghan, 1984). When generalized
to three dimensions a typical example is

—Tv?+403; 0wl
W(r,h)=437 Q- )2<5 4”); 1<0<2 2)
0; v>2.

The choice of kernel has been partly dictated by the use we
make of grids. The region occupied by the particles is divided into
cubical cells of side 2h. Only particles in neighbouring cells can
contribute to each other’s density and pressure forces. The
particles are accessed through link lists.

The same set of cells is used for the finite difference calculation
of the gravitational force. Therefore, when Wj is used for the grid
density assignment, h is replaced by 2h.

4. The gravitational field calculation

The advantage of grid based methods is that they are quick. The
disadvantage is that a very large grid may be needed to ensure that
the resolution of a fragment is adequate. Storage then becomes a
problem because a fragment may occupy < 10”2 of the total grid.
One way to escape this difficulty is to use a relatively coarse grid,
but make local corrections. This can be achieved by writing the
solution of (16) in the form

®(R)= —GJ |<§(_')>d 23)
and replacing <g(r))> by
<e(r)>*+<e(r)y —<aM>*, (24)

where {o(r)>* is an interpolated density which uses an interpolat-
ing kernel W*(u, H) with a coarser resolution (H > h) than W (u, h).
Substituting (24) into (23) we find

[<eUD® ke —<em)*
R—| IR—r]

®(R)=—G dr

®(R)=D*(R)+0P(R). @)

The first term @* is the potential due to {o(r)>* which varies
more smoothly than {g(r)). It is this part of the potential which we
calculate on the grid. The second term in (25) is a correction which
only affects close neighbours. In most cases it is small, but it can
greatly improve the self gravity calculated for a fragment.

The correction to the potential unit mass of particle i (from all
other particles) is

I[W(r —r,h)—W*(r;—r, H)]
r;—r|

—GZ

r, (26)

and the correction to the grid force on particle i due to particle j is

G': Y gz j“ [W(u, h)— W(u, HY]u?du.

ij

AF ;= —

u

@7
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Since W and W* are only non zero in a finite domain 4 F;;is a short
range force and it can be calculated at the same time as the pressure
force. The cost of calculating the correction is therefore negligible.

The slowly varying part of the potential can be calculated by
any of the well known Poisson solvers. We have found the
multigrid method of Brandt (1977) to be very effective.

Once the potential is known on the grid the forces can be
calculated by finite differences (we use central differences) and
interpolated back to the particles. Hockney and Eastwood (1981)
show that it is best to use the same interpolation kernels for the
force interpolation as are used for the density assignment from the
particles to the grid. The correction (27) to the grid force requires,
in addition, that the interpolation kernels are spherically sym-
metric. These requirements are met by the kernel (20).

Because W*(u, H) is defined by (20) with h replaced by 2h (i.e.
H=2h) it is non zero for 0 <u < 3h. It is inconvenient to calculate
the full short range correction because it would involve including
particles in cells which are not nearest neighbours. We have
therefore scaled W* (by multiplying by 80/63) so that

2k
4nEY [ Wru, Hyuldu=1.
0

The result is that ~75% of the correction to the force is included.
That this approximation is reasonable is shown by the results for
the two-particle test in Sect. 6.1.

5. Numerical calculations
5.1. Scaling

We take the mass of the cloud M to be the unit of mass, a typical
length scale R of the cloud to be the unit of length and the unit of

time |/R*/GM. The scaled density D is then given by
D=¢(R*/M),
the scaled pressure p is given by
P=D=2"
D u GM
and the scaled potential ¢ by

o(2)

5.2. Artificial viscosity

The constraints placed on the artificial viscosity are severe: it must
be effective enough to allow shock phenomena to be simulated, but
it must have negligible effect on angular momentum transport. We
have found that for the configurations discussed in Sect. 6 the
artificial viscosity described by Monaghan and Gingold (1983) or
the very similar viscosity tested by Monaghan and Pongracic
(1984) give satisfactory results. This latter viscosity requires
replacing

Pi | DPj

7" o

in (15) by
Di | Dj
<Q_2 + Q_é> a —“#ij) 5

i J

(28)

where
61‘0‘ PR N
S if <0
M= ri2j+’7 ’ A (29
0; otherwise

and dt is the time step. The viscosity only acts on approaching
particles (v;;- r;;< 0 is the particle equivalent of using the viscosity
if ¥ - v<0), and results in exact conservation of linear and angular
momentum. For isothermal problems ¢ can be replaced by h/c
where c is the speed of sound. For high Mach number collisions
(Lattanzio et al., 1984) it is necessary to replace 1—ay;; by
1 —oup;;+ Buf; which is equivalent to using both a regular bulk
viscosity and a viscosity like the Von Neumann Richtmyer
viscosity. In this case excellent results are obtained with o= f~1.
For some problems (e.g. that discussed in Sect. 9) it may be
reasonable to use the viscosity only for the momentum component
parallel to the rotation axis since planar shocks form above and
below the equatorial plane. This also minimizes spurious angular
momentum transport effects (Gingold and Monaghan, 1983).
However, in general, one has to include viscosity in all three
momentum components. Tests of angular momentum transport
for this case are described by Monaghan and Lattanzio (1984).

5.3. Time differencing

We use the leap frog algorithm (Gingold and Monaghan, 1982)

with a time step ot calculated by the following rules
@) S;=Max(v?+¢}); i=1,2,..,N.

@) f= Méx (F?) where F; is the force on particle i.

‘ h
(iii) 6¢t=0.3 Min <l7§ 1/(71/]//”)> ,
where c; is the speed of sound at particle i. For the two-particle
tests with particle separation =h, the coefficient 0.3 in (iii) was

replaced by 0.1 because the circumference of the orbit was only
x3h.

5.4. Variation of h

The value of h varies during the calculation according to the rule

h=constn™1/3,

where 71 is the average number density defined by

6. Tests of the gravitational force calculation

The multigrid algorithm was tested using the density sin wx sinzwy
sinnz in the domain 0<x, y,z=<1 for which the exact potential is
known. This static test is useful for determining the optimum
parameters for the multigrid method. These parameters were
chosen so that the gravitational force had an error <0.1% on a 20
x 20 x 20 grid. In the following we describe dynamic tests.

6.1. Two-particle motion

A particularly stringent, but easily implemented dynamic test is to
follow the motion of a binary. This tests all aspects of the potential
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Table 1. J, variation for binary orbits in the x—y plane with
separation 10h, 6h, 2h and h. The cell size is 2h

Time step 10h 6h 2h h
10 0.2502 0.1936 0.1130 0.06286
20 0.2502 0.1932 0.1080 0.06298
30 0.2504 0.1930 0.1073 0.06339
40 0.2499 0.1930 0.1102 0.06220
50 0.2497 0.1930 0.1082 0.06308
60 0.2497 0.1939 0.1037 0.06295
70 0.2498 0.1925 0.1047 0.06275
80 0.2501 0.1937 0.1049 0.06280
90 0.2503 0.1934 0.1066 0.06374

100 0.2502 0.1939 0.1130 0.06253

Max % variation 0.16 0.40 4.0 1.1

from the mean J,

calculation: the density assignment, the boundary conditions and
the calculation and interpolation of the forces. In addition,
because two particles, when they are close enough, produce a
sharply varying potential, the test places severe demands on the
potential solver. Furthermore, the test indicates how well the
calculated gravitational force leads to angular momentum con-
servation. In the Eulerian picture the two-particle configuration
represents a concentrated flow of matter and angular momentum
through the mesh. The test therefore may also be viewed as a test of
angular momentum transport.

In the calculations to be described two particles, each with
mass 0.5, were started with a velocity which should produce a
circular orbit in the x—y plane. The grid occupied the domain
—2.0=x, y,z<2.0 and the surface potential was calculated using
all multipole moments up to the 6¢h. The value of h was 0.1 making
the cell width 0.2. In Table 1 we show the variation of the z
component of the angular momentum for various particle separ-
ations. The widest binary examined had an initial separation of 5
cell widths. The closest binary had a separation of 0.5 cell widths.

For all separations the nett gain or loss of angular momentum
is negligible. The variation in angular momentum during the
orbital motion is slight for initial separations > 2 cell widths. It is
larger for motion taking place entirely within a cell, but the short
range correction keeps the variation <4% for all motion within
the cell.

0-4 0.10

139

The conservation of J, shows that the grid force + correction
maintains a very good approximation to a central force. For
binaries with separation >2h the principal error term is due to a
small dipole component in the potential. An alternative way of
looking at this error is that the potential between two particles,
which should be

Gmm,
— , 30
ry—r (o)
is approximated by
Gmym,
-1 31
ry—r,—eg G1)

where ¢ is a constant vector. For example, the orbit shown in the
left frame of Fig. 1 should be a circle with centre origin. The effect
of the potential (31) is to produce circular orbits for each particle
with one orbit centred on ¢/2 and the other centred on —g/2.

The dipole perturbation produces no nett change to J, when J,
is averaged over an orbit. The effect of the perturbation decreases
with increasing binary separation so that the errors in the orbit of a
binary with separation 5 cell widths are < half those with
separation 3 cell widths.

For two particles with separation less than a cell width, the
deviation from the inverse square force law becomes more
pronounced. The major effect is due to the fact that the particle’s
mass appears to be smoothed out and, even if the correction we
used was perfect, the particle would appear smoothed out on a
scale ~h. Superimposed on this effect are errors arising from the
use of a grid e.g. the dipole term described above. Because the force
is no longer inverse square the orbit does not return to its original
position as shown in the right frame of Fig. 1. If the short range
correction is not included the particles leave the cell on an orbit
with maximum range 2 two cell widths. The small variation of J,
for this orbit shows that effects due to the structure of the grid are
not important. This is all the more remarkable when it is realized
that the boundary of the right frame of Fig. 1 is that of an entire
cell. .

Typical limits on the other components of J are, for a
separation of 3 cell widths, |J,| <6107, The excursion out of the
x—y plane is typically <0.0005. The linear momentum varies
about zero with an amplitude of <4107

The simulation of a gas cloud presents less stringent problems
of angular momentum transport than are posed by the two-body
problem and the conservation and transport of angular momen-
tum in rotating gas clouds should be better. Results in the

0.054

_ \ ]
0-0 > 0.004

Fig. 1. Orbits of a binary (two particles) with
mass ratio 1:1. The cell width is 0.2. Left
frame: initial separation is 6h=3 cells. The
exact orbit is a circle with centre the origin.
Right frame: initial separation is h=0.5 cell
widths. The orbits of both particles are shown.
In the absence of the gravitational correction
the orbits leave the cell

-0-2 AN A -0.05-
N
-0-4 -0.10 T T
-0-4 -0-2 0-0 0-2 04 -o.10 -0.05

T T T

T
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50

40+

30

Density

0-7

Fig. 2. The density profile for the collapse of a pressureless spherically symmetric
cloud with initial D=(21/16m)(1-—r*. The SPH results using 3544 particles
t=0.807 when h=0.041 shown: —. Exact density at t=0.807 shown: ————
(upper curve) and at t=0.800 shown: ———— (lower curve)

following sections confirm these expectations. For example, the
axisymmetric collapse of a cloud rotating about the z axis results in
|4 ,/T | <1074,

6.2. Spherical collapse — zero pressure

Several tests of spherical collapse were examined using both equal
and different mass particles. The test we describe here had an initial
density

21

D=—(1-r%;

= <r<
167 O=r=l,

and the particles were initially set on a uniform cartesian grid with
cell width 0.1 and initial h=0.1. The particle ar r; was given a mass
m;=D,(0.1)3, where D, is the density at r;. Only those particles
(3544 in all) within the sphere of radius r=1.0 were included.

For this model the shells with radii (0.25, 0.5, 0.9) reach the
centre at times (0.84, 0.85, 0.99).

In Fig. 2 we compare the SPH results at t =0.807 with the exact
resultsat t=0.807and att=0.800. The SPH results agree best with

3.0

2.0 1

Density

0.0 T T T T T T T
0.0 0.2 0.4 0.6
Radius

the exact results at the slightly earlier time. When compared with a
standard Lagrangian finite difference scheme, using spherical
shells which initially have equal separation, the SPH results are
better than those from a 20 shell finite difference calculation and
nearly comparable to those from a 50 shell calculation. These finite
difference calculations give a better description of the envelope
because the SPH method with a single h biased towards the high
density regions gives a poor representation of the density in the
very low density regions. It should, however, be kept in mind that a
20 shell finite difference calculation is roughly equivalent to
(40)® =64,000 cells in three dimensions so the SPH calculation
with 3544 particles is remarkably successful.

7. Spherical collapse — with non-zero pressure

The spherically symmetric isothermal collapse of a gas cloud
provides a test of the pressure force calculation. For the results to
be described

12 4n
=—=(1-2= o
D 167'C< 3 Dext>(1 r )+Dext

with D, =0.1. The equation of state was p=0.2D. We used 3544
different mass particles on an initially regular grid as described in
Sect. 6.2. The outer boundary condition was an external pressure
Pext=0.2D,,. The initial A was equal to 0.1.

In the left frame of Fig. 3 we show the density profile as a
function of radius, and compare it to a 50 shell finite difference
calculation. As was the case for the pressureless collapse the SPH
profile is closer to the finite difference profile at a slightly earlier
time. For this reason the SPH profile is shown for the time 0.82
while the finite different profile is at t=0.78. The finite difference
profile at t=0.82 has a central density of 3.5, but is otherwise
similar to the profile shown.

In the right frame of Fig. 3 we show the density profile at a later
time when the similarity solution goc1/r? should apply except
within ~ h of the centre. It can be seen that the agreement with the
similarity solution is very good.

These results indicate that the pressure forces are being
calculated with satisfactory accuracy.

160

Density

|
[
1
1
i
1
1
!
|
|
|
\
\
\
\
\
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\

T
0.2 0.3

Radius

0.4

Fig. 3. Spherical collapse of a cloud with scaled equation of state p=0.2D. Left frame: upper curve 50 shell finite difference calculation at t =0.78. Lower curve SPH
calculation (3544 particles) at =0.82. Right frame: SPH results at t=1.09, when h=0.033, shown: —. The similarity solution shown: - — ——
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8. The collapse of a rotating axisymmetric isothermal cloud

Since there are no exact solutions for this problem we regard itasa
test of angular momentum transport and conservation.

If there is no spurious transport of angular momentum each
particle retains its initial specific angular momentum. Accordingly
m(j), the mass with specific angular momentum <=<j will be
invariant. In Fig. 4 we show m(j) as a function of j for the collapse
of an initial model with

3
D=—(1-Do)(1-)+Do, 0O=r=l,

where D, is the external density (taken as 0.2). The scaled equation
of state was p=0.1D and the initial angular velocity (about the z
axis) was 0.70. The simulation used 3544 particles with initial
h=0.1 and o, the viscosity parameter, was 7.0.

It is clear from Fig. 4 that the transport of angular momentum
is very good. A more detailed analysis of the data shows that for

-0.5

"100 T T T T
-1.0 -0.5 2.0 9.5 1.0
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80% of the mass the deviation of m(j) from the initial value is al-
ways <0.5%. The deviation in the outer layers can be as large as
one percent. These results together with those for the two body
problem confirm that the pressure, viscous and gravitational
forces lead to negligible errors in the transport of angular
momentum.

The total z component of angular momentum deviated by
<5107 % of its original value. The other components, initially zero,
remained <21076. The three components of linear momentum
remained <107%.

In Fig.5 we show two projections of the particles. The
beautiful symmetry of these projections shows that the gravita-
tional forces are accurately maintaining the equatorial reflection
symmetry. It also confirms our suggestion that the particles always
remain highly ordered. The outer layers are not axisymmetric
because of the way we select particles from a cartesian grid. The
particles in these layers have a negligible influence on the dynamics
because their mass is very low.

9. Binary fragmentation

As a final test of the behaviour of the algorithm we simulated the
collapse and fragmentation of the perturbed isothermal cloud
considered by Boss and Bodenheimer (1979) and Gingold and
Monaghan (1981) (referred to here as GM).

Because we use a particle method which is a refinement of that
used in GM we expect similar results when the number of particles
and the resolution are similar. The major differences between the
simulation we describe, and that in GM, is that we use particles of
different mass and the gravitational force is calculated using finite
differences. The simulation therefore tests the extent to which the
calculation is sensitive to these features.

The details of the initial cloud are given in GM. In terms of the
scaled variables the density D is given by

D=—3—<1+l cos2¢>,

4n 2
1.0
9.5
9.0

N -
-0.5
-1.0 T T T T
-1.0 -0.5 0.0 0.5 1.0

.

Fig. 5. Particle positions for the collapse of a rotating isothermal cloud. Left frame: positions projected onto the x — y plane. Right frame: positions projected onto the

z—Xx plane
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@ Fig. 6. Density contours for the collapse
considered by Boss and Bodenheimer. The unit
of length is 3.2 101 cms. Left frame: contours
for a simulation using 3544 particles at t=1.44
(2.310* yr) when h=0.051. The contours are

A for the following fractions of the maximum
Q density 0.93, 0.75, 0.50, 0.25, 0.125. Right
frame: SPH simulation using 7153 particles but

rejecting those with density <0.05 maximum
density. t=1.51 (2.4 10* yr) when h=0.032.
Note the scale change
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which represents a perturbed uniform cloud. We define D =3/(4)
on the rotation (z) axis. The equation of state is p=0.1D. The outer
boundary was allowed to be a free surface. This boundary
condition differs from the constant volume condition used by GM,
but is is not expected to have a serious influence on the evolution.

Because the grid we use has a maximum size (29 x 29 x 29), and
it is required to cover the entire set of particles, there is a minimum
value of h that can be used. For the first simulation described
below this minimum # was reached after ~ 1.5 free fall times (¢, )
and thereafter the h was up to twice that used in GM. To escape
this difficulty we eliminated those particles with a density less than
some specified fraction of the maximum density. This technique
was used in the second simulation.

The first simulation used 3544 particles with initial h=0.1. The
particles were initially on a uniform cartesian grid with cell width
1=0.1. The mass of particle i at the position with density D; was set
at D,3. Artificial viscosity was used only for the momentum
parallel to the rotation axis. The simulation was run until
t=3.310*yr (~2t,,) when the maximum density had increased by
153. This density was lower than that in GM by a factor ~3. The
reason for the lower density is that h is being determined by the
maximum grid size and at this time it is twice the A used in GM. In
other aspects the growing fragments followed the evolution
described in GM. In the left frame of Fig. 6 we show the density
contours for t=2.310*yr. They are similar to, but less compact
than, those found by GM. The fragments eventually coalesce. The
initial J, was 0.3030 and the final J, was 0.3036. The other
components of angular momentum remained, in magnitude,
~1073.

A second simulation was run using 7153 particles with initial
h=0.08. Particles with density <0.05 of the maximum density
were rejected until the number of particles were reduced to 3068. In
the right frame of Fig. 6 we show the density contours at
t=2.510*yr. The density contours have now altered, as might be
expected since the k for this simulation at this time is half the h for
the previous simulation. The overall evolution of the cloud is
similar to that found by GM. The fragments in our simulation
reach a maximum density within 20% of that found by GM and
the density varied in a similar fashion. The fragments move on a
similar orbit to that found for the 3544 particle simulation and
they eventually coalesce.

These results confirm that our calculation of the gravitational
field reproduces the SPH results found using a gravitational field
calculated by direct summation over the particles. The use of
different mass particles does not introduce spurious results.

Full details of this and other collapse sequences will be
published elsewhere.

00 o0z o4
X

10. Discussion and conclusions

The static tests referred to in Sect. 6 show that, for densities which
vary on a scale of several cells, the gravitational force is obtained
with errors <0.1%. The two-particle tests of Sect. 6 show that the
calculated forces give excellent conservation of linear and angular
momentum even for orbits within a computational cell. The
magnitude of the force has a larger error than is the case for the
slowly varying density because each of the two particles forming
the binary assigns a density to the nearest vertices of the grid. The
density therefore varies rapidly on the scale of one cell. Despite this
the force is in error by only ~ 5% when the particles are separated
by 3 cells. The error decreases rapidly with increasing separation.

It is more difficult to make error estimates from the tests based
on the spherically symmetric collapse of a cloud because the finite
differencing in time has the effect of delaying the collapse. If
accountis taken of the delay, which is normally a few percent of the
actual time, the agreement with high accuracy finite difference
calculations is very good.

The collapse of rotating clouds provides evidence of the
conservation and transport of angular momentum within the
cloud. The detailed results described in Sects. 8 and 9 show that
the algorithm conserves and transports angular momentum very
accurately and that no spurious effects are introduced by the use of
particles with different masses.

The refined version of SPH which we have described is capable,
when programmed carefully, of handling ~ 10* particles on a Vax
11/780. The main points to keep in mind when programming for
components like the Vax 11 are

(i) access particles through link lists or their equivalent,
(ii) relabel particles to reduce page faults, and
(iii) calculate kernels by interpolation from an array.
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