Photographic photometry of RR Lyrae variables in the globular cluster M15

Elizabeth A. Bingham Royal Greenwich Observatory, Herstmonceux Castle, Hailsham, East Sussex BN27 1RP, UK
Carla Cacciari^ Osservatorio Astronomico Universitario, 40100 Bologna, Italy and ESTEC, Astronomy Division Villafranca Satellite Tracking Station, Madrid, Spain
R. J. Dickens ${ }^{\dagger}$ Royal Greenwich Observatory, Herstmonceux Castle, Hailsham, East Sussex BN27 1RP, UK
F. Fusi Pecci osservatorio Astronomico Universitario, 40100 Bologna, Italy

Accepted 1984 January 22. Received 1983 December 19; in original form 1983 July 29

Summary. Light curves in B and V are presented for 56 RR Lyrae variables in the Oosterhoff Group II globular cluster M15. Our measures are combined with original measures published by Sandage, Katem \& Sandage (SKS) to yield data of improved precision for a total of 62 RR Lyraes. Correlations between the various light curve parameters are obtained, and their significance is discussed. In particular, the new period-colour relation shows less scatter than that published by SKS, and less overlap in colour between c - and $a b$-types. The multimode variables now occur close to the ($a b / c$) transition colour, as expected from their periods. An accurate assessment of the sources of error in the period-colour relation enables the prediction of a range in mass amongst the variables, with a (1σ) dispersion of $\sim 0.025 M_{\odot}$. The theoretical period-colour relation is used to derive a mass-to-light ratio (solar units), $\log \left(M^{0.81} / L\right)=-1.92 \pm 0.03$ which, with a mean mass of $0.65 \pm 0.05 M_{\odot}$ obtained by Cox, Hodson \& Clancy for the multimode variables gives $\log L=1.77 \pm 0.06 L_{\odot}$ or $M_{\text {bol }}=+0.34 \pm 0.15$. This luminosity implies an age a few billion years less than current estimates, but there are still many uncertainties attached to such a derivation.

From a number of independent estimates of the helium abundance (see Section 3.2) a value of $Y=0.25 \pm 0.03$ seems to be the most appropriate for M15. The observed distribution of stars in the $\log L / \log T_{e}$ diagram of M15 agrees satisfactorily with what could be expected from the appropriate evolutionary tracks of Sweigart \& Gross (SG). However, the mass-to-light ratios of

[^0]these 'standard' models can only be reconciled with those derived pulsationally, within the quoted uncertainties, if the helium abundance, $Y, \gtrsim 0.30$. If $Y \lesssim 0.25$ as also might be expected from external evidence, the evolutionary models predict a lower luminosity ($\Delta \log L \sim 0.1$) than obtained from pulsation theory. This discrepancy can be removed on the basis of the expected behaviour of non-standard models, as shown by Caputo, Castellani \& Gregorio.

The observations are compared in detail with those of RR Lyraes in the Oosterhoff I cluster M3 in a discussion of the Oosterhoff problem. It is shown that the Oosterhoff effect, as manifest between M15 and M3 cannot be simply described in terms of a period shift, since the distribution of amplitude and number with period and temperature differ in detail, in particular a unique amplitude-temperature relation over both pulsation modes is not possible. We confirm Sandage's result, though with somewhat different arguments, that the correlation of period shift with heavy element abundance $[\mathrm{Fe} / \mathrm{H}]$ over many clusters requires an anticorrelation of $[\mathrm{Fe} / \mathrm{H}]$ with Y within the standard frame of evolution models.

Finally, the morphology of the SG tracks appropriate to account for the difference in overall horizontal branch morphology between M15 and M3 leads to a natural explanation of the great excess of c-type variables in the neighbourhood of the transition temperature found in Oosterhoff II clusters like M15 (an effect which contributes significantly to the difference in mean period between the Oosterhoff groups). The tracks indicate that many of the RR Lyraes in M15 begin their horizontal branch evolution within the instability strip, spending much longer in the centre of the strip than variables in M3-like clusters which evolve more rapidly bluewards across the strip. The distribution in M15 peaks just bluewards of the transition temperature giving rise to the many c-type variables found there. The multimode variables occur precisely at the transition temperature (the same in M15 and M3) and appear to be a 'stable' mode of pulsation. However, further work is still needed to determine precisely the luminosity and/or mass differences that produce the observed period shift between the Oosterhoff groups.

1 Introduction

Observations in more than one waveband of RR Lyrae variables in globular clusters provide important data for the study of the evolution of horizontal branch stars. The light curve parameters provide information about the distribution of the variables with temperature, and show correlations between period, amplitude, luminosity and temperature. These relationships and the use of pulsation theory allow the determination of fundamental parameters such as the mass of the evolving stars and their helium content. Observations show variations in RR Lyrae properties from cluster to cluster but explanations of the differences are still uncertain. The determination of physical differences between clusters is important for understanding the morphology of the horizontal branch, and relating such differences to stellar evolution and to estimating ages among galactic globular clusters. One major systematic difference discovered by Oosterhoff $(1939,1944)$ is the division of clusters into two distinct groups according to the mean periods of the RR Lyrae variables, $\left\langle P_{\mathrm{ab}}\right\rangle=0.55$ days for group I and $\left\langle P_{\mathrm{ab}}\right\rangle=0.65$ days for group II. In fact a complete understanding of horizontal branch morphology in globular clusters requires a solution to the Oosterhoff
dichotomy and cannot be achieved without a detailed analysis and comparison of the data for RR Lyraes in clusters representative of the two Oosterhoff groups.

After the early studies of a large sample of RR Lyraes in the most variable-rich Oosterhoff I cluster M3 by Roberts \& Sandage (1955), Baker \& Baker (1956) and Sandage (1959), several other group I clusters have been observed in at least two wavebands in order to obtain colour data on their RR Lyraes (NGC 6712 by Sandage, Smith \& Norton 1965; NGC 6171 by Dickens 1970; NGC 6981 by Dickens \& Flinn 1972; M14 by Wehlau \& Potts 1973; NGC 6723 by Menzies 1974; M4 by Sturch 1977; Cacciari 1979; NGC 3201 by Cacciari 1983). M13 (Pike \& Meston 1977) has too few RR Lyraes to assign to a group. In order to select an Oosterhoff II cluster for comparison we note that by far the most variablerich clusters of this type are ω Cen and M15. However, ω Cen is peculiar in many respects, showing a considerable spread in $[\mathrm{Fe} / \mathrm{H}]$ among its RR Lyrae stars and with both Oosterhoff groups apparently present, evidenced by some 'metal-rich' RR Lyraes with periods close to those of Oosterhoff I clusters (Butler, Dickens \& Epps 1978, hereafter BDE), so it cannot be taken as representative of the Oosterhoff group II clusters. Observations of the group II cluster NGC 4833 by Demers \& Wehlau (1977) are available for 11 variables and for NGC $4590=$ M68 by Andrews (1980) for 24 variables. Therefore a detailed study of the variables in M15, unambiguously classified as Oosterhoff group II, is very important.

Photometric observations of the globular cluster M15 $=$ NGC $7078\left(\right.$ RA $=21^{h} 27^{\mathrm{m}} .6$, $\operatorname{Dec}=+11^{\circ} 57^{\prime} 1950, l=65.0, b=-27.3$, Shapley \& Sawyer (1935) concentration class IV, spectral type F3, Kukarkin (1974) richness index $=0.74$) on the International System have been published by Brown (1951), Johnson \& Schwarzschild (1951) and Arp (1955). Photoelectric and photographic observations in the $U B V$ system have been made by Sandage, Katem \& Kristian (1968), Sandage (1969, 1970), Sandage \& Katem (1977), Aurière \& Cordoni (1981) and Buonanno et al. (1983a). The colour-magnitude diagram shows many properties of the 'typical' metal-poor clusters: $\Delta V=3.2$ at $(B-V)_{0}=1.4$ (Sandage \& Wallerstein 1960), $(B-V)_{\mathrm{o}, \mathrm{g}}=0.68$ (Sandage \& Smith 1966) and $S=6.9$ (Hartwick 1968). Previous determinations of metal abundance by Sandage (1970), Butler (1975), Hesser, Hartwick \& McClure (1977), Harris \& Canterna (1977), Cohen (1978), Searle \& Zinn (1978) and Zinn (1980), suggest a mean value of $[\mathrm{Fe} / \mathrm{H}] \sim-2.15$. However, Pilachowski, Sneden \& Wallerstein (1983) find $[\mathrm{Fe} / \mathrm{H}]=-1.76$ and Bica \& Pastoriza (1983) a value of -1.71 . Clearly the metal abundance of M15 is still controversial; we adopt $[\mathrm{Fe} / \mathrm{H}]=-2.0 \pm 0.15$ in this paper. The Dickens (1972) type 3 horizontal branch is populated on both sides of the RR Lyrae gap although with a rather sparse red horizontal branch (Buonanno et al. 1983a); the horizontal branch includes 112 variables, among which 65 are RR Lyraes with known period (Sawyer Hogg 1973).

UBV photographic photometry of these variables was begun at Mount Wilson and Palomar Observatories (Sandage 1959, 1970). We undertook a detailed study of RR Lyrae variables in M15 using B and V plates taken with the Loiano and Asiago telescopes between 1974 and 1979. The results of the Mount Wilson study were announced by Sandage, Katem and Sandage (1981, hereafter SKS), in the first of a series of papers on the Oosterhoff period groups and the ages of globular clusters (Sandage 1981b, 1982a, 1982b). A comparison of our independent data with theirs revealed differences in mean photometric parameters which significantly affect the final correlations and consequent interpretation. We found differences in $B-V$ colours, in the amount of scatter among both $a b$ - and c-type variables and the amount of colour overlap between them. In order to consider all the available data for the most meaningful discussion we decided to re-reduce the Mount Wilson observations in the same way as the Bologna observations and combine both data sets. We believe this to be worthwhile in order to enable the most comprehensive analysis of the colour data for the

M15 RR Lyraes，being the best example of a globular cluster of Oosterhoff group II， including detailed comparison with similar data for M3（group I）．

We give full details of our reduction of all the data in the second section of the paper．Our new independent data are presented in Sections 2.1 to 2.4 together with our new reduction of SKS data in Sections 2．2．to 2．4．We have analysed photometric errors in the final com－ bined data（Section 2．5）and present the period－colour relation at various stages in the reductions（Section 2．6）to show that the final combined data is of improved precision．In the third part of the paper we discuss the correlations between observed light curve para－ meters such as amplitude and mean colour index（Section 3．1），and make a detailed discus－ sion of the derivation of physical parameters of the RR Lyrae variables，their effective temperatures，bolometric magnitudes，mass－luminosity ratio and helium abundance（Section 3．2）．Using pulsational data and the mass for double－mode RR Lyrae variable stars given by Cox，Hodson \＆Clancy（1983）we find the absolute magnitude of the RR Lyraes and discuss the implication of this result for the cluster age（Section 3．3）．In Section 3.4 we discuss the Oosterhoff dichotomy as manifest by the observed properties and pulsation parameters of M15 and M3 RR Lyraes．A comparison with stellar evolution models is made in Section 3．5． We discuss how the pulsation results can be explained by current evolutionary horizontal branch models in fitting M15 data alone（Section 3．5．1）and by a comparison of M15 and M3（Section 3．5．2）．In Section 3．5．3 we use the predictions of stellar evolution models to discuss the observed horizontal branch morphology and in Section 3．5．4 discuss the Oosterhoff effect between M15 and M3 in terms of current evolutionary models and pulsation theory．

Table 1．List of Bologna plates of M15 from Loiano or Asiago（A）．

P1ate no．	He1．J．D． 2440000＋	Col．	$\begin{aligned} & \text { Exp. } \\ & \text { min } \end{aligned}$	Plate no．	Hel．J．D． $2440000+$	Col．	$\begin{aligned} & \text { Exp. } \\ & \text { min } \end{aligned}$	Plate no．	Hel．J．D． $2440000+$		$\begin{aligned} & \text { Exp. } \\ & \text { min } \end{aligned}$
A147	1981.275	v	15	433	3395.461	V	15	918	3787.443	v	20
A571	2274.485	V	10	440	3399.324	B	8	920	3788.265	B	5
A572	2274.506	B	5	443	3399.388	B	15	926	3789.285	B	5
A584	2276.486	B	10	444	3399.432	V	15	946	3793.295	V	5
A585	2276.494	V	10	445	3399.466	B	12	1120	4117.345	B	7
A586	2276.502	B	10	446	3399.482	V	16	1129	4118.377	V	10
A587	2276.510	V	10	447	3399.531	B	12	1130	4118.409	B	4
A593	2277.563	B	10	452	3401.340	B	16	1131	4118.418	V	8
A594	2277.572	V	10	453	3401.368	V	30	1132	4118.444	B	4
A602	2281.447	B	15	454	3401.408	B	40	1133	4118.449	V	8
A603	2281.461	V	15	A1619	3401.513	V	15	1137	4144.331	B	7
A616	2296.411	V	5	A1712	3459.304	V	15	1138	4144.342	V	12
A619	2298.379	V	5	A1714	3459.321	V	15	1139	4144.377	B	7
A620	2298.383	B	5	852	3722.495	V	25	1140	4144.388	V	14
A621	2298.388	V	5	854	3722.556	v	25	1142	4144.424	V	14
A658	2305.476	B	5	858	3723.484	V	20	1147	4145.318	B	8
A669	2306.468	V	5	865	3756.401	v	27	1148	4145.327	V	15
A670	2306.477	B	10	866	3756.438	B	35	1152	4156.270	V	8
A678	2307.444	V	10	871	3759.352	V	20	1153	4156.277	B	5
A688	2309.379	B	5	876	3761.319	B	20	1154	4156.303	V	8
A690	2309.432	V	10	877	3761.336	V	20	1155	4156.310	B	20
A712	2338.337	V	5	881	3774.314	v	17	1156	4156.344	V	11
A1077	2715.332	B	10	882	3775.280	V	20	1157	4156.353	B	8
A1078	2715.342	B	10	883	3775.310	B	20	1158	4156.368	V	8
A1084	2716.267	B	15	884	3775.336	V	18	1159	4156.375	B	6
Al106	2752.269	B	10	885	3775.358	B	20	1160	4156.405	V	9
Al107	2752.278	V	15	886	3775.381	V	20	1161	4156.414	B	8
Al109	2752.296	V	15	887	3775.413	B	20	1162	4156.432	V	10
407	3392.328	B	15	888	3775.438	V	24	1163	4156.441	B	8
408	3392.358	V	16	889	3775.454	B	20	1166	4168.378	B	6
416	3393.367	V	15	890	3775.472	V	22	1168	4168.410	B	8
418	3393.439	B	15	892	3776.286	V	20	1169	4168.421	V	14
426	3394.376	B	15	916	3787.280	V	20				

2 Observations and reductions

2．1 BOLOGNA PHOTOGRAPHIC PHOTOMETRY

Our photographic observations were obtained with the 152 cm F／8 Ritchey－Chretien tele－ scope of Loiano（plate scale $17^{\prime \prime} / \mathrm{mm}$ ）from 1977 September to 1979 October，and with the $182 \mathrm{~cm} \mathrm{~F} / 9$ telescope of Asiago（ $12^{\prime \prime} / \mathrm{mm}$ ）from 1973 October to 1977 November． $44 B$ and $54 V$ plates were measured with the Sartorius iris－diaphragm photometer at the Royal Green－

Table 2．Photographic differences resulting from measuring photoelectric standard stars in M15（Sandage 1970，tables 5 and 6）on Bologna plates．Δ gives Sandage photoelectric value minus mean Bologna photographic value．L：Loiano plates（ 36 V ， 31 B），A：Asiago plates（ $18 \mathrm{~V}, 13$ B）．Stars are identified in Sandage（1970）plates 9 and 10 ．

No．	v_{p} ．e．	$(\mathrm{B}-\mathrm{V})_{\mathrm{p}} . \mathrm{e}$.	$\Delta \mathrm{V}_{\mathrm{L}}$	s．d．	$\Delta V_{\text {A }}$	s．d．	$\Delta \mathrm{B}_{\mathrm{L}}$	s．d．	$\Delta \mathrm{B}_{\mathrm{A}}$	s．d．
S5	12.87	0.78	－． 01	． 02	－． 02	． 03	0	． 02	－． 01	． 03
S6	13.40	1.19	0	． 04	0	． 04	＋． 02	． 04	－． 06	． 07
X7	13.50	0.76	＋． 03	． 03	＋． 05	． 04	－． 03	． 04	＋． 02	． 04
X5	13.72	1.02	＋． 01	． 03	＋． 04	． 03	＋． 04	． 05	＋． 04	． 04
P5	14.02	0.73	－． 01	． 02	－． 04	． 03	＋． 02	． 04	＋． 02	． 05
X6	14.11	1.01	－． 08	． 03	－． 06	． 03	－． 07	． 04	0	． 05
P13	14.32	0.97	＋． 01	． 03	－． 01	． 03	－． 01	． 03	＋． 01	． 04
S36	14.39	0.91	－． 03	． 04	－． 05	． 05	－． 04	． 06	－． 04	． 06
P8＇	14.47	1.00	＋． 02	． 03	＋． 01	． 01	0	． 04	＋． 01	． 04
S11	14.68	0.88	＋． 02	． 04	＋． 01	． 03	－． 01	． 07	＋． 01	． 03
P14	14.82	0.82	＋． 03	． 04	＋． 03	． 03	＋． 04	． 06	＋． 04	． 03
B	14.84	1.15	＋． 04	． 04	＋． 05	． 02	＋． 06	． 10	0	． 06
P6	14.93	0.90	－． 04	． 03	－． 03	． 03	－． 01	． 04	0	． 04
A	15.05	0.76	＋． 04	． 03	＋． 04	． 02	＋． 05	． 05	＋． 04	． 07
S37	15.33	0.82	＋． 04	． 05	＋． 07	． 03	＋． 08	． 08	＋． 11	． 04
P11	15.41	0.83	－． 02	． 04	－． 01	． 03	－． 02	． 05	＋． 01	． 05
P15	15.42	1.34	＋． 03	． 04	＋． 05	． 03	＋． 03	． 10	－． 01	． 06
P7	15.62	0.82	－． 03	． 03	0	． 02	＋． 03	． 04	＋． 04	． 06
P1	15.71	0.79	－． 06	． 04	－． 01	． 03	＋． 02	． 05	＋． 01	． 06
D	15.73	0.74	＋． 01	． 06	－． 03	． 04	－． 01	． 09	－． 06	． 06
IV－108K	15.87	0.22	－． 04	． 05	－． 06	． 04	－． 06	． 05	－． 05	． 0.5
I－135K	15.91	0.18	－． 11	． 04	－． 13	． 03	－． 09	． 05	－． 09	． 04
IV－19K	15.93	0.17	－． 02	． 04	－． 05	． 04	－． 05	． 06	－． 07	． 06
IV－68K	15.95	0.23	＋． 03	． 05	－． 01	． 03	＋． 01	． 06	0	． 05
P4	15.98	0.17	－． 03	． 03	－． 02	． 04	－． 04	． 05	－． 02	． 03
I－50K	16.05	0.12	＋． 09	． 04	＋． 07	． 03	＋． 07	． 05	＋． 07	． 07
IV－25K	16.06	0.10	＋． 03	． 03	0	． 03	－． 03	． 06	＋． 03	． 06
IV－17K	16.06	0.11	＋． 03	． 03	＋． 02	． 03	－． 01	． 06	0	． 05
I－20K	16.08	0.17	＋． 03	． 04	＋． 04	． 03	－． 02	． 08	－． 05	． 04
P3	16.09	0.79	－． 22	． 04	－． 16	． 04	－． 14	． 07	－． 14	． 08
IV－4K	16.11	0.12	＋． 06	． 05	＋． 06	． 02	＋． 02	． 06	＋． 03	． 06
P10	16.26	0.84	＋． 02	． 05	＋． 04	． 04	＋． 06	． 07	＋． 05	． 05
F	16.27	0.85	＋． 02	． 08	－． 07	． 06	－． 03	． 10	－． 11	． 10
III－156K	16.28	0.09	－． 08	． 06	－． 11	． 06	－． 07	． 10	－． 03	． 09
P8	16.38	0.74	0	． 03	＋． 02	． 03	－． 01	． 08	－． 01	． 04
P2	16.47	0.96	＋． 01	． 05	＋． 05	． 04	＋． 05	． 07	＋． 06	． 06
AB	16.50	0.76	0	． 05	＋． 05	． 04	＋． 03	． 08	＋． 06	． 04
Y	16.54	0.78	0	． 04	＋． 01	． 03	＋． 04	． 08	＋． 01	． 06
AI	16.56	0.76	－． 01	． 04	＋． 02	． 02	＋． 01	． 07	－． 02	． 07
I－95K	16.59	0.00	－． 04	． 06	－． 05	． 04	－． 05	． 06	－． 03	． 03
AH	16.61	0.90	＋． 06	． 05	＋． 07	． 08	＋． 06	． 09	＋． 01	． 03
I－198K	16.64	－0．01	＋． 13	． 07	＋． 08	． 06	＋． 12	． 08	＋． 14	． 06
III－W2－3	16.67	0.01	＋． 02	． 05	－． 05	． 03	0	． 06	0	． 05
K	16.69	1.12	＋． 02	． 07	－． 01	． 07	＋． 05	． 07	－． 01	． 05
AC	16.69	0.75	－． 04	． 04	＋． 02	． 06	－． 01	． 11	＋． 05	． 06
X	16.72	1.12	＋． 06	． 04	＋． 09	． 04	＋． 06	． 08	＋． 04	． 05
P12	16.76	0.80	－． 01	． 06	0	． 03	＋． 04	． 07	＋． 05	． 06
I－73K	16.76	－0．04	－． 05	． 07	－． 07	． 04	－． 06	． 06	－． 05	． 03
P9	16.84	－0．01	＋． 02	． 06	－． 03	． 05	＋． 01	． 06	－． 03	． 07
W	16.92	0.71	－． 02	． 06	＋． 01	． 05	－． 01	． 08	－． 01	． 03
I	16.95	1.03	＋． 02	． 07	－． 02	． 10	＋． 01	． 08	－． 02	． 05
I－W5－4	17.21	－0．04	－． 05	． 06	－． 09	． 05	－． 08	． 09	－． 09	． 11
I－112K	17.24	－0．05	＋． 08	． 09	＋． 10	． 05	＋． 04	． 08	＋． 06	． 06
AD	17.46	－0．08	＋． 03	． 06	＋． 09	． 05	－． 05	． 11	＋． 03	． 06

wich Observatory．The best quality plates were selected out of a larger number available，the plate－filter combinations being：103a－O（or IIa－O）＋GG13 for B and 103a－D（or IIa－D） ＋GG14 for V ．The list of all plates used is given in Table 1.

On each plate 56 variables（ 33 c －type and $23 a b$－type）， 55 photoelectric standard stars and 68 photographic secondary standards were measured（Sandage 1970，tables 5， 6 and 8）．Cali－ bration curves were obtained by fitting a fifth order polynomial to the photoelectric standards and then photographic magnitudes were derived for both variables and standard stars．For photoelectric standards，residuals with respect to Sandage＇s photoelectric values and relative rms deviations are given in Table 2．For photographic standards，mean magni－ tudes with relative rms deviations and residuals with respect to Sandage＇s values are given in Table 3．The agreement is generally good，and the larger rms deviations found for the stars S4 and IV－66 suggest possible variability．This has been confirmed for S4（and also for II－64） by the results of a search for variability in red giants in globular clusters made by Mosley \＆ White（1975）．Comparisons of the residuals versus（ $B-V$ ）for the photoelectric standard stars in the magnitude ranges of the RR Lyrae variations are shown in Figs 1（a）and 1（b）for Loiano and Asiago plates respectively．These show no significant correlations with colour that would justify correction between the photoelectric and photographic magnitude systems．Fig．1（c）shows the same comparison for the Mount Wilson plates．The colour equations derived by Dickens（1970）for the Mount Wilson 2.5 －m system in 1965－67 are indicated；there is only one blue point，which does not justify application of these colour equations，although they are not inconsistent with the M15 data．However，a comparison of

Table 3．Comparison between photographic photometry for M15 stars measured in the RR Lyrae pro－ gramme from Bologna plates and Mount Wilson plates（Sandage 1970，table 8）．Bologna values are means from $54 V$ plates and $44 B$ plates．Stars are identified in Sandage（1970，plate 9）．

No．	$\underset{\text { Bologna }}{\text { V.d. }}$		$\begin{gathered} \Delta V \\ M t W-B \end{gathered}$	Bologna		$\begin{gathered} \Delta \mathrm{B} \\ \mathrm{MtW}-\mathrm{B} \end{gathered}$	No．	$\mathrm{V}_{\text {Bologna }}^{\text {S．d．}}$		$\Delta \mathrm{V}$ MtW－B	B Bolo	s.d. a	$\begin{gathered} \Delta B \\ \text { MtW-B } \end{gathered}$
S1	12.97	． 10	＋． 05	14.19	． 08	＋． 03							
S2	15.82	． 05	＋． 04	16.02	． 05	＋． 02	I－42	16.42	． 07	＋． 10	16.47	． 07	＋． 01
S3	13.42	． 05	＋． 03	14.52	． 06	＋． 02	43	13.82	． 07	＋． 01	14.83	． 11	＋． 03
S4	12.58	． 18	＋． 11	14.03	． 13	＋． 03	51	15.88	． 12	－． 08	16.08	． 09	－． 01
S7	13.60	． 06	－． 06	14.69	． 09	－． 07	54	15.85	． 05	＋． 01	16.06	． 07	＋． 02
S8	13.50	． 08	－． 09	14.57	． 12	－． 07	58	15.87	． 06	＋． 01	16.07	． 07	＋． 01
S9	15.72	． 04	－． 05	16.47	． 05	0	61	15.80	． 06	－． 04	16.50	． 08	＋． 08
S10	15.93	． 04	－． 01	16.10	． 05	－． 01	72	15.18	． 05	＋． 01	15.90	． 06	＋． 04
S12	15.93	． 05	－． 04	16.65	． 05	＋． 03							
S13	16.50	． 05	＋． 01	17.23	． 07	＋． 02	II－11	15.78	． 07	＋． 03	15.94	． 08	＋． 07
S16	15.93	． 05	＋． 03	16.06	． 07	＋． 04	23	15.73	． 08	＋． 05	15.90	． 10	＋． 10
S 17	16.36	． 09	0	17.11	． 11	＋． 02	24	15.60	． 09	＋． 02	16.08	． 13	＋． 11
S18	16.82	． 07	＋． 02	16.75	． 07	0	36	15.93	． 05	＋． 02	16.03	． 06	＋． 05
S19	14.79	． 05	－． 03	15.69	． 05	＋． 03	53	16.43	． 06	＋． 03	17.13	． 10	＋． 05
S20	15.43	． 05	－． 02	16.34	． 06	＋． 02	54	15.82	． 05	＋． 01	16.02	． 07	＋． 04
S21	16.05	． 05	＋． 06	16.22	． 06	＋． 01	59	15.87	． 04	0	16.10	． 04	－． 02
S22	15.47	． 04	－． 05	16.28	． 07	0	64	13.48	． 04	0	14.61	． 07	－． 01
S23	14.07	． 09	－． 06	15.12	． 12	－． 07	73	15.88	． 05	＋． 01	16.03	． 08	＋． 05
S24	15.42	． 05	－． 02	16.22	． 06	＋． 04	74	15.93	． 05	＋． 02	16.06	． 06	＋． 04
S27	15.45	． 05	－． 03	16.24	． 06	＋． 01	76	15.61	． 04	－． 06	16.37	． 05	0
S28	16.43	． 07	－． 01	17.19	． 12	＋． 02							
S29	16.46	． 08	－． 01	17.19	． 12	＋． 03	III－15	15.83	． 06	＋． 04	15.97	． 10	＋． 07
S30	14.90	． 06	－． 06	15.77	． 06	－． 01	28	15.71	． 05	－． 03	16.25	． 09	＋． 01
S31	16.11	． 09	0	16.21	． 08	－． 03	43	15.82	． 05	＋． 01	16.02	． 07	＋． 02
S32	16.55	． 08	＋． 04	17.27	． 12	＋． 05	52	15.81	． 05	＋． 01	16.04	． 08	0
S33	16.84	． 09	0	17.58	． 14	＋． 01	67	15.93	． 04	0	16.10	． 08	0
S34	17.07	． 15	－． 08	17.79	． 15	－． 04	71	15.50	． 08	＋． 01	16.12	． 09	＋． 04
S35	16.78	． 08	＋． 02	17.52	． 12	＋． 06							
S38	16.97	． 10	－． 05	17.67	． 14	＋． 02	IV－ 2	15.79	． 08	＋． 05	15.97	． 12	＋． 08
							31	14.85	． 06	－． 01	15.72	． 08	＋． 05
I－ 1	15.90	． 10	＋． 07	15.97	． 11	＋． 11	44	15.79	． 05	0	16.03	． 08	＋． 01
4	15.84	． 06	＋． 03	16.01	． 09	＋． 07	45	15.66	． 05	－． 02	16.23	． 08	＋． 04
7	15.63	． 09	＋． 02	16.12	． 10	＋． 08	46	15.53	． 06	－． 01	16.29	． 09	＋． 07
9	15.88	． 07	＋． 05	15.99	． 09	＋． 10	63	16.02	． 04	＋． 04	16.14	． 07	0
11	15.84	． 08	＋． 05	15.96	． 10	＋． 10	66	15.84	． 14	＋． 11	16.00	． 13	＋． 10
14	15.98	． 06	＋． 04	16.06	． 09	＋． 08	68	15.71	． 09	＋． 06	15.88	． 14	＋． 13

Figure 1．Colour equations between photographic and photoelectric measures of the standard stars（in the ranges $15.0<V<16.3,15.1<B 16.8$ ）where ΔV and ΔB ，the differences（photoelectric－photographic） for the Bologna－Loiano plates（a），the Bologna－Asiago plates（b）and the Mount Wilson plates（c）are plotted against colour．Panel（d）shows the differences between Mount Wilson and Bologna photographic values of non－variable stars with $r>120 \mathrm{arcsec}$ and $15.0<V<16.3$ plotted against colour．Solid lines indicate the effects of colour equations for the Mount Wilson System by Dickens（1970）．No corrections have been applied to the photographic measures（see text）．
the magnitudes obtained for the photographic secondary standards in the magnitude range of the RR Lyraes（ $15.0<V<16.3$ ）and essentially unaffected by background（ $r>120 \mathrm{arcsec}$ ） does show colour effects，as illustrated in Fig．1（d）（left and right panels）．Since there is adequate spatial coverage by the stars in these diagrams（see later discussion）this implies that at least one set of observations are influenced by a colour equation．The colour equation for the later Mount Wilson system（using different filters of the same specification） would give rise to the effect shown by solid lines in Fig．1（d）and agree quite well with the data．Although these effects are understandable，the differential effects are small over the colour range of the RR Lyraes and since they cannot be considered well established in each individual data set，no colour equations have been finally applied to the measures．We shall further discuss relative colour and magnitude effects between the two series in Section 2．5．

The results of the Bologna measurements of V and B magnitudes for 56 variables（identi－ fied by the numbers given in Sawyer Hogg＇s Catalogue 1973；hereafter SH）are listed in Table $4 \mathrm{a}, \mathrm{b}$ ．The standard deviation of a single measurement，estimated from the magnitude residuals of the photoelectric standard stars，is of the order of ± 0.05 in V and ± 0.08 in B ．In some cases，however，the measures of the variables are affected by problems of crowding and／or background which causes larger then normal scatter in the light curves and makes precise period determinations more difficult．A few variables，for which this problem was particularly serious，have been excluded from the present analysis．

2.2 PERIODS AND LiGHT CURVES

The periods adopted for the 56 variables in the Bologna study were obtained both from analysing our observations alone with a period finding program based on Stellingwerf's (1978) method, and with hand computations based on the phase shifts between the various

Table 5. M15 RR Lyrae mean magnitudes and colours from Bologna observations.

Var.	Period Day	$\begin{aligned} & \text { Epoch } \\ & 2444156+ \end{aligned}$	<v>		$\langle\mathrm{B}\rangle-\langle\mathrm{V}\rangle$	<B-V>	$\stackrel{*}{ }\rangle_{c}$	$[\langle B\rangle-\langle V\rangle]_{C}$	$\langle B-V\rangle_{C}$
2	0.684349	. 303	15.650	16.071	0.421	0.430	15.650	0.426	0.435
3	0.3887407	. 310	15.858	16.186	0.328	0.337	15.858	0.328	0.337
4	0.313570	. 187	15.888	16.161	0.273	0.282	15.888	0.273	0.282
5	0.3842142	. 325	15.810	16.127	0.317	0.321	15.810	0.317	0.321
6	0.6659671	. 313	15.640	15.976	0.336	0.360	15.765	0.390	0.415
7	0.367577	. 194	15.629	15.894	0.265	-	15.869	0.300	-
8	0.6462446	. 620	15.770	16.140	0.370	0.400	15.804	0.399	0.430
9	0.7152819	. 255	15.704	16.065	0.361	0.372	15.724	0.384	0.392
10	0.3863931	. 169	15.853	16.180	0.327	0.330	15.883	0.346	0.348
11	0.343215	. 466	15.860	16.140	0.280	0.292	15.860	0.284	0.300
12	0.5928520	. 522	15.820	16.202	0.382	0.401	15.820	0.387	0.406
13	0.574923	. 285	15.822	16.188	0.366	-	15.837	0.386	-
14	0.3820024	. 392	15.889	16.236	0.347	0.353	15.889	0.347	0.353
15	0.583509	. 349	15.871	16.254	0.383	0.402	15.871	0.388	0.407
16	0.399218	. 478	15.772	16.107	0.335	0.341	15.772	0.343	0.353
17	0.4288924	. 407	15.837	16.192	0.355	0.357	15.857	0.370	0.374
18	0.3677379	. 323	15.816	16.110	0.294	0.298	15.843	0.312	0.316
19	0.5723030	. 428	15.828	16.150	0.322	0.360	15.828	0.327	0.365
20	0.6969598	. 296	15.681	16.085	0.404	0.420	15.801	0.457	0.475
22	0.7201510	. 503	misses	maximum	-	-	-		
23	0.6326959	. 183	15.798	16.192	0.394	0.406	15.798	0.399	0.411
24	0.3696955	. 323	15.793	16.107	0.314	0.316	15.853	0.338	0.338
25	0.6653286	. 210	15.826	16.245	0.419	0.432	15.826	0.424	0.437
26	0.402277	. 405	15.881	16.236	0.355	0.358	15.881	0.355	0.358
28	0.6706464	. 527	15.824	16.240	0.416	0.427	15.824	0.421	0.432
29	0.5749761	. 065	15.905	16.264	0.359	0.388	15.905	0.364	0.393
30	0.4059796	. 400	15.792	16.089	0.297	0.298	15.792	0.305	0.310
31	0.4081781	. 128	15.890	16.255	0.365	0.367	15.890	0.365	0.367
32	0.6054150	. 624	15.652	15.955	0.303	0.326	15.699	0.336	0.361
35	0.3839986	. 430	15.895	16.239	0.344	0.351	15.895	0.351	0.363
36	0.6241424	. 337	15.700	16.070	0.370	0.386	15.810	0.422	0.441
38	0.3752769	. 219	15.830	16.157	0.327	0.340	15.840	0.340	0.357
39	0.3895696	. 335	15.811	16.130	0.319	0.324	15.839	0.338	0.342
40	0.3773302	. 417	15.845	16.164	0.319	0.325	15.845	0.322	0.332
41	0.3917493	. 160	15.608	15.950	0.342	0.347	15.768	0.374	0.377
42	0.3601745	. 408	15.899	16.204	0.305	0.316	15.899	0.305	0.316
43	0.3960120	. 353	15.846	16.160	0.314	0.312	15.846	0.314	0.312
44	0.595628	. 210	15.634	15.960	0.326	0.334	15.734	0.374	0.384
48	0.3649762	. 419	15.794	16.050	0.256	0.263	15.794	0.265	0.275
49	0.6552054	. 243	15.110	15.363	0.253	-	-	-	-
50	0.2980583	. 265	15.913	16.187	0.274	0.281	15.913	0.274	0.284
51	0.3969565	. 119	15.730	16.040	0.310	0.314	15.845	0.340	0.339
52	0.5756132	. 005	15.940	16.320	0.380	-	15.940	0.385	-
53	0.4141270	. 487	15.791	16.112	0.321	0.327	15.801	0.335	0.344
54	0.3995683	. 342	15.694	16.005	0.311	0.314	15.824	0.341	0.339
55	0.748596	. 530	15.620	-	-	-	(15.790)	-	-
57	0.349264	. 199	15.616	15.930	0.314	0.318	(15.716)	(0.342)	(0.342)
65	0.718196	. 022	15.718	16.114	0.396	0.401	15.778	0.434	0.441
66	0.3793488	. 322	15.829	16.143	0.314	0.318	15.853	0.331	0.335
67	0.404613	. 153	15.787	16.086	0.299	0.303	15.937	0.331	0.331
74	0.296012	. 377	15.831	16.099	0.268	0.275	15.941	0.298	0.300
96	0.3963520	. 292	15.907	16.258	0.351	0.360	15.907	0.351	0.360
97	0.696333	. 124	15.714	16.090	0.376	0.389	15.824	0.428	0.444
101	0.4003052	. 097	15.836	16.181	0.345	0.356	15.836	0.345	0.356
102	0.759477	. 713	15.690	16.093	0.403	0.406	15.830	0.459	0.463
103	0.3682424	. 284	15.867	16.198	0.331	0.341	15.867	0.331	0.341

epochs of observation using periods published in SH. We adopted periods for the Bologna observations which are the same as SH for 34 variables and differ for 22 variables. Our finally adopted periods and epochs for Bologna observations are given in Table 5. Light curves for the variables are presented in Fig. 2.

In our re-reduction of SKS observations we used the same periods as published by SKS with the exceptions of V31, V50, V54, V61, V67 and V102 where the use of the period given by Cox et al. (1983) or Bologna slightly improved the light curve. SKS determined periods to satisfy their data after plotting preliminary periods from SH. We note that SKS

(a)

Figure 2. Light curves in V for 56 RR Lyraes measured on Loiano and Asiago plates (Bologna data). The variables are arranged in order of increasing period.

Figure 2 - continued
variables III-5 $=$ V67, IV-41 $=$ V74, II-26 $=$ V97 and I-24 $=$ V102. Adopted periods and epochs for SKS observations are given in Table 6.

We note that there may be real period changes for some of the variables. Smith \& Sandage (1981) studied period changes for RR Lyraes in M15 and found abrupt or erratic period changes as well as linear ones from observations between 1896 and 1978. Most of this period behaviour has mean rates of change which are larger than can readily be explained by stellar evolution and the cause is not known. Period determinations for M15 variables at various epochs have been published by Wesselink (1974), Smith \& Wesselink (1977), Filippenko \& Simon (1981) and some double-mode pulsation periods discovered by Cox

Figure 2 －continued
et al．（1983）．The periods we adopt are used to derive mean light curve parameters from Bologna and Mount Wilson observations separately．These derivations will not be affected by small changes in adopted period，such as the difference between the period adopted in Tables 5 and 6 where for many of the variables the periods differ from the fifth decimal place．

It is not possible to combine the two series into one light curve for two reasons：the period does not fit adequately over the time interval involved of almost 20 years，and different photographic effects may be present in the two series of plates．Comments on individual variable stars are given in Table 7.

Figure 2 - continued

2.3 MEANMAGNITUDES $\langle V\rangle,\langle B\rangle$ AND COLOURS $\langle B\rangle-\langle V\rangle,\langle B-V\rangle$

The observations in B and V were fitted by smooth light curves which were then converted to intensity units and averaged over a cycle to find the mean intensity. This procedure was carried out using a computer program on the STARLINK VAX 11/780 at RGO which obtains a light curve by spline fitting to the data. The fit can be varied by adjusting the weighting given to the points; for instance one can increase the weight of the brightest observations of an RRab-type variable to define more accurately the rapid change in brightness on the rising branch. The light curve fits were checked visually and the best eye fit adopted for each variable. These mean intensities were then converted back to magnitude

Table 6. M15 RR Lyrae mean magnitudes and colours re-reduced from SKS Mount Wilson observations.

Var.	Period Day	$\begin{aligned} & \text { Epoch } \\ & 2436488+ \end{aligned}$	<V>		-<V >	<B-V >	$\langle\mathrm{V}\rangle_{\mathrm{c}}$	[$\langle\mathrm{B}\rangle-\langle\mathrm{V}\rangle$	$\langle\mathrm{B}-\mathrm{V}\rangle_{\mathrm{c}}$
2	0.684270	. 148	15.691	16.139	0.448	0.458	15.691	0.448	0.453
3	0.3887407	. 319	15.796	16.135	0.339	0.350	15.796	0.339	0.350
4	0.313575	. 027	15.876	16.136	0.260	0.269	15.876	0.260	0.269
5	0.3842086	. 165	15.798	16.116	0.318	0.324	15.798	0.318	0.324
6	0.665971	. 384	15.682	16.077	0.395	0.417	15.797	0.391	0.407
7	0.3675556	. 324	15.714	16.048	0.334	0.344	15.874	0.319	0.334
8	0.646251	. 270	15.755	16.170	0.415	0.438	15.783	0.415	0.428
9	0.7153076	. 392	15.684	16.088	0.404	0.421	15.696	0.404	0.411
10	0.3864102	. 231	15.824	16.185	0.361	0.367	15.854	0.347	0.357
11	0.3432499	. 250	15.840	16.130	0.290	0.304	15.840	0.288	0.304
12	0.5929151	. 437	15.830	16.221	0.391	0.416	15.830	0.391	0.411
13	0.574961	. 438	15.836	16.230	0.394	0.420	15.844	0.394	0.410
14	0.381999	. 083	15.908	16.240	0.332	0.341	15.908	0.332	0.341
15	0.5835668	. 364	15.908	16.259	0.351	0.375	15.908	0.351	0.375
16	0.399234	. 171	15.772	16.150	0.378	0.385	15.777	0.374	0.380
17	0.4288717	. 214	15.796	16.184	0.388	0.392	15.816	0.378	0.382
18	0.3677382	. 183	15.812	16.148	0.336	0.347	15.842	0.322	0.337
19	0.572293	. 059	15.794	16.102	0.308	0.352	15.794	0.308	0.352
20	0.696932	. 402	15.706	16.144	0.438	0.458	15.806	0.435	0.448
21	0.648800	. 392	15.540	15.974	0.434	0.456	(15.700)	(0.428)	(0.446)
22	0.720222	. 094	15.696	16.089	0.393	0.422	15.696	0.393	0.422
23	0.6327203	. 544	15.809	16.226	0.417	0.435	15.809	0.417	0.435
24	0.369697	. 189	15.794	16.136	0.342	0.350	15.849	0.327	0.340
25	0.665329	. 298	15.827	16.265	0.438	0.450	15.827	0.438	0.450
26	0.4022426	. 290	15.876	16.255	0.379	0.384	15.876	0.379	0.384
29	0.5749961	. 189	15.890	16.283	0.393	0.410	15.890	0.393	0.410
30	0.405976	. 261	15.802	16.167	0.365	0.367	15.807	0.361	0.362
31	0.4081781*	. 058	15.837	16.215	0.378	0.381	15.837	0.378	0.381
32	0.605400	. 532	15.688	16.046	0.358	0.386	15.728	0.358	0.376
35	0.383997	. 309	15.870	16.216	0.346	0.354	15.875	0.343	0.349
36	0.6241230	. 113	15.722	16.105	0.383	0.406	15.812	0.381	0.396
38	0.375274	. 246	15.820	16.144	0.324	0.332	15.837	0.316	0.322
39	0.389568	. 031	15.826	16.207	0.381	0.385	15.856	0.367	0.375
40	0.3773212	. 213	15.850	16.178	0.328	0.336	15.850	0.327	0.336
41	0.391743	. 097	15.660	16.032	0.372	0.378	15.780	0.357	0.368
42	0.3601746	. 235	15.902	16.219	0.317	0.327	15.902	0.317	0.327
43	0.396009	. 147	15.881	16.205	0.324	0.332	15.881	0.324	0.332
44	0.5956433	. 233	15.693	16.080	0.387	0.406	15.773	0.386	0.396
46	0.691484	. 535	15.590	15.988	0.398	0.424	(15.760)	(0.391)	(0.414)
48	0.364972	. 294	15.802	16.128	0.326	0.338	15.810	0.321	0.333
49	0.655202	. 587	15.207	15.461	0.254	0.270	-	-	-
50	0.2980583*	. 103	15.922	16.188	0.266	0.275	15.922	0.266	0.275
51	0.396987	. 062	15.763	16.125	0.362	0.368	15.863	0.347	0.358
52	0.575651	. 054	15.910	16.312	0.402	0.433	15.910	0.402	0.433
53	0.4141614	. 066	15.770	16.126	0.356	0.365	15.788	0.348	0.355
54	0.3995683 *	. 186	15.721	16.077	0.356	0.360	15.826	0.341	0.350
55	0.748590	. 343	15.700	16.174	0.474	0.483	(15.850)	(0.468)	(0.473)
56	0.570353	. 128	15.510	15.870	0.360	-	(15.740)	(0.352)	-
57	0.3496144	. 302	15.708	16.062	0.354	0.359	(15.798)	(0.339)	(0.349)
58	0.407669	. 077	15.654	16.029	0.375	0.379	(15.894)	(0.360)	(0.369)
61	0.400065*	. 200	15.683	16.065	0.382	0.392	(15.823)	(0.367)	(0.382)
62	0.377318	. 029	15.631	16.007	0.376	0.384	(15.761)	(0.361)	(0.374)
64	0.364191	. 161	15.601	15.933	0.332	0.345	(15.861)	(0.317)	(0.335)
65	0.718199	. 579	15.727	16.170	0.443	0.450	15.777	0.443	0.440
66	0.3793547	. 226	15.845	16.195	0.350	0.355	15.873	0.337	0.345
67	0.404613*	. 450	15.809	16.194	0.385	0.388	15.929	0.370	0.378
74	0.2960076	. 211	15.858	16.127	0.269	0.279	15.948	0.254	0.269
97	0.696342	. 132	15.710	16.158	0.448	0.460	15.800	0.446	0.450
102	0.759477*	. 714	15.698	16.172	0.474	0.477	15.818	0.469	0.467

[^1]Table 7. Comments on M15 variables.

```
V Comment
Irregular light curve
Close companion
Double-mode
Irregular light curve
Irregular light curve
Double-mode
Double-mode
Double-mode
Faint companion
R = 51", bad scatter in SKS observations, not used
Double-mode
Double-mode
Irregular light curve
Measures of unresolved double star
Double-mode
Double-mode
Double-mode
Bologna B bad scatter, not used
Faint companion. Period uncertain
Double-mode
Double-mode. Close companion
Close companions
Irregular light curve
Double-mode = SKS III-5
= SKS IV-4l
Double mode
= SKS II-26
= SKS I-24. New period determined.
```

means, $\langle V\rangle$ and $\langle B\rangle$. The $\langle B\rangle-\langle V\rangle$ colour is the difference between $\langle B\rangle$ and $\langle V\rangle$. In addition, for each variable a colour curve was defined by the difference between the smoothed B and V light curves and a mean $\langle B-V\rangle$ colour derived from the mean intensity of the colour curve. The amplitudes in B and V were also obtained from the smooth light curves. The measurements of SKS were re-reduced in the same way. We used the observations from SKS Tables 1 and 2 which give individual B and V magnitudes, with Julian dates, from their Mount Wilson plates. The values obtained are given in Table 5 for our Bologna data and Table 6 for our treatment of the SKS Mount Wilson observations.

2.4 RADIAL CORRECTIONS AND FINAL LIGHT CURVE PARAMETERS

The positions of variables measured are shown in Fig. 3; the x, y coordinates are given in SH . Although no measurements were made in the central region of the cluster, plots of $\langle V\rangle$ or $\langle B\rangle$ against radial distance from the cluster centre still show a systematic increase in brightness at smaller radial distances. This is attributed to contamination from cluster background light. The effect is qualitatively similar in the data from the Mount Wilson, Loiano and Asiago plates. SKS made corrections for contamination in $\langle V\rangle$ and in $\langle B\rangle-\langle V\rangle$ depending on distance from the cluster centre, with all the variables grouped together. In the present work this method of correction has been improved by grouping the variable stars by RR Lyrae type $a b$ or c. This is felt to be a more correct procedure because of the intrinsic differences between the mean magnitudes and colours of the different types, of about 0.06 mag . Furthermore the background effect depends on magnitude and the magnitude range of the two types is different.

Our $\langle V\rangle$ corrections are shown in Fig. 4(a) for Bologna data and in Fig. 4(e) for Mount Wilson data separately. The same zero points at large cluster distances were taken for both series, $\langle V\rangle=15.79$ for $\mathrm{RR} a b$ and $\langle V\rangle=15.85$ for $\mathrm{RR} c$. The mean correction lines were drawn taking into account the non-uniform distribution of number of variables with period,

Figure 3．X, Y plot showing the positions of the RR Lyrae variables measured．The coordinates are taken from Sawyer－Hogg（1973）．As in all relevant subsequent figures，the c－type variables are plotted as open circles or open circles with bar（multimode behaviour），ab－types as filled circles．The large circles enclose a region（ $2<r<5 \mathrm{arcmin}$ ）similar to that measured by Buonanno et al．for the colour－magnitude diagram （see 3．1．1）．Variables east of the line XX^{\prime} tend to be fainter than average，and have shorter periods．This is thought to be due to chance．
and therefore with magnitude，and the fact that there is a positional effect east to west of the cluster with a fainter group on the east of the cluster having shorter periods．（These effects can be seen in the period－luminosity plot of Fig．18．）The two series of data were corrected separately，the results of which are given in Tables 5 and 6．Fig． 5 shows that there is no resultant radial effect between corrected $\langle V\rangle$ magnitudes of each data set．Final $\langle V\rangle$ magnitudes were obtained by combining the corrected magnitudes with weighting factors assigned according to the quality of the light curves．The latter was assessed by the distribu－ tion in phase of the points and their scatter．In general the SKS light curves show similar scatter in V and B which is similar to the Bologna V light curves；the Bologna B light curves show increased scatter．The resulting mean $\langle V\rangle$ magnitudes are given in Table 8.

In order to correct their measured $\langle B\rangle-\langle V\rangle$ colours for contamination depending on distance from the cluster centre，SKS used a plot of colour against radius．However，the distribution of stars with colour depends on their distribution with period．The $a b$－types and c－types occupy different colour ranges；also they are distributed differently with radius， there being more $a b$－types at smaller radii．Therefore for our colour corrections as a function of radius we again treat $a b$－and c－types separately and use instead of $\langle B\rangle-\langle V\rangle$ itself，a colour residual $\Delta(B-V)$ derived from plots of \log period against colour．The two colour indices $\langle B\rangle-\langle V\rangle$ and $\langle B-V\rangle$ have been corrected separately using corrections determined

Figure 4．Adopted radial correction curves for Bologna data（a－d）and Mount Wilson data（e－h）in $\langle V\rangle$ ， $\langle B\rangle,\langle B\rangle-\langle V\rangle$ and $\langle B-V\rangle . \Delta[\langle B\rangle-\langle V\rangle]$ and $\Delta[\langle B-V\rangle]$ are colour residuals measured from their respective mean period－colour relations（see Fig． 6 and text）；$a b$－and c－type variables are treated separately through－ out．Corrections read from the mean lines shown are applied to the observed values of $\langle V\rangle,\langle B\rangle-\langle V\rangle$ and $\langle B-V\rangle$ to produce the corrected values，$\langle V\rangle_{\mathrm{c}},[\langle B\rangle-\langle V\rangle]_{\mathrm{c}}$ and $\langle B-V\rangle_{\mathrm{c}}$ given in Tables 5 （B）and 6 （SKS）．
from $\Delta(B-V)$ as a function of radius．$\Delta(B-V)$ is measured from the mean relationships drawn in Fig． 6 of $\log P^{\prime}$ against corrected $\langle B\rangle-\langle V\rangle$ or $\langle B-V\rangle$ ．We use $\log P^{\prime}$ as defined by van Albada \＆Baker（1971）
$\log P^{\prime}=\log P+0.336\left(\langle V\rangle_{\text {corr．}}-\langle\bar{V}\rangle\right)$
with $\langle\bar{V}\rangle=15.833$ ，the average value of $\langle V\rangle_{\text {corr }}$ for all variables（ $a b$－and c－types）．The use of $\log P^{\prime}$ takes account of magnitude differences between the variables and reduces the scatter in the diagrams．The mean relationships were defined by lines of fixed（theoretical） slope $=1.35$ fitted to observations at larger radial distances，$r>160 \mathrm{arcsec}$ ．The slope of 1.35 was derived as follows．From the pulsation equation（van Albada \＆Baker 1971）
$\log P=-1.772-0.68 \log \left(M / M_{\odot}\right)+0.84 \log \left(L / L_{\odot}\right)+3.48 \log \left(6500 / T_{e}\right)$
Since $\log L \sim-0.4 V$ and $\log T_{e}=3.929-0.388(B-V)$ for the RR Lyrae colour range and

Figure 4 －continued
$[\mathrm{Fe} / \mathrm{H}]=-2.0$（using the colour－temperature relation in BDE from Bell models 1977， unpublished）we obtain
$\log P+0.336 V=1.35(B-V)-0.68 \log M / M_{\odot}+$ constant.
The lines were drawn with very slight bias to minimize as well as possible any systematic difference between Mount Wilson and Bologna．A residual difference of 0.005 mag remains， Mount Wilson being the redder．The colour residuals $\Delta(B-V)$ are plotted against distance

Figure 5．A comparison of the corrected $\langle V\rangle$ magnitudes between the two data sets，as a function of radius．$\Delta\langle V\rangle$ is defined as $\langle V\rangle_{\mathrm{c}}$ Mount Wilson $-\langle V\rangle_{\mathrm{c}}$ Bologna and shows no residual variation with radius．

Table 8. M15 RR Lyrae light curve parameters resulting from the combined observations from Bologna and SKS, corrected for background contamination depending on distance from cluster centre.

Var.	Type	$\begin{gathered} \text { P } \\ \text { day } \end{gathered}$	$\log P$	$\log \mathrm{P}^{\prime}$	<V>	-<V>	<B-V>	A_{B}	A_{v}	$\begin{gathered} \mathbf{r} \\ \text { sec } \end{gathered}$	pg.	$(\mathrm{B}-\mathrm{V}) \mathrm{eq}$	$\log \mathrm{Te} \mathrm{eq}$
2	ab	. 6843	-. 165	-. 219	15.671	. 440	. 447	0.76	0.55	172	1	. 445	3.812
3	c	. 3887	-. 410	-. 412	15.827	. 335	. 346	0.61	0.45	252	1	. 342	3.851
4	c	. 3136	-. 504	-. 487	15.882	. 266	. 275	0.76	0.62	199	1	. 272	3.875
5	c	. 3842	-. 415	-. 425	15.804	. 318	. 323	0.60	0.50	235	1	. 321	3.858
6	ab	. 6660	-. 177	-. 194	15.781	. 391	. 410	1.12	0.77	80	2	. 404	3.828
7	c	. 3676	-. 435	-. 422	15.872	. 312	. 334	0.69	0.47	74	2	. 327	3.856
8	$a b$. 6462	-. 190	-. 203	15.793	. 409	. 429	1.09	0.78	127	1	. 422	3.821
9	ab	. 7153	-. 146	-. 187	15.710	. 397	. 405	0.90	0.66	140	1	. 402	3.829
10	c	. 3864	-. 413	-. 401	15.868	. 347	. 353	0.58	0.45	126	1	. 351	3.848
11	c	. 3432	-. 464	-. 459	15.849	. 286	. 302	0.72	0.58	174	1	. 297	3.867
12	$a b$. 5929	-. 227	-. 230	15.825	. 389	. 409	1.08	0.75	171	1	. 402	3.829
13	$a b$. 5749	-. 240	-. 238	15.841	. 391	. 410	1.20	0.89	144	1	. 404	3.828
14	c	. 3820	-. 418	-. 396	15.898	. 338	. 346	0.63	0.56	270	1	. 343	3.850
15	$a b$. 5835	-. 234	-. 215	15.890	. 366	. 388	1.05	0.79	315	1	. 381	3.837
16	c	. 3992	-. 399	-. 418	15.775	. 361	. 368	0.56	0.38	165	2	. 366	3.842
17	c	. 4289	-. 368	-. 367	15.836	. 375	. 379	0.43	0.33	139	1	. 378	3.838
18	c	. 3677	-. 434	-. 431	15.842	. 318	. 330	0.70	0.49	127	1	. 326	3.856
19	ab	. 5723	-. 242	-. 250	15.811	. 316	. 358	1.54	1.09	195	1	. 344	3.850
20	$a b$. 6969	-. 157	-. 167	15.804	. 444	. 460	0.95	0.72	82	2	. 455	3.809
21	ab	. 6488	-. 188	-. 233	15.700	. 428	. 446	1.04	0.75	67	3	(.440)	(3.814)
22	ab	. 7202	-. 143	-. 189	15.696	. 393	. 422	1.19	0.86	334	1	. 412	3.825
23	ab	. 6327	-. 199	-. 209	15.804	. 411	. 427	0.98	0.65	320	1	. 422	3.821
24	c	. 3697	-. 432	-. 426	15.851	. 331	. 339	0.62	0.48	107	2	. 336	3.853
25	ab	. 6653	-. 177	-. 179	15.827	. 433	. 446	1.00	0.67	303	1	. 442	3.814
26	c	. 4023	-. 395	-. 380	15.878	. 367	. 371	0.48	0.39	333	1	. 370	3.841
28	ab	. 6706	-. 174	-. 177	15.824	. 421	. 432	0.93	0.75	617	1	. 428	3.819
29	ab	. 5750	-. 240	-. 219	15.896	. 383	. 404	1.08	0.79	268	1	. 397	3.831
30	c	. 4060	-. 391	-. 403	15.800	. 333	. 345	0.40	0.35	165	1	. 341	3.851
31	c	. 4082	-. 389	-. 379	15.863	. 372	. 374	0.46	0.33	270	1	. 373	3.840
32	$a b$. 6054	-. 218	-. 257	15.716	. 350	. 371	1.22	0.86	119	2	. 364	3.843
35	c	. 3840	-. 416	-. 398	15.885	. 347	. 356	0.60	0.45	167	1	. 353	3.847
36	ab	. 6241	-. 205	-. 212	15.811	. 395	. 411	1.02	0.73	86	2	. 406	3.828
38	c	. 3753	-. 426	-. 424	15.838	. 328	. 339	0.65	0.49	146	1	. 335	3.853
39	c	. 3896	-. 409	-. 405	15.847	. 353	. 359	0.52	0.37	126	1	. 357	3.845
40	c	. 3773	-. 423	-. 418	15.848	. 325	. 334	0.67	0.53	176	1	. 331	3.855
41	c	. 3917	-. 407	-. 427	15.774	. 364	. 372	0.55	0.44	84	2	. 369	3.841
42	c	. 3602	-. 443	-. 421	15.901	. 311	. 322	0.72	0.55	230	1	. 318	3.859
43	c	. 3960	-. 402	-. 392	15.864	. 319	. 322	0.64	0.50	430	1	. 321	3.858
44	ab	. 5956	-. 225	-. 252	15.754	. 381	. 392	0.98	0.63	91	2	. 388	3.834
46	$a b$. 6915	-. 160	-. 185	15.760	. 391	. 414	1.20	0.81	65	3	(.406)	(3.828)
48	c	. 3650	-. 438	-. 448	15.802	. 302	. 314	0.72	0.52	162	1	. 310	3.862
50	c	. 2981	-. 526	-. 497	15.918	. 270	. 279	0.67	0.51	193	1	. 276	3.874
51	c	. 3970	-. 401	-. 394	15.854	. 344	. 352	0.52	0.39	92	2	. 349	3.848
52	ab	. 5756	-. 240	-. 210	15.922	. 396	. 433	1.25	0.89	194	1	. 421	3.822
53	c	. 4141	-. 383	-. 396	15.795	. 342	. 350	0.52	0.37	145	1	. 347	3.849
54	c	. 3996	-. 398	-. 401	15.825	. 341	. 346	0.54	0.39	89	2	. 344	3.850
55	$a b$. 7486	-. 126	-. 127	15.830	. 468	. 473	0.62	0.48	68	3	(.471)	(3.803)
56	ab	. 5704	-. 244	-. 275	15.740	. 352	-	0.90	0.75	57	3	(.352)	(3.847)
57	c	. 3493	-. 457	-. 482	15.757	. 340	. 346	0.57	0.46	94	3	(.344)	(3.850)
58	c	. 4077	-. 390	-. 369	15.894	. 360	. 369	0.60	0.40	56	3	(.366)	(3.842)
61	c	. 4001	-. 398	-. 401	15.823	. 367	. 382	0.65	0.53	78	3	(.377)	(3.838)
62	c	. 3773	-. 423	-. 448	15.761	. 361	. 374	0.66	0.49	82	3	(.370)	(3.841)
64	c	. 3642	-. 439	-. 429	15.861	. 317	. 335	0.74	0.46	50	3	(.329)	(3.855)
65	$a b$. 7182	-. 144	-. 163	15.777	. 440	. 440	0.60	0.45	109	2	. 440	3.814
66	c	. 3794	-. 421	-. 411	15.863	. 335	. 341	0.56	0.41	132	1	. 339	3.852
67	c	. 4046	-. 393	-. 359	15.933	. 354	. 359	0.40	0.32	86	2	. 357	3.845
74	c	. 2960	-. 529	-. 491	15.945	. 269	. 280	0.74	0.62	93	2	. 276	3.874
96	c	. 3964	-. 402	-. 377	15.907	. 351	. 360	0.62	0.38	271	1	. 357	3.845
97	ab	. 6963	-. 157	-. 164	15.812	. 440	. 448	0.80	0.57	85	2	. 445	3.812
101	c	. 4003	-. 398	-. 397	15.836	. 345	. 356	0.70	0.50	550	1	. 352	3.847
102	ab	. 7595	-. 119	-. 122	15.824	. 465	. 466	0.40	0.26	76	2	. 466	3.805
103	c	. 3682	-. 434	-. 422	15.867	. 331	. 341	0.73	0.51	371		. 338	3.852

Figure 6．Period－colour relations for the uncorrected colours $\langle B\rangle-\langle V\rangle$ and $\langle B-V\rangle$ for Bologna and Mount Wilson data separately． $\log P^{\prime}=\log P+0.336(\langle V\rangle-\langle\bar{V})$ is used to allow for the small luminosity differences amongst the variables．The fiducial lines are based only on variables for which there is essentially no radial correction to V and B ，i．e．those with $r>160$ arcsec represented by filled circles，and are used to derive the colour residuals plotted in Fig． 4 （c），（d），（g）and（h）．Larger symbols are of higher weight．
from the cluster centre in Figs 4（c），（d），（g）and（h）and smooth correction lines drawn． These adopted colour corrections with radius were applied to the Mount Wilson and Bologna $\langle B\rangle-\langle V\rangle$ and $\langle B-V\rangle$ colour observations，as appropriate．These corrected colours are given in Tables 5 and 6 ．The final combined $\langle B\rangle-\langle V\rangle$ and $\langle B-V\rangle$ colour data were obtained from the Mount Wilson and Bologna corrected colours，by weighting the data according to the quality of the light and colour curves，and the resulting mean values are given in Table 8．The final $\langle B\rangle$ magnitudes given in Table 8 are obtained from $\langle B\rangle=\langle V\rangle+$ $(\langle B\rangle-\langle V\rangle)$ ．Figs 4（b）and（f）show that a satisfactory fit is obtained to the uncorrected B observations with a smooth correction line derived from the combined radial corrections used for $\langle V\rangle$ and for $\langle B\rangle-\langle V\rangle$ ．

2．5 ANALYSIS OF PHOTOMETRICERRORS IN THE FINAL COMBINED DATA

We have compared photographic measures from each series of observations with photoelectric measures to test for any colour effect between the systems．The comparison，plotted in Figs 1（a），（b）and（c），show that in the range of RR Lyrae colour variation，any effect is small and not well enough determined to enable corrections to be applied（there are too few blue photoelectric standards）．However，Fig．1（d）suggests there may be a systematic colour difference in the colour range of the RR Lyraes of about 0.02 mag，Mount Wilson being the redder．Such a difference can indeed be seen in Fig． 7 which shows the differences between cor－

Figure 7．A comparison of the residual corrected colours，$\Delta\left[(\langle B\rangle-\langle V\rangle)_{\mathrm{c}}\right]_{\mathrm{SKS}}-\mathrm{B}$ and $\Delta\left[\langle B-V\rangle_{\mathrm{c}}\right]_{\mathrm{SKS}}-\mathrm{B}$ between Mount Wilson（SKS）and Bologna（b）data as a function of radius．There is a small systematic difference of 0.01 to 0.02 mag between the two sets，whose possible origin is discussed in the text and illustrated in subsequent figures．
rected Mount Wilson $\langle B\rangle-\langle V\rangle$ and $\langle B-V\rangle$ colours and corrected Bologna colours against cluster radius；on average Mount Wilson colours are about 0.02 mag redder．We have investigated whether these differences depend on position on the plate．Figs．8（a）and 8（b）show on average a difference across the cluster in the north－south direction $\sim 0.035 \mathrm{mag}$ ．This effect may also be present in the photographic photometry of non－variable blue horizontal branch stars，as shown in Fig．8（c）．A north－south difference of ~ 0.03 mag is not inconsistent with the residuals shown there．This positional effect could perhaps be caused by different photo－ graphic effects in the two plate series and related to distance from the photoelectric sequence which is offset north of the cluster．To see if there is any evidence for this we have examined the residuals in the individual data sets．Although now more marginal，we find that the effect appears partly in the Mount Wilson data and partly in the Bologna data in the opposite sense．In Fig． 9 we plot x, y positions of the colour residuals from the $\log P^{\prime}$ against $\langle B\rangle-\langle V\rangle$ relationship drawn in Figs．12（f），（g）（see next section）for the Mount Wilson and Bologna data separately．We see an average north－south effect across the plate of $\sim+0.01 \mathrm{mag}$ in the Mount Wilson data and $\sim-0.02 \mathrm{mag}$ in the Bologna data，resulting in a differential effect north－south，Mount Wilson－Bologna，of +0.03 mag．We have further investigated whether the effect may arise in $\langle V\rangle$ or in $\langle B\rangle$ ，and show the $\langle V\rangle$ differences on an x, y plot in Fig．10（a）and $\langle B\rangle$ differences in Fig．10（b）．These show an average difference in $\langle V\rangle$ north－south（Mount Wilson－Bologna）～-0.03 mag and no difference in $\langle B\rangle$ ．This effect in $\langle V\rangle$ is consistent with the observed effect in $\langle B\rangle-\langle V\rangle$ and could well be the cause of it．The observations are consistent with there being no effect in $\langle B\rangle$ although the errors are larger．This analysis has indicated that there are small differences，depending on position between corrected $\langle V\rangle$ and $\langle B\rangle-\langle V\rangle$ obtained separately from the Mount Wilson and Bologna data．The effects are probably in opposite senses and can plausibly，but not con－ clusively be understood in terms of small plate errors over the field．In the combined data， Table 8，the net systematic error should be less than in either individual series．This is con－

Figure 8．X, Y plots of the differences between corrected colours as defined in the caption to Fig． 7 for variable stars（ $8 \mathrm{a}, 8 \mathrm{~b}$ ）and for the non－variables in the same e range measured in the same programme（8c）．$\langle B-V\rangle$ is treated in the same way as $\langle B\rangle-\langle V\rangle$ ．There appears to be a systematic north－south effect 0.03 mag ，most noticeable for the variables but also present amongst the non－variables．
Figure 9．X, Y plots of the colour residuals $\Delta\left\{\{\langle B\rangle-\langle V\rangle)_{c}\right\} \log P^{\prime}$ obtained from the corrected period－colour relations for Bologna data（9a）and Mount Wilson data（9b）．The north－south effect shown in Fig． 8 appears to arise partly from Bologna data（ $\sim-0.02 \mathrm{mag}$ ）and partly from Mount Wilson data（ $\sim+0.01$ ）．
Figure 10．X, Y plots of the magnitude differences $\left\{\langle V\rangle_{c}\right\}_{S K S}-\left\{\langle V\rangle_{c}\right\}_{B}(10 \mathrm{a})$ and $\left\{\langle B\rangle_{\mathbf{c}}\right\}_{\mathrm{SKS}}-\left\{\langle B\rangle_{\mathrm{c}}\right\}_{\mathrm{B}}(10 \mathrm{~b})$ ．A north－south effect $\sim 0.03 \mathrm{mag}$ in $\langle V\rangle_{\mathrm{c}}$ can be seen，which is thought to be the cause of the north－south colour effect shown in Fig． 8.
Figure 11．X, Y plot of the colour residuals $\Delta\left\{(\langle B\rangle-\langle V\rangle)_{c c}\right\} \log P^{\prime}$ from the period－colour relation of Fig．12（h），using the final corrected and combined data from Table 8．No residual positional effects are now apparent．
firmed by Fig. 11, which is an x, y plot of the colour residuals from the $\log P^{\prime}$ against final, combined $\langle B\rangle-\langle V\rangle$ plot (Fig. 12h). In summary, there appear to be small systematic calibration differences in $\langle V\rangle$ possibly combined with a small colour equation in SKS (Figs. 1c and d) which together give rise to the described effects and which tend to cancel out in the combined data.

The radial corrections in the preceding section took into account a small magnitude effect among the variables relating to plate position, with variables on the east of the cluster appearing fainter. This effect appears to be due to chance rather than to differential absorption because the periods are also affected. (See Fig. 18a.)

In Table 8, we assign a photometric quality (pg.) depending on cluster radius and on proximity of companion stars: quality 1 if $r>120 \operatorname{arcsec}$, quality 2 if $70<r<120 \operatorname{arcsec}$, with these classifications downgraded if there is a close companion, and quality 3 if $r<70$ arcsec. In the figures, the data of quality 1 and 2 are plotted with large and small symbols respectively and data of quality 3 are not plotted.

2.6 THE PERIOD-COLOUR RELATION AT VARIOUS STAGES IN THE REDUCTIONS

The period-colour relation is a fundamental tool for studying the properties of RR Lyraes in a globular cluster. Since one of the major aims of this investigation is to derive the best

Figure 12. Period-colour relations at various stages in the reduction of the data. The variables lying east of the line XX^{\prime} in Fig. 3 are marked with ticks. In the top panels $\langle B\rangle-\langle V\rangle$ is plotted against $\log P$, and in the lower panels against $\log P^{\prime}$ to take account of the luminosity spread amongst the variables. The final radially corrected and combined data are plotted in panels (d) and (h). Note how the $a b / c$ colour overlap is reduced, and that the multimode variables (open circles with bar) occupy a quite narrow colour range near the $a b / c$ colour boundary. The (ticked) eastern variables also no longer appear anomalous (e.g. as in Figs. 12a, b). Representative error bars are indicated for higher weight observations, in Fig. 12(h).
possible relation it is of interest to see how it evolves through the various stages of reductions described earlier．Fig． 12 illustrates this development．The upper diagrams show plots of $\langle B\rangle-\langle V\rangle$ against $\log P$ and the lower ones use $\log P^{\prime}=\log P+0.336(\langle V\rangle-\langle\bar{V}\rangle)$ ．In all diagrams radial corrections to the colours have been applied．Fig．12（a）shows the original SKS published data．Two obvious errors for V12 and V13 have been corrected，and variables V57，V61，V62 and variables within a cluster radius of 70 arcsec omitted because of exces－ sive crowding．There is considerable scatter within both $a b$－and c－types，and considerable overlap in colour between them．The double－mode variables extend over a wide range in colour，an unexpected result in view of their extremely small range in period．In Fig．12（b）， we have taken the original measures published by SKS and completely re－reduced them，as discussed in the previous section．There is a significant change，with less scatter（particularly amongst the c－types），slightly less colour overlap and with the double－mode variables less spread out in colour．Fig．12（c）shows the Bologna results similar to Fig．12（b）except the c－types have a little more scatter．Fig．12（d）shows the combined，final data．The relation is now better defined than in the first published data of Fig．12（a）with just three or four $a b$－types standing off an otherwise tight correlation．A luminosity spread amongst the variables can be taken into account with the use of $\log P^{\prime}$ ，which is used for plotting the diagrams below．The effect referred to earlier（see Section 2．4）that there are more faint $a b$－types on the eastern side of the cluster can be seen in all the upper diagrams，those variables lying east of XX^{\prime} in Fig． 3 being marked with ticks．The use of $\log P^{\prime}$ removes the systematic bias they produce in the $\log P /\langle B\rangle-\langle V\rangle$ diagrams．The final combined data illus－ trated in Fig．12（h）show very well－defined correlations with rather small scatter，and not much overlap in colour．In fact the use of the different mean colour $\langle B-V\rangle$ reduces the overlap still further（Fig．13）the observed amount of 0.02 mag possibly arising from observational errors alone．

Figure 13．Period－colour relation using the colour index $\langle B-V\rangle$ ．Note how the overlap in colour is even further reduced from that in Fig．12（h），mainly because the $\langle B-V\rangle$ colours of the larger amplitude $a b$－variables are significantly redder than $\langle B\rangle-\langle V\rangle$ ．

3 Analysis and discussion

3．1 CORRELATIONS between light curve parameters

The parameters representing various properties of the light curves have been given in Table 8. In this section we shall confine ourselves to a presentation of the most interesting correla－ tions．Comparison with other clusters and theory will be discussed later．Since our main aim here is to illustrate the observed properties，we shall use those quantities most well－ determined from the observations，in particular the amplitude in blue light and the colour index $\langle B\rangle-\langle V\rangle$ determined by differencing the separate intensity means of the B and V light curves．Later we shall need to consider how best to convert these parameters to those needed for comparison with theory．

3．1．1．The colour－magnitude diagram

Fig． 14 shows the positions of the RR Lyraes in the colour－magnitude diagram，together with non－variable horizontal branch（HB）stars taken from Sandage $(1969,1970)$ or measured in the RR Lyrae programme to assist in the delineation of the gap boundaries．The variable stars are plotted using $\langle B\rangle-\langle V\rangle$ values from Table 8 ；the non－variable stars are plotted using either photoelectric measures by Sandage or photographic photometry from Sandage （1970），corrected for background contamination appropriate for RR Lyraes，and the values given in our Table 9．The bulk of the variables occupy a sloping region a little more than 0.1 mag deep and forming a continuous extension to the non－variable blue horizontal branch stars．There are a sprinkling of stars，mainly $a b$－type having $\langle V\rangle$ magnitudes a few hundredths brighter than average．These stars could well be in a slightly more advanced evolutionary state（to be discussed later）．There is complete segregation of variable and non－variable stars at the blue edge of the instability strip，which is well defined at $\langle B\rangle-\langle V\rangle=0.255$ ．There is also no overlap in colour at the red edge but the relative paucity of red horizontal branch stars and RR Lyraes and makes it difficult to define precisely the strip boundary here．Within the $a b$－types there is a tendency for the bluer variables to be fainter than average（excluding the probably more evolved stars）．Only one $a b$－variable in our sample（V19）significantly

Figure 14．RR Lyrae variables in the colour－magnitude diagram．Non－variable stars，are also plotted， using photoelectric photometry from Sandage（1970）（crosses）and photographic photometry from Sandage（1970）corrected for background（＋signs）．The bulk of the variables occupy a sloping region only about 0.1 mag in depth，with a sprinkling of brighter，probably more evolved stars．The blue edge of the instability region is clearly demarcated at $\langle B\rangle-\langle V\rangle=0.255$ ，whereas the red edge is not well defined． Representative error bars are indicated．

Table 9．M15 photographic photometry of non－variable HB stars，corrected for background contamination（uncorrected data from Sandage 1970，table 8）．

Star	＊				r	V corr	＊
	$\stackrel{r}{11}$	$\mathrm{V}_{\text {corr }}$	$B-V_{\text {corr }}$	Star			$B-V_{\text {corr }}$
S2	162	15.87	0.175	II－54	139	15.85	0.22
S10	168	15.92	0.17	59	131	15.90	0.20
S16	150	15.97	0.13	73	116	15.93	0.175
I－4	86	15.98	0.195	74	120	15.98	0.135
7	88	15.74	0.55	III－15	89	15.97	0.155
9	88	16.04	0.145	28	97	15.75	0.58
11	104	15.95	0.155	43	120	15.86	0.195
51	103	15.86	0.255	52	124	15.85	0.205
54	115	15.90	0.205	67	140	15.95	0.16
58	124	15.91	0.185	IV－2	93	15.93	0.195
II－11	79	15.95	0.185	44	109	15.84	0.235
23	94	15.87	0.205	66	86	16.06	0.135
24	90	15.70	0.57	68	90	15.87	0.225

＊． 005 arises from background correction
encroaches upon the territory occupied by the c－types，but it should be kept in mind that the use of $\langle B-V\rangle$ instead of $\langle B\rangle-\langle V\rangle$ would shift this star ~ 0.05 mag redwards．Thus there may be little real colour overlap in this sample．Note also that those c－types occurring closest to the transition colour are mostly（perhaps entirely）multimode variables，exhibiting a mixture of first harmonic and fundamental mode pulsation（Cox et al．1983）．

Fig． 15 shows a histogram of the distribution with colour over the whole HB using data for non－variables taken from Buonanno et al．（1983a）．The RR Lyraes from the same region of study（between $r=1.9 \mathrm{arcmin}$ and $r=5.0 \mathrm{arcmin}$ ）are shown hatched，using the present $\langle B\rangle-\langle V\rangle$ colours．The non－uniform distribution of stars is evident，the bulk of the stars lying to the blue of the instability strip．We shall return to a discussion of this distribution later．

Figure 15．Histogram of the distribution with colour over the whole HB ，using data for non－variables from Buonanno et al．and the present RR Lyrae photometry，both from the region（ $1.9<r<5.0 \mathrm{arcmin}$ ）（see Fig．22）．The RR Lyraes are represented by the shaded area．Note the distinctly non－uniform distribution along the HB ．

Figure 16. Correlation of amplitude in blue light, A_{B}, with $\langle B\rangle-\langle V\rangle$ colour. The strong decrease in amplitude with increasing colour shows that the mean amplitude depends sensitively on position within the instability strip. Note that the multimode variables have essentially the smallest amplitudes and are nearest to the transition point.

3.1.2 The amplitude-colour relation

Fig. 16 shows the correlation of blue amplitude, A_{B}, with mean colour. There is a strong dependence of amplitude on colour (and hence location within the instability strip in the colour-magnitude diagram) in both $a b$ - and c-types, with amplitude decreasing with increasing colour. The correlation of amplitude with period within each type is now better defined than in the original SKS data (SKS Fig. 8a), the scatter within each sequence being attributable to observational error alone. The multimode variables have the smallest amplitudes amongst the c-types, as might be expected from their mixed-mode behaviour, and occur right at the transition edge. (The amplitude used is derived from the mean of the points plotted with the dominant first harmonic period.) It thus seems highly likely that the mixedmode behaviour is closely related to the transition phenomenon. The distribution of amplitude with colour amongst the $a b$-types is rather non-uniform, with the largest amplitude variable (V19) out on its own. Although the temperature overlap may not be as large as implied by the $\langle B\rangle-\langle V\rangle$ colours (see below), the diagram indicates that the majority of stars belong to a family exhibiting a well-defined colour at which mode switching occurs, from $a b$-amplitude of 1.2 mag to c-amplitude of 0.4 mag (or vice versa), with V19 set apart for some reason, perhaps with some essential property causing it to prefer fundamental pulsation, with a consequently larger amplitude appropriate to its bluer colour.

3.1.3 The period-amplitude relation

The variation of amplitude, A_{B}, with $\log P$ is shown in Fig. 17(a). The c-types show a roughly constant amplitude at the shorter periods before decreasing to a minimum in the region occupied almost exclusively by the multimode variables. The $a b$-types, in the mean, show a steep decrease in amplitude with period although there is considerable scatter, with a large range of amplitude possible at a given period. The use of $\log P^{\prime}$ (Fig. 17b) reduces the scatter in the ab-types although the brightest variable, V2, appears significantly discrepant

Figure 17．（a）Correlation of blue amplitude with \log period．The c－types show a well－defined relation， with first constant and then sharply decreasing amplitude with increasing period but the $a b$－types show a large scatter in amplitude at a given period．The latter is somewhat reduced in（b），where the＇reduced＇ period P^{\prime} is used，although the brightest variable，V2 now appears anomalous，perhaps due to its advanced evolutionary stage．Note that the fundamental period P_{0}（given by $\log P_{0}=\log P_{1}+0.125$ where P_{1} is the first harmonic period）is used to better indicate the true contiguous transition between c－and $a b$－types at a well－defined fundamental period， $\log P_{0}^{\prime}=-0.25$ ．
now．Note that in this diagram，we have＇fundamentalized＇the c－types using the transforma－ tion $\log P_{0}^{\prime}=\log P_{1}^{\prime}+0.125$ to illustrate better the sharply defined transition period．

3．1．4．The period－luminosity relation

The correlation of $\langle V\rangle$ with $\log P$ is shown in Fig．18（a）．Both types of variable exhibit a weak correlation，with the $a b$－types on average being slightly more luminous than the c－types．The variables marked with ticks lie east of the line XX^{\prime} in Fig．3，showing the bias in

Figure 18．Period－luminosity relations．Panel（a）reveals the weak correlation of period with luminosity within each Bailey type．The variables east of the line XX＇（Fig．3）are marked with ticks，and show the positional bias towards fainter magnitudes and shorter periods．Panel（b）uses the fundamentalized period to indicate the overall period－luminosity effect，which is important in the analysis of the period－colour diagram（see Fig．19）．
the distribution of periods and luminosities over the field. In Fig. 18(b), the c-types have been fundamentalized to illustrate better the overall period-luminosity dependence amongst all the variables.

3.1.5. The period-colour relation

The derivation of this relation has been discussed in the preceding section, leading to the plot of $\log P$ versus $\langle B\rangle-\langle V\rangle$ shown in panel (d) of Fig. 12. The main feature of the diagram, that of a well-defined sequence for each Bailey type, displaced in $\log P$, is evident and forms the basis for the derivation of several physical parameters for the RR Lyraes. The shift of ~ 0.12 in $\log P$ is readily understood theoretically in terms of the different mode of pulsation of each type, as shown many years ago in the cluster M3 by Schwarzschild (1940). Before moving on to discuss the derivation of astrophysical parameters, we note that as in the period-amplitude diagram, the scatter in this diagram is somewhat reduced when allowance for the magnitude spread amongst the variables through the use of P^{\prime} is made. This is illustrated in Fig. 12(h). However, the brightest variable, V2, is also discrepant in this diagram. The stars east of the line XX^{\prime} (Fig. 3) now mingle in with the others and no residual systematic affects are apparent. Note how the colour overlap is reduced when $\langle B-V\rangle$ rather than $\langle B\rangle-\langle V\rangle$ is used as abcissa, as illustrated in Fig. 13.

3.2 DERIVATION OF PHYSICAL PARAMETERS

The derivation of physical parameters, and the comparison with other cluster RR Lyraes and theory, requires various transformations to the observations to give astrophysically relevant quantities. The main requirements may be simply illustrated using linear pulsation theory as follows. The periods of fundamental and first harmonic pulsators may be accurately calculated using appropriate stellar models. From van Albada \& Baker (1971) after slight reduction, we have the following expressions for the fundamental and first overtone periods, P_{0} and P_{1} respectively
$\log P_{0}=11.50-0.68 \log M+0.84 \log L-3.48 \log T_{e}$
$\log P_{0} / P_{1}=0.438-0.032 \log M+0.014 \log L-0.09 \log T_{e}$
where M is the mass of the star in solar units, L the bolometric luminosity and T_{e} the effective temperature, which for a pulsating star refer to its equilibrium values. The precision of the coefficients of $\log M, \log L$ and $\log T_{e}$, are quoted as approximately $\pm 0.02, \pm 0.02$ and ± 0.07 in equation (4) and about half as large in equation (5).

It is immediately evident that an observed correlation between $\log P$ and colour (and hence effective temperature) provides a means of determining an average mass-to-light ratio, M / L, for a group of variables having a small spread in these quantities, such as those within a cluster. Period-colour relations have been used by several authors in the past (e.g. Roberts \& Sandage 1955; Dickens \& Saunders 1965, van Albada \& Baker 1971). However, there are a number of steps required before an observed correlation can be used in this way and we believe the precision of our data, the usefulness of the parameters sought and the importance of a detailed comparison with an Oosterhoff I cluster warrant a rather careful discussion of these steps as follows. We begin by considering the conversion of colour to effective temperature.

3．2．1 Interstellar reddening

An accurate reddening determination is the first requirement．Various methods have been applied to M15，yielding values of $E(B-V)$ between 0.08 and 0.12 ．We discuss these in turn， followed by a new application of Sturch＇s method（1966）to the M15 RR Lyraes．

Sandage（1969）derived $E(B-V)=0.12$ from $U B V$ photometry of individual stars，but SKS have used $E(B-V)=0.08$ ，arguing that the $U B V$ data are also consistent with this value． However，we have re－analysed the $U B V$ data and come to the conclusion that the reddening of M15 is not well determined by this method，since most of the blue HB stars crucial to the determination have unreliable photometry，mainly due to crowding．A similar conclusion was reached by Buonanno et al．（1983a）from extensive photographic photometry based on the same photoelectric standards．
f．second method based on integrated light measurements has been applied by Zinn （1980）to many globular clusters．He finds $E(B-V)=0.08$ for M15（the value adopted by SKS）．

A third method using far ultraviolet photometry（van Albada，de Boer \＆Dickens 1981）， again of the integrated cluster light yields $E(B-V)=0.10 \pm 0.02$ for M15．Since this method gives values for globular clusters in excellent agreement with other well－established methods， notably those by Burstein and collaborators（e．g．Burstein \＆McDonald 1975；Kron \＆ Guetter 1976；Burstein \＆Heiles 1978）it should be given high weight in our current determination．

A fourth method，using integrated DDO photometry has been applied by Bica \＆Pastoriza （1983）to yield $E(B-V)=0.05 \pm 0.05$（typical error of the method）．

Finally，we have applied Sturch＇s method（1966）to a sample of M15 RR Lyraes as follows．The method uses a blanketing－free colour index at minimum light，defined as $(B-V)_{c}=(B-V)_{\phi}-0.75 \delta(U-B)$ ，where $(B-V)_{\phi}$ is the observed mean value of $(B-V)$ over the phase interval 0.5 to 0.8 ，and the ultraviolet excess parameter，$\delta(U-B)$ ，is related to the cluster metal abundance by $[\mathrm{Fe} / \mathrm{H}]=13.51 \delta(U-B)-2.47$（Butler 1975）．The colour excess for an individual variable is then given by $E(B-V)=(B-V)_{c}-0.24 P-0.21+$ $E(B-V)_{\text {pole }}$ ，where $E(B-V)_{\text {pole }}$ is the colour excess in the direction of the north galactic pole，which we will assume to be zero．

Table 10 gives values of $(B-V)_{\phi}$ for $12 a b$－type variables with radii greater than $r=120 \operatorname{arcsec}$（to avoid contamination）and using SKS data alone（the individual light curves are less well delineated in the Bologna data）．Since the range of $[\mathrm{Fe} / \mathrm{H}]$ is small $(\sigma[\mathrm{Fe} / \mathrm{H}] \approx 0.08$ ，Buonanno，Corsi \＆Fusi Pecci 1984；$\sigma[\mathrm{Fe} / \mathrm{H}] \approx 0.04$ ，Sandage \＆Katem 1977）a constant correction to $(B-V)_{\phi}$ to yield $(B-V)_{c}$ of -0.026 is derived，using $[\mathrm{Fe} / \mathrm{H}]=-2.0$ ．Individual values of $E(B-V)$ for the 12 variables are given in Table 10，from which we derive a mean value of $E(B-V)=0.11$ ．If，as discussed earlier，the Mount Wilson observations are subject to a small colour equation，then Fig．1（c）suggests a further correc－ tion of -0.01 or -0.02 might be applicable to correct to the（true）photoelectric system．

We adopt finally a value $E(B-V)=0.100 \pm 0.015$ ．

3．2．2 Mean colour index and effective temperature

The aim is to derive a temperature from the observed colour closest to the value the star would have were it not pulsating；i．e．an＇equilibrium＇value．A number of discussions of this problem have appeared in the literature（Preston 1961；van Albada \＆de Boer 1975；Lub 1977，Davis \＆Cox 1980）．The problem is by no means unimportant as we have seen that

Table 10. $B-V$ colours at minimum light for M15 RRab variables to derive individual values of colour excess $E(B-V)$ using Sturch's method.

Var.	Period	$(B-V)_{\phi}$	$E(B-V)$
2	0.684	0.513	0.113
8	0.646	0.513	0.122
9	0.715	0.510	0.102
12	0.593	0.494	0.116
13	0.575	0.517	0.143
15	0.584	0.460	0.084
19	0.572	0.467	0.094
22	0.633	0.483	0.084
23	0.575	0.534	0.095
25		0.533	0.143
29			0.112
52			mean

different colour indices for larger amplitude variables in M15 may differ by 0.05 mag , which corresponds to nearly 0.02 in $\log T_{e}$. Similar effects are found in other clusters (e.g. Dickens 1970) and in the field (Lub 1977). Equation (4) indicates the sensitivity of M / L to $\log T_{e}$ (e.g. at a given period) and, as we shall see later, the temperature of the blue edge is also needed to high accuracy to have a first estimate of the helium content, Y. Even for c-types, there can be a significant systematic difference in these mean colour indices ($\sim 0.02 \mathrm{mag}$).

A single hydrodynamically pulsating model was studied by Davis \& Cox (1980) where they found the mean colour closest to that of the non-pulsating model to be given by $\langle B\rangle-\langle V\rangle$. Other mean colour indices such as $\langle B-V\rangle$ gave extremely poor agreement, in fact so poor that it is probably premature to attempt to base a choice on a single calculation. The ultimate solution to the problem will require accurate full amplitude non-linear pulsation calculations over a range of stellar parameters. We believe a practical approach here to be to follow van Albada \& de Boer (1975) (a similar approach was taken by Preston) and define equilibrium quantities $L_{\mathrm{eq}}=\langle L\rangle$ and $R_{\mathrm{eq}}=\langle R\rangle$ where the brackets indicate averages over the pulsation cycle. The definition of L_{eq} is exact, and that for $R_{\text {eq }}$ probably reasonably precise in view of the relatively small change in radius over the cycle. These lead to a definition of the equilibrium temperature

$$
\begin{equation*}
T_{\mathrm{eq}}=\left\langle(L /\langle L\rangle)^{1 / 2} T_{e}^{-2}\right\rangle^{-1 / 2} \tag{6}
\end{equation*}
$$

This formula thus requires the calculation of the average value of $L^{1 / 2} T_{e}^{-2}$ over the cycle, which could be carried out for photometric observations of RR Lyraes if their light and colour curves are well defined, as in Lub's (1977) study of field RR Lyraes. For our photographic data, the colour curves are inadequate for the purpose. However, Lub has found extremely accurate correlations between equilibrium temperature and the different kinds of
colour index in the Walraven photometric system, which lead, after transformation to the UBV system and slight simplification, to the following expression for the appropriate mean colour index
$(B-V)_{\mathrm{eq}}=(2 / 3)\langle B-V\rangle+(1 / 3)(\langle B\rangle-\langle V\rangle)$
where the averages are intensity means over the light cycle. Values of $(B-V)_{\text {eq }}$ for the M15 variables have been thus obtained and are given in Table 8.

Equilibrium effective temperatures are then obtained using ($B-V$) colours computed from model atmospheres and synthetic spectra. Models by Bell (Butler et al. 1978, BDE) and Buser \& Kurucz (1978, BK) are closely similar in the temperature and gravity range of RR Lyraes and we adopt the BDE values here. The resulting equilibrium temperatures, log $\left(T_{e}\right)_{\text {eq }}$ are given in Table 8.

3.2.3 Bolometric corrections

The observed visual magnitudes and amplitudes need to be converted to bolometric quantities for comparison with theory. The models cited above also provide these relations. However, there is a zero-point difference in the two relations, due primarily to a difference in the adopted bolometric correction for the Sun of 0.12 mag , but further, the BDE values run in the opposite sense to those of BK for reasons not currently understood. Further calculations are in hand to investigate this. A mean value of -0.05 is representative of the colour ranges of the RR Lyraes, being close to that obtained after adjusting the BK values to a bolometric correction for the Sun of -0.07 (as adopted by Bell \& Gustafsson 1978). It should be noted that the mean visual magnitude of the RR Lyraes varies through the instability strip by $\sim 0.1 \mathrm{mag}$, an amount comparable to the change in either set of bolometric corrections over the same temperature range. (This is over and above the spread in luminosity at a given T_{e} or P which is corrected for with the use of P^{\prime}.) A resolution of this ambiguity with the bolometric corrections is thus highly desirable. There is also a significant increase, up to 15 or 20 per cent in the visual amplitude A_{V} of an RR Lyrae, which must be allowed for in comparisons with non-linear calculations of amplitudes. The blue amplitude, A_{B}, being observationally better defined than A_{V} is used here.

3.2.4 The periods

Equation (5) indicates that the fundamental-to-first overtone period ratio is rather insensitive to the stellar parameters and for the range of M, L of interest varies across the strip from $\Delta \log P=0.120$ (blue edge of the c-types) to $\Delta \log P=0.123$ (red edge of the c-types). Cox et al. (1983) find $\Delta \log P=0.125$ (blue edge) and $\Delta \log P=0.128$ (red edge) for the same parameters $\left(M=0.65 M_{\odot}, \log L / L_{\odot}=1.77\right)$. Thus we can convert the c-type periods to the equivalent fundamental period with very little error by adding 0.125 to the \log of the first harmonic period. This is appropriate for the discussion of the physical parameters of the stars rather than the details of their pulsational behaviour. Fundamental periods so derived are denoted P_{0}, with the same notation being used for periods of the true fundamental pulsators of type $a b$.

3.2.5 Evolutionary considerations

The distribution of stars on the horizontal branch (HB) is governed by their initial location on the zero-age line (ZAHB) combined with the effects of evolution. Rood (1973) and
others have demonstrated that a spread in mass can account for the observed distribution of stars on the HB ，although there could well be alternative candidates such as a spread in core mass．Rood also found that the calculated appearance of the HB is largely dictated by the initial ZAHB distribution rather than the effects of evolution．Although this may not in all circumstances be true，and could change with later revision of the evolutionary tracks，it is clear that the initial ZAHB distribution is likely to remain a strong influence．A study of the Sweigart－Gross（1976，SG）grid reveals that $\partial \log T_{e} / \partial \log M$ varies strongly with metal abundance and in the range of interest to the present discussion，implies a significant mass difference between ZAHB stars on each side of the instability strip．Thus a variation in mass across the instability strip as well as the difference in luminosity mentioned earlier must be allowed for in attempting to derive a mean mass from the slope of the period－colour relation．

3．2．6 The theoretical period－colour relation

The above considerations affect the theoretical relation in two ways．The variation in mean properties (M, L) across the strip gives rise to a change in the slope of the relation and a spread in these quantities（at a given T_{e} ）gives rise to a scatter in the relation．Equation（4） indicates that
$\partial \log P_{0}=-0.68 \partial \log M$
$\partial \log P_{0}=0.84 \partial \log L$
$\partial \log P_{0}=-3.48 \partial \log T_{e}$.
ZAHB models（SG）indicate that for $Z=0.001, \partial \log T_{e} / \partial M=-4.4$ and for $Z=0.0001$ ， $\partial \log T_{e} / \partial M=-1.4$ ．For M15，$Z=0.0002$ so we adopt $\partial \log T_{e} / \partial M=-2.2$ ．Thus，across

Figure 19．A schematic theoretical period－colour diagram in which the effects of variations in mass and luminosity within and across the strip are illustrated．The＇error bars＇indicate the effects of intrinsic spread in mass and luminosity on the overall scatter expected，whereas the broken lines show the effect of systematic trends in these quantities across the instability strip．The solid line is that predicted by the van Albada \＆Baker relation（equation 4）for constant mass and luminosity．
the instability strip，$\partial \log T_{e}=-0.07$（Fig．19）implying an expected mass range of $\partial M \sim 0.03$ or $\partial \log M \sim 0.02$ ．This has the effect of increasing the expected（constant mass） theoretical slope of -3.48 ，as indicated in Fig．19．The mean luminosity varies by ~ 0.1 mag in M_{v} across the strip（Fig．14）or by $\sim 0.1 \mathrm{mag}$ over the range of period observed（Fig．18）． （Note that if the bolometric correction changes across the strip according to the BDE relation this would reduce to $\Delta M_{\mathrm{bol}}=-0.042$ or $\Delta \log L=+0.017$ ．）This would decrease the（constant luminosity）theoretical slope of the period－colour relation，as illustrated in Fig．19．Thus for reasonable parameters for M15，these effects work in opposite directions and indicate that the constant M / L slope is a reasonable relation to adopt．It must be kept in mind，however，that if the RR Lyraes are significantly evolved，the mass effect would be reduced and we should use a somewhat more negative slope than－3．48．

These considerations also indicate the spread at a given T_{e}（or $\log P$ ）expected for a spread in L or M ．The luminosity effect can be removed empirically with the use of $\log P^{\prime}$ ，leaving the residual scatter in the relation caused by a spread in mass coupled with observational error．The sizes of these effects for reasonable values appropriate to M15 are indicated by the error bars given in Fig．19．Note that the few extremely luminous stars（e．g．V2，V9，V22， V32）may be in a different evolutionary state and／or may represent the extreme of the mass distribution present．

3．2．7 The observed $\log P / \log T_{e}$ relation

Fig． 20 shows our final plot of $\log P_{0}^{\prime}$ against $\log T_{e}$ ，where the latter has been computed from the $(B-V)_{\text {eq }}$ colours．The solid line indicates the best eye fit to the points of a line with the theoretical slope of -3.48 from equation（4）．Using this equation，the intercept in Fig． 20 leads to the mass－to－light ratio

$$
\log \left\{M^{0.81} / L\right\}=-1.92
$$

which is our best estimate of this quantity for the M15 variables．We now discuss the uncer－

Figure 20．Observational data plotted in the theoretical period－colour framework，where the quantity $\left(\log T_{e}\right)(B-V)_{\text {eq }}$ represents our best estimates of the true equilibrium temperatures（see text）and P_{0}^{\prime} the fundamental period corrected for luminosity dispersion amongst the variables．The solid line is the best eye fit to the data，and leads to the derivation of $\log \left\{M^{0.81} / L\right\}=-1.92 \pm 0.03$ for the M15 variables．
tainties in this result, together with the sources of scatter in the diagram and will return later to consider other physical parameters that may be derived.

3.2.7.1 Uncertainty in the derived M / L due to systematic effects

These are of two kinds, an uncertainty in the zero point of the adopted temperature scale, through reddening, model and averaging uncertainties and the use of an incorrect slope for reasons discussed earlier. It is difficult to make a precise estimate of the zero point error. We believe the reddening to be uncertain by $\pm 0.015 \mathrm{mag}\left(\sim \pm 0.005 \mathrm{in} \log T_{e}\right)$, the temperature scale uncertain by $\sim \pm 0.004$ in $\log T_{e}$ from a comparison between BDE and BK and averaging uncertainty to be $\sim \pm 0.003$ in $\log T_{e}$. Taken together it is unlikely that $\log T_{e}$ is in error by more than ± 0.01 and an optimist would hope that it is somewhat smaller than this. We therefore adopt an uncertainty of ± 0.008 as our best estimate of the error in zero point of $\log T_{e}$. (Note that an error of this size implies that there could be very little real colour overlap between $a b$ - and c-types.). This uncertainty leads to an uncertainty in $\log \left\{M^{0.81} / L\right\}$ of about ± 0.03 in the sense that a lower T_{e} gives a higher value of M / L. Error in the slope of the relation turns out to be of less importance in the derivation of M / L. This can be illustrated by considering the effect of the increase in mean M_{V} across the strip which, as discussed earlier, gives rise to a larger slope to the mean relation (but is likely to be counteracted almost exactly by the increase in mean mass across the strip). The observed change of 0.1 mag in M_{V} requires an increased slope of 3.68 which only changes $\log \left\{M^{0.81} / L\right\}$ by 0.01 . Thus the range of slope indicated in Fig. 19 would lead to an error of ± 0.01 in $\log \left\{M^{0.81} / L\right\}$.

3.2.7.2 Scatter in the $\log P_{0}^{\prime} / \log T_{e}$ diagram

A good estimation of the observational part of the scatter in Fig. 20 can be made since we have in M15 two completely independent sets of measures of the variables; a similar estimate is obtainable from the measures of the non-variable stars. Zero-point uncertainties are common to both sets, being calibrated by the same photoelectric sequence but the internal scatter can be reasonably accurately estimated. It is of great interest to do so, since as we have seen earlier, any residual intrinsic scatter in the diagram can only be attributed to a spread in mass (the observed spread in L being removed with the use of P_{0}^{\prime}).

Two independent sets of values of $\langle V\rangle$ and $\langle B\rangle-\langle V\rangle$, SKS and ours (B) are given in Tables 5 and 6.

It is easy to show that the mean standard error of an individual $B-V$ value is given by

$$
\mu_{c}^{2}=(1 / 2 N) \sum_{\text {stars }}\left\{(\langle B\rangle-\langle V\rangle)_{\mathrm{SKS}}-(\langle B\rangle-\langle V\rangle)_{\mathrm{B}}\right\}^{2}
$$

with a similar expression for errors in $\langle V\rangle$. Considering first the observational error in $\langle B\rangle-\langle V\rangle$ from the values given for 48 stars in common to both series with quality 1 and 2 photometry, we find $\mu_{c}=0.0154 \mathrm{mag}$ so that the error in a combined $\langle B\rangle-\langle V\rangle$ colour is $\mu_{c c}=0.0109 \mathrm{mag}$. Since $\partial\left(\log T_{e}\right)=0.388 \partial(B-V)$, this corresponds to a standard erior in $\log T_{e}\langle B\rangle-\langle V\rangle$ of $\mu_{T 1}= \pm 0.00423$. Observational errors in $\langle V\rangle$ must also be considered, since they contribute a scatter $\mu_{\log P^{\prime}} \sim+0.336 \mu_{V}$. For 48 stars, we find the error in a combined $\langle V\rangle$ value to be $\mu_{V}= \pm 0.0161 \mathrm{mag}$ giving rise to an error $\mu_{\log P^{\prime}}$ of ± 0.00531. This corresponds to an error in $\log T_{e}$ given by $\mu_{T 2}= \pm 0.00531 / 3.48= \pm 0.00153$. Thus the combined observational uncertainty in $\log T_{e}$ (assuming these two parts are uncorrelated) is $\mu_{T}= \pm 0.00450$. (1σ values). An error bar of twice this length is shown as a horizontal line in Fig. 20. Fig. 21 shows the distribution of temperature residuals taken about the mean line.

Figure 21. Histogram of the residuals $\Delta\left(\log T_{e}\right)$ obtained from Fig. 20. Allowing for observational error, the distribution predicts a (1σ) dispersion in mass of $\pm 0.019 M_{\odot}$ amongst the variables.

This distribution is characterized by a Gaussian width $\mu_{0}= \pm 0.00590$. Since the errors in μ_{T} and μ_{0} are ~ 10 per cent of the values, there appears to be a significant intrinsic spread in the data, characterized by a standard error of order $\mu_{I}= \pm 0.0038$. We believe this is caused by a spread in mass amongst the variables, and since $\partial(\log M) \sim 5.1 \partial \log T_{e}$ (from equation 4), this is equivalent to a 'Gaussian' mass distribution with $\mu_{\log M}= \pm 0.019$. Thus the observations are consistent with a spread in total mass within the instability strip of a few hundredths of a solar mass, e.g. if the mean mass is given by $0.65 M_{\odot}$ (see below) then most RR Lyraes would have masses between about 0.62 and $0.68 M_{\odot}$, which is reasonable on the basis of stellar evolution theory (e.g. Rood 1973).

3.2.8 The helium abundance

Various methods can be employed to estimate Y using parameters deduced from the colour-magnitude diagram of the cluster and/or the properties of the RR Lyrae variables within the framework of pulsational and evolutionary theories. The different methods are often discrepant but such is the importance of the determination that a somewhat detailed discussion should be given here.

3.2.8.1 Pulsational properties

As is well known, the high temperature boundary of the instability strip is a sensitive function of Y. This boundary is delineated sharply by the blue edge of the c-type (first harmonic) variables. Similarly the high temperature boundary of the $a b$-types (fundamental pulsators) is also a sensitive function of Y. There is also a weak dependence on mass but as Tuggle \& Iben (1972) have shown this dependence is very small in the range of interest for RR Lyraes. Fig. 20 indicates that $\left(\log T_{e}\right)_{\mathrm{HBE}}=3.875$ and $\left(\log P_{1}^{\prime}\right)_{\mathrm{HBE}}=-0.497$. The fundamental blue edge (FBE) is less well defined and has the additional uncertainty that if an either/or zone exists near the transition temperature (e.g. Stellingwerf 1975) we cannot be sure we are observing the true FBE. Nevertheless, as we shall see later it is most likely that the dominant evolution through the strip is bluewards, indicating that the bluest $a b$-types may indeed define correctly the FBE. On this assumption, Fig. 20 indicates the values $\left(\log T_{e}\right)_{\mathrm{FBE}} \sim 3.85$ and $\left(\log P_{0}^{\prime}\right)_{\mathrm{FBE}}=-0.255$.

From graphical representations of the Tuggle \＆Iben relations we derive $Y_{\text {HBE }}=0.29$ and $Y_{\mathrm{FBE}} \sim 0.25$ ．Our estimate of the uncertainty in $\log T_{e}$ ，due particularly to the uncertainty in the reddening indicates a formal error in $Y \sim \pm 0.04$ ．In addition to this，the location of the theoretical blue edges are sensitive，among other things，to the formulation of the opacities used in the models（e．g．see Tuggle \＆Iben 1971；Rood 1973）．

Deupree（1977）has used the width of the instability strip to determine Y ．However，the location of the true red edge in M15 is uncertain because of the scarcity of variables there and we have not applied this method here．

In the light of these comments，we derive a mean pulsational value of $Y=0.27 \pm \epsilon(Y)$ where $\epsilon(Y)$ is formally $\sim \pm 0.04$ but may in practice be larger．

3．2．8．2 The R－method

The helium abundance can be estimated from the R－method（Iben 1968）where R is the ratio of the number of HB stars to the number of red giants brighter than the bolometric luminosity of the RR Lyrae variables in the cluster．This procedure has been recently applied by Buonanno et al．（1984）to the data derived from the photographic photometry of a complete sample of stars down to $B=18.5$ in a ring between 1.9 and 5.0 arcmin from the centre of M15．Using a revised formula（Buzzoni et al．1983）deduced from interpolation in the SG models，they obtained $Y=0.23 \pm 0.03$ ，where the associated error is the formal error due only to the statistics of the stars considered．Applying this method to 15 well studied clusters，Buzzoni et al．（1983）deduced a mean value of $Y=0.23 \pm 0.02$ ．

3．2．8．3 The A－parameter

Equation（4）can be written as $\log P_{0}=11.50-0.84 A-3.48 \log T_{e}$ where $A=-\log$ $\left\{M^{0.81} / L\right\}$ ．Caputo \＆Castellani（1975）and Caputo，Castellani \＆Gregorio（1983）have shown on the basis of ZAHB models that A depends only on Y ．We find a similar effect using the SG models，and find $A=1.45+1.40 Y$ ．For M15，with $A=1.92 \pm 0.03$ ，we obtain $Y=0.34 \pm 0.02$（the error being that due solely to the error in A ）．Similarly high values for M15 and other clusters were obtained by Caputo and co－workers．The uncertainties in these values due to model deficiencies（as in 3．2．8．2．above）must again clearly be greater than the quoted values．

3．2．8．4．The Δ－method

Caputo \＆Cayrel de Strobel（1981）showed that the difference in luminosity，Δ ，between the HB at the instability strip and the main sequence at $(B-V)_{0}=0.7$ depends somewhat on Z but changes mainly with Y ．Therefore it allows the determination of Y whenever accurate colour－magnitude diagrams down to the main sequence are available．With $\Delta=5.7 \mathrm{mag}$ and assuming $Z=0.0001$ they derived a value of $Y=0.23$ ．

3．2．8．5 Luminosity width of the horizontal branch

HB models indicate that the width in luminosity is a sensitive function of Y in the sense that an observed width can place upper limits on Y ．This is caused mainly by the variation in track morphology with Y ．Using the Sweigart－Gross grid，we find for $Y=0.3$ ，the width in luminosity of the HB in the instability strip and redwards should be at least 0.2 mag whereas Fig． 18 indicates a value essentially less than 0.15 mag．Although a detailed comparison，
which should include the effect of varying core mass, has not been made, the observed width suggests a value of Y closer to 0.2 than 0.3 .

In discussing these results, we must distinguish between primordial helium, Y_{p}, and the present day helium abundance of HB stars, Y_{HB}, slightly enhanced at their surfaces through convective mixing during red giant evolution by an amount $\Delta Y=Y_{\mathrm{HB}}-Y_{\mathrm{p}}$. The R method gives an estimate of Y_{p} while Y deduced from pulsational properties is the current (enhanced) value. The best estimate for Y_{p} from external considerations is 0.23 ± 0.01 (e.g. see Pagel 1982). The R method applied to M15 also gives 0.23 but with the larger uncertainty of ± 0.03. Since ΔY is expected to be ~ 0.02 from stellar evolution calculations, the pulsational mean value for the M15 RR Lyraes of 0.27 ± 0.04 is consistent with that of 0.25 ± 0.03 expected for M15 HB stars from these considerations, and which we therefore adopt as a working value subsequently.

3.3 THE ABSOLUTE MAGNITUDE OF THE RR LYRAES USING PULSATIONAL DATA AND THE IMPLICATION OF THE RESULT FOR THE CLUSTER AGE

Knowledge of the intrinsic luminosity of RR Lyrae variables is central to the problem of determining cluster ages as illustrated in the Sandage series of papers on the Oosterhoff groups cited earlier. If the luminosity can be derived from methods insensitive to the properties of stellar models an important uncertainty is removed from this fundamental problem.

The determination of the periods and hence the theoretical period-colour relation should not be sensitive to details of the models and hence our derived mass-to-light ratio is only limited by observational constraints that have been discussed earlier. Furthermore, there is a method of mass determination for RR Lyraes that may also be essentially free of major defects in models and that results from the mixed mode behaviour found in some RR Lyraes whose period ratios are sensitive primarily to the stellar mass (see below). Thus a determination of the RR Lyrae luminosity is available that should be only minimally affected by model uncertainties.

As is well known, the age of a globular cluster is estimated using the luminosity of the turn-off point in the HR diagram. Again the derivation is model-dependent but the uncertainties in the luminosities of main sequence and turn-off models may be expected to be less severe than those of models in more advanced stages of evolution on the HB. We thus derive the mass and luminosity of the M15 RR Lyraes and hence the cluster age, where the relevant observational parameters are providing the main restriction on the precision of the results. This will therefore provide essentially a 'pulsational' age determination through independent calibration of the cluster's distance and which therefore gives useful input to the wider topic of globular cluster ages. However, a discussion of the overall age problem is outside the scope of this paper.

The method of mass determination was put forward by J ϕ rgenson \& Peterson (1967) and has been applied by Cox et al. (1983), using their own models, to the multimode RR Lyraes in M15. From 10 multimode variables in M15, Cox et al. (1983) gave a mean mass of $M=0.65 \pm 0.05 M_{\odot}$, where the uncertainty quoted embraces the range of M derived for the variables. Consideration of the various uncertainties involved in the derivation (J $\mathbf{\phi r g e n s o n}$, private communication to Cox) suggests that the above range is indicative of the true uncertainty in the derived mass, which could therefore be the same for all the multimode variables in the cluster. Thus with $\log \left\{M^{0.81} / L\right\}=-1.92 \pm 0.03$, we find a mean luminosity given by $\log L=1.77 \pm 0.06$. Assuming a mean bolometric correction of -0.05 , we derive an absolute visual magnitude $M_{V}=0.39 \pm 0.15\left(M_{\mathrm{bol} \mathrm{\odot}}=4.76\right)$.

The luminosity of the turn-off point in the HR diagram can be obtained for M15 using the above RR Lyrae luminosity and the observed magnitude difference between HB and turn-off. For M15, Sandage (1982a) gives $\Delta M_{v}=3.31$, based on Sandage (1970), with an estimated uncertainty of $\pm 0.2 \mathrm{mag}$. Thus with an adopted bolometric correction at turn-off of -0.15 (BK adjusted to a bolometric correction for the Sun of -0.07) we find log $L_{\mathrm{TO}}=0.48 \pm 0.14$ (combined error). Using the interpolation formula for the age in units of $10^{9} \mathrm{yr}, t_{9}$, given by Iben (1971), i.e.
$\log t_{9}=1.42-1.1 \log L_{\mathrm{TO}}-0.59(Y-0.3)-0.14(3+\log Z)$
and with $Y_{\mathrm{p}}=0.23 \pm 0.01, \log Z_{\mathrm{M} 15}=-3.7 \pm 0.1$, we find $\log t_{9}=1.03 \pm 0.17$. A similar formula quoted by Sandage (1982a) gives $\log t_{9}=1.07 \pm 0.17$. Thus our derived age for M15 based on the RR Lyrae luminosity obtained from pulsation theory is close to 10 billion years with an estimated uncertainty of ± 3 to 4 billion years. This age is substantially lower than that of 15 billion years derived by Sandage (1982a) and stems entirely from the brighter luminosity we derive for the RR Lyraes. Hansen (1979) also derives a brighter M15 RR Lyrae luminosity than Sandage by applying systematic corrections to the parallaxes of the calibrating subdwarf stars. A discussion of these results is, however, outside the scope of this paper.

The fainter value of $M_{V}=0.64$ derived by Sandage would require a mass $\sim 0.5 M_{\odot}$ to fit the observed M / L, which seems excluded on the current precepts and would lead to the impossibility of populating the instability strip with standard HB models (SG). However, other problems with the interpretation of multimode masses (e.g. in Cepheids, Cox 1982, and in M3, see later), together with the uncertain situation regarding bolometric corrections suggests caution in extending the discussion further at the present time. However, we note that non-standard values of $[\mathrm{CNO} / \mathrm{Fe}]>0$, as has been found in the M15 planetary nebula (Peimbert 1973) could alleviate these problems, and restore a more conventional age for M15 through the Z_{CNO}-dependence of the age in the above equation. This would also significantly affect the colours of the HB models, and will be further discussed in the comparison with stellar evolution.

3.4 oosterhoffi and oosterhoff il clusters

The Oosterhoff dichotomy has been the subject of a number of investigations as to its precise nature and underlying physical causes. Sandage (1959) proposed a luminosity difference between the groups, Stobie (1971) suggested that either a mass or a luminosity difference (or both) could be responsible and van Albada \& Baker (1973) pointed out the possible importance of the direction of evolution through the instability strip, combined with hysteresis in the mode of pulsation, coupled with mass/luminosity differences between the groups. These, and other, investigations were hampered by the lack of accurate colours for the cluster RR Lyraes, particularly those of group II, which made it impossible to draw firm conclusions. The colours (and hence effective temperatures) are crucial to the interpretation since they enable physical parameters to be derived directly using pulsation theory (as discussed earlier in this paper) but furthermore, enable a tie-in with the evolutionary properties of horizontal branch stars via stellar structure models, thence allowing in principle all the physical parameters of interest to be derived.

The availability of new colour data for the two most populous group II clusters M15 (SKS) and ω Cen (BDE), and other clusters led Sandage and his collaborators (SKS, Sandage 1981b) to propose, using pulsation and evolution theory that the dominant, and probably sole property responsible directly for the Oosterhoff effect amongst clusters is indeed the
luminosity of the RR Lyraes．Sandage（1982a）further showed that，rather than being a discrete effect，the clusters of each group possess a range in luminosity（giving rise to the observed range in the period shift）that is essentially continuous in nature，although with a paucity of clusters at intermediate period shifts（between the Oosterhoff groups）that gives rise to the observed dichotomy in mean period．Although there is still no clear understanding of this paucity，Rood（1973）showed that such apparently discrete effects can be produced with pseudo HR diagrams of cluster horizontal branches where the relevant physical parameters are varied continuously．

A further important effect discussed by Sandage concerns the correlation of the mean period shift with heavy element abundance amongst the clusters．Although it was earlier widely recognized that the Oosterhoff groups were related to abundance，since the clusters of group II were notably more metal－poor than those of group I，Sandage confirmed the existence and nature of a strong correlation amongst many clusters and more importantly， emphasized its fundamental significance in the study of the overall cluster properties，in particular in the derivation of cluster ages．

In view of the wide scope of Sandage＇s discussions of this problem we believe it appro－ priate here to concentrate on those aspects in which the new improved colour data presented here affect the conclusions drawn in his series of papers．These are essentially of two kinds， those which provide a more exact description of the behaviour of the M15 RR Lyraes（and how they differ from those in group I clusters）and the derivation of pulsational para－ meters，and those which concern the overall objectives of understanding the Oosterhoff effect in terms of observed cluster properties and pulsational and evolutionary theory．

In this section we concentrate on the first aspect and discuss the observed properties of the Oosterhoff groups，mainly as manifest by the most populous clusters of each group，M15 and M3．In the next section we consider the evolutionary aspects and conclude with a dis－ cussion of the Oosterhoff effect as far as it can be understood in the light of our discussion．

The Oosterhoff effect is illustrated schematically in Fig． 22 （taken from Dickens 1982， fig．1）which compares the mean loci of the period－amplitude relations of M15 and M3 with

Figure 22．Correlation of blue amplitude，A_{B} ，with $\log P_{0}^{\prime}$ for the clusters M15，M3（schematic）and ω Cen（symbols）．P_{0}^{\prime} is the fundamental period corrected for luminosity dispersion within each cluster． For c－type variables，the transformation $\log P_{0}^{\prime}=\log P_{1}^{\prime}+0.125$ has been applied．The larger symbols have a higher weight．
individual data points for RR Lyraes in ω Cen（Dickens \＆Bingham，in preparation）．Data for M3 are taken from Sandage（1981b）；note that the \log of the fundamental period $\log P_{0}^{\prime}$ de－ fined earlier is used for all variables．The main feature giving rise to the mean period difference is seen to be a shift in $\log P_{0}^{\prime} \sim 0.05$（ab－types）or ~ 0.08（ c－types）between the two clusters． The distribution of the variables with period also affects the derived mean period and reference to the original diagrams will show that the large concentration of large amplitude $a b$－types in M3（see Sandage 1981b，fig．3），which are essentially absent in M15，contributes strongly in weighting the mean period towards the short period end of the distribution．Note also that the overall range of periods in M3 is much greater than in M15，having small amplitude，short period and long period tails to the distributions that are essentially absent in M15．This underlines the fact that the differences between clusters of each Oosterhoff group cannot be expressed simply as a period shift．The location of the ω Cen variables （Oosterhoff group II）is also not simply explained by a period shift since the loci are signi－ ficantly different again from either cluster．Indeed ω Cen introduces a further complication in that the variables within it have a range in abundance larger than the difference in abun－ dance between M3 and M15 yet do not define distinct period－amplitude relations．If，there－ fore，the abundance is an important factor in controlling the RR Lyrae periods，directly or indirectly，then yet another factor must be operating within ω Cen giving rise to a different behaviour，since the differences exhibited in this diagram are much larger than the observa－ tional errors in either parameter．A full treatment of the new ω Cen data will be given elsewhere（Dickens \＆Bingham，in preparation）．

The behaviour of the amplitude as a function of temperature through the instability strip is illustrated in Fig． 23 in which $\log T_{e}$ as derived from the equilibrium colours $(B-V)_{\mathrm{eq}}$（see

Figure 23．Blue amplitude as a function of $\log T_{e}$ for RR Lyraes in M15（circles）and M3（triangles）．Open symbols denote c－type variables，those with vertical bars exhibiting multimode behaviour．Note that the M3 data points are plotted with respect to the ordinate scale on the right of the diagram，displaced from those of M15（left ordinate）to show the two clusters separately．The solid line shows the position of the mean M3 relations referred to the left hand ordinate（i．e．directly comparable to the M15 data points）． Effective temperatures are derived from the $(B-V)_{\text {eq }}$ colours using temperature scales from BDE and reddenings of $E(B-V)=0.00(\mathrm{M} 3)$ and 0.10 （M15）．

Section 3.2) is plotted against blue amplitude for the clusters M15 and M3. (Values of $(B-V)_{\mathrm{eq}}$ for M3 have been calculated from the data given by Sandage, 1981b, table 2). The solid lines indicate the mean loci (dashed lines) of the M3 variables superimposed on the M15 points. Within each cluster there is a smooth change in mean amplitude across the instability strip, broken by the essentially sharp transition associated with the change in pulsation mode, which occurs close to $\log T_{e}=3.840$ in both clusters. The multimode variables in either cluster can be seen to occur precisely at, or very close to, this transition temperature suggesting very strongly that the multimode behaviour is intimately linked to whatever process is causing the mode-switching. Another important feature of the diagram concerns the uniqueness or otherwise of the amplitude $/ \log T_{e}$ relation over all clusters. It is clear that uncertainties in the reddening or the transformations from $(B-V)$ to T_{e} cannot bring the relations into agreement, since an improve match in the $a b$ - types would increase the difference in the loci of the c-types and vice versa. This is true whatever mean colour is used to determine the effective temperatures and is contrary to the conclusion of Sandage (1981a) that the amplitude/colour relation (plotted with colours corrected for differential blanketing and therefore equivalent to temperatures) does not change from cluster to cluster. This illustrates that amplitude should not be used as a fiducial parameter with which to compare cluster properties.

Finally, we compare the period-colour relations of M15 and M3 (in the theoretical frame) in Fig. 24 where the \log of the corrected fundamental period, $\log P_{0}^{\prime}$ is plotted against

Figure 24. Comparison of the $\log P_{0}^{\prime} / \log T_{e}(B-V)_{\text {eq }}$ relations of M15 and M3 (data from Roberts \& Sandage). Note that the ordinate scales are different for the data points of the two clusters. Although the uncertainties in the absolute registration of the temperature scales ($\sim \pm 0.008$ in $\log T_{e}$) must be kept in mind, the diagram represents the currently best estimate of the RR Lyrae temperatures. As such, it shows that the high temperature (and probably the low temperature) boundaries of the strip are very similar, the main difference between the clusters being the pulsational mode exhibited by the variables in the centre of the strip, close to the transition at about $\log T_{e}=3.840$, M15 is dominated by multimode variables, M3 by large amplitude $a b$-types. This property, coupled with the very different overall distributions of stars on the HB (Fig. 29) characterizes the main morphological difference between these clusters and, together with possible small mass and luminosity differences, provides the key to understanding the physical cause of the Oosterhoff phenomenon (see text).
$\log T_{e}(B-V)_{\text {eq. }}$. The mean location of the M3 variables in the M15 frame is indicated by the dashed line and shows that the principal difference between the clusters corresponds to a shift $\Delta \log P_{0}^{\prime}=0.065$, i.e. comparable to that exhibited in the period-amplitude relations of Fig. 22. The uncertainty in the absolute registration of the temperature scales, as discussed earlier, renders $\Delta \log P_{0}^{\prime}$ uncertain by $\sim \pm 0.03$. It can be seen that the high temperature boundaries and transition temperatures are essentially the same in both clusters, the variables in M3 extend to significantly cooler temperatures than those in M15. This might be expected on the basis of their HB morphologies (to be discussed) since M3 has a much greater population of RHB stars than M15 i.e. the M15 HB is becoming de-populated within the strip itself. The other principal difference between the clusters concerns the relative populations of each Bailey type in the neighbourhood of the transition zone, there being far more c-types in M15 than in M3, and far more ab-types (with the largest amplitudes) in M3 than in M15. There are also many more multimode variables in M15 than in M3, which may be related to this difference e.g. many of the multimode variables in M15 could be the counterparts of the large amplitude fundamental pulsators in M3, the preference for multimode behaviour arising by an unknown mechanism triggered by whatever physical parameter is causing the period shift between the clusters. Further reference to this will be made later in the comparison with stellar evolution.

In summary, the evidence provided in Figs $22-24$, supported by the analysis of six clusters by Sandage (1981b) suggests that whilst complicating subtle effects are present, a principal difference between clusters of each Oosterhoff group is characterized by a systematic shift in period at a given temperature. In understanding the Oosterhoff phenomenon we must now consider how this period shift is related to other cluster properties and to what extent such relations can be understood qualitatively and quantitatively in terms of stellar models. The details of the distribution of period with temperature and amplitude may also play a useful role.

Sandage (1982a) has addressed this problem and, as mentioned earlier, has found a good correlation, taken over many clusters, between period shift and heavy element abundance $[\mathrm{Fe} / \mathrm{H}]$. In view of the current controversy over the abundance scale for clusters, we have reexamined this correlation using new abundances obtained by Pilachowski et al. (1983) and

Figure 25. (a) Correlation of period shift determined by Sandage (1982) with metal abundance given by Pilachowski, Sneden \& Wallerstein (1983 PSW) for RR Lyraes in clusters with more than $8 a b$-type variables. (b) Correlation of period shift with the oxygen abundance determined by PSW. Note the better agreement of the oxygen deficient cluster NGC 4833. Arrows indicate lower limits. The straight lines are eye fits to the points.
used only clusters with sufficient variables for which a reliable period shift may be measured. The results are shown in Figs 25(a) and (b) in which $[\mathrm{Fe} / \mathrm{H}]$ and $[\mathrm{O} / \mathrm{H}]$ are plotted against ($\Delta \log P)_{\mathrm{s}}$ as given by Sandage. Fig. 25(a), essentially confirms the correlation found by Sandage, i.e. $\Delta \log P \sim-0.1 \Delta[\mathrm{Fe} / \mathrm{H}]$ (solid line). A similar effect is found in field RR Lyraes (e.g. Lub 1977; Kemper 1982) and thus the evidence now very strongly supports the idea that the heavy element abundance plays a fundamental role in the Oosterhoff problem. Note also the good correlation of $[\mathrm{O} / \mathrm{H}]$ with period shift, to be expected perhaps since oxygen is the dominant element of importance to HB stars (Rood \& Seitzer 1981). [The oxygen depleted, Oosterhoff II cluster, NGC 4833 (Pilachowski et al. 1983) fits better in Fig. 25b than in Fig. 25a.]

Finally, the $\log P_{0}^{\prime} / \log T_{e}(B-V)_{\text {eq }}$ relation for M3 (Fig. 24) allows the determination of the mean mass-to-light ratio for the RR Lyraes in this cluster, which we then take as representative of that for Oosterhoff I clusters in later discussion. Using the same precepts as for M15, we find
$\log \left\{M^{0.81} / L\right\}_{\mathrm{M} 3}=-1.85 \pm 0.03$
i.e.
$\Delta \log \left\{M^{0.81} / L\right\}_{\mathrm{M} 3-\mathrm{M} 15}=+0.07 \pm 0.04$
Thus if the mean mass is constant between the clusters, the variables in M15 are 0.18 mag brighter (bolometrically), the solution favoured by Sandage. Clearly a smaller luminosity difference will require a greater mean mass for the M3 variables. Note however, that Cox et al. (1983) have derived a multimode mass of $\sim 0.55 M_{\odot}$ for two variables in M3. Such a low mass would require $\{\log L\}_{\mathrm{M} 3}=1.64$, i.e. $\sim 0.3 \mathrm{mag}$ fainter than the RR Lyraes in M15. This point will be further discussed later.

3.5 COMPARISON WITH STELLAR EVOLUTION MODELS

Our objectives here are to address the following questions and to discuss the consequences.
(1) Are the pulsationally derived values of the mass and mass-to-light ratio understandable in terms of current horizontal branch models?
(2) Can the differences between M15 and M3 as regards their mean period shifts, pulsational masses and mass-to-light ratios be explained by current horizontal branch models?
(3) Can the morphology of the cluster horizontal branches, based on the considerations discussed in (1) and (2) above, be reconciled with current evolutionary tracks or tracks as they might be modified in a 'non-standard' framework?

3.5.1. The case of M15 alone

The tracks in Fig. 26 can be used to illustrate the overall situation. They have been taken, with interpolation, from Sweigart \& Gross (1976, SG) and show the general morphology of tracks in the instability region for appropriate values of M and Y, and with an appropriate core mass of $M_{\mathrm{c}}=0.475 M_{\odot}$. (Some hotter tracks are also shown, and will be referred to later.) Two values of the heavy element abundance are shown, corresponding approximately to those of M15 ($Z=0.0002$) and M3 $(Z=0.0005)$.

To make comparisons with the clusters, it is convenient to make use of linearized interpolation formulae, based on evolutionary models, which denote the relevant parameters of ZAHB models within the instability strip. Renzini (1977) has given such relations which, after slight reduction, become (assuming a red giant mass of $0.8 M_{\odot}$) for the core mass,

$$
\begin{equation*}
M_{\mathrm{c}}=0.4706+0.26(0.3-Y)-0.01(3+\log Z) \tag{8}
\end{equation*}
$$

Figure 26．Evolutionary tracks，derived by interpolation in the Sweigart－Gross grid，for models covering the range in Z thought to be appropriate to M15（solid）and M3（dashed）．The precise shapes and locations of the tracks may be slightly incorrect due to uncertainties in the method of interpolation but only very slight changes in the parameters would be needed to correctly register them．The tick marks correspond to the time intervals tabulated by Sweigart \＆Gross and generally occur at roughly equal time intervals．The location of the instability strip is shown schematically．
and，using this relationship to＇remove＇the core mass dependence on the HB，a ZAHB model at $\log T_{e}=3.85$（the centre of the instability strip）has
$\log L_{3.85}=1.70+1.168(Y-0.3)-0.072(3+\log Z)$ ，
$\log M_{3.85}=-0.209-0.230(Y-0.3)-0.072(3+\log Z)$ ．
Equation（8）is based on Rood＇s（1972）models and equations（9）and（10）on the horizontal branch models of SG．The model mass－to－light ratio within the instability strip depends essentially only on Y ，since from（9）and（10）we have
$\log \{M / L\}_{3.85}=-1.91-1.40(Y-0.3)$ ．
$\log \left\{M^{0.81} / L\right\}$ is of course a slowly varying function of $\log \{M / L\}$ but for reasonable masses （see below）， $\log \left\{M^{0.81} / L\right\}=\log \{M / L\}+0.04$ ．From here on，we drop the subscript 3．85， since the parameters given from the evolutionary models will always refer to values at \log $T_{e}=3.85$ ，and denote values obtained from the evolutionary models by the subscript＇evol＇． Allowing a small evolutionary correction（Fig．26）to $\log L$ for comparison with RR Lyrae values gives us finally
$\log \left\{M^{0.81} / L\right\}_{\text {evol，} \mathrm{RR}}=-1.40(Y-0.3)$ ．
The following table gives values of $\log L_{\text {evol }}$ as a function of M and Y

Values of $\log L_{\text {evol }}$

M	$Y=0.25$	$Y=0.30$
0.60	1.64	1.71
0.65	1.67	1.74
0.70	1.70	1.77

In comparison，the pulsational results from
$\log \left\{M^{0.81} / L\right\}_{\text {puls }}=-1.92 \pm 0.03=A_{\text {puls }}$
（where A is the＇mass－to－light＇parameter and is a function of P, T_{e} as defined earlier）require the following values of $\log L_{\text {puls }}$ as a function of $A_{\text {puls }}$

Values of $\log L_{\text {puls }}$

M	$A=-1.85$	$A=-1.89$	$A=-1.92$	$A=-1.95$
0.60	1.67	1.71	1.74	1.77
0.65	1.70	1.74	1.77	1.80
0.70	1.72	1.77	1.80	1.83

It can be seen that within the uncertainties of the pulsationally derived values of M and $\log L$ ，agreement with the evolutionary model values is possible，but only if $Y \gtrsim 0.3$ ．As shown earlier，such a value of Y is not inconsistent with those derived solely from pulsation theory．For $Y=0.3, M=0.7$ and $\log L=1.77$ the upper tracks in Fig． 26 should therefore be sufficiently representative of the M15 RR Lyraes to allow interpretation of their distribution in the HR diagram in terms of the models．Note，however，that a more plausible lower helium abundance，preferred from our previous analysis，of $Y \sim 0.25$ predicts a lower luminosity （ $\Delta \log L \sim 0.1$ ）in the evolutionary models than required by the pulsational results．

Similar considerations have led Caputo et al．（CCG 1983）to propose a non－standard （denoted by them＇non－canonical＇）frame of evolutionary models in which the［CNO／Fe］ abundance ratio and the core mass are allowed to vary within the frame，and are different from the＇canonical＇values in the standard evolutionary frame（e．g．SG）．There is some observational support for a variable［CNO／Fe］from observations that［ O / Fe ］in population II stars（Sneden，Lambert \＆Whitaker 1979；Barbuy 1981）and disc stars（Clegg，Lambert \＆ Tomkin 1981）is enhanced and additional variations in core mass might be expected on theo－ retical grounds，for example through core rotation affecting the core mass at helium flash． CCG derive a linear approximation for the effects on the mass－luminosity parameter A which，after allowing a small evolutionary increase in $\log L$ as before，becomes
$A=1.52+1.2 Y+2.3 D M_{\mathrm{c}}+0.03[\mathrm{CNO} / \mathrm{Fe}]$
where $D M_{\mathrm{c}}$ is the difference in core mass from the standard value．Table 11 illustrates these effects on the evolutionary masses and luminosities in the range of interest．It can be seen that for $Y=0.25$ the pulsation results require at least an increase in core mass whereas for the $Y=0.30$ case，agreement can just be achieved within the extreme uncertainty of $A_{\text {puls }}$ with $D M_{\mathrm{c}}=0$（no rotation）and $[\mathrm{CNO} / \mathrm{Fe}]=0$（no enhancement），i．e．the standard case，a

Table 11．Masses and luminosities of non－standard models according to equation（12）．

Y	0.25	0.25	0.25	0.25	0.30	0.30	0.30	0.30
DM_{C}	0	0	0.03	0.03	0	0	0.03	0.03
$\left[\mathrm{CNO} / \mathrm{F}_{\mathrm{e}}\right]$	0	1	0	1	0	1	0	1
A	1.82	1.85	1.89	1.92	1.88	1.91	1.95	1.98
$(10 \mathrm{~L})_{\mathrm{M}=0.60}$	1.64	1.67	1.71	1.74	1.70	1.73	1.77	1.80
$(\log \mathrm{~L})_{\mathrm{M}=0.65}$	1.67	1.70	1.74	1.77	1.73	1.76	1.80	1.83
$(\log \mathrm{~L})_{\mathrm{M}=0} .70$	1.70	1.73	1.77	1.80	1.76	1.79	1.83	1.86

result found earlier. However, for the most probable values of $M_{\text {puls }}=0.65 M_{\odot}, \log$ $L_{\text {puls }}=1.77 L_{\odot}$, departure from the standard models is required. We further remark that only a modest core rotation is needed to produce an increase in M_{c} of $0.03 M_{\odot}$. We find $\Delta M_{\mathrm{c}}=138 \Delta \omega$ (Renzini 1977, p. 182) where $\Delta \omega$ is the difference from zero angular velocity in $\mathrm{rad} \mathrm{s}^{-1}$. Thus for $\Delta \omega=2.10^{-4}$, a typical main sequence value, $\Delta M_{\mathrm{c}}=0.028 M_{\odot}$. This is all that is needed to ensure a precise match with the pulsation results, even for the lower limit of $Y=0.23$.

In summary, the pulsation results for M15, at the limit of the estimated uncertainties can just be reconciled with predictions of current stellar evolution models, but only if $Y \sim 0.30$. If $Y \sim 0.25$ the models predict a lower luminosity than indicated by pulsation theory. Relaxing the standard frame, as demonstrated by CCG enables agreement (though again at the edge of the range of uncertainty allowed) with the expected behaviour of non-standard models having modest core rotation and $Y=0.3$. The preferred pulsational values of $M=0.65 M_{\odot}, \log L=1.77 L_{\odot}$ require both core rotation and [CNO/Fe] >0 for agreement.

It is relevant here to point out a problem posed by the mass-to-light ratio obtained from the period-colour relation of M3 (Fig. 24), if the mean mass of the M3 RR Lyraes is indeed $0.55 M_{\odot}$ as deduced from two multimode variables in M3 by Cox et al. (1983). Since $A_{\mathrm{M} 3}=-1.85 \pm 0.03$ (Fig. 24), $M_{\mathrm{M} 3}=0.55 M_{\odot}$ implies $(\log L)_{\mathrm{M} 3}=1.64(\sim 0.3 \mathrm{mag}$ fainter than the M15 RR Lyraes). Although it would appear from Table 11 that consistency with the standard frame would be achievable with $Y \sim 0.27$, inspection of the SG grid reveals that models with any reasonable core mass are far too blue to reach the instability strip (except in a very rapid 'final' phase of HB evolution). Clearly, extrapolation of the above linear inter-' polation formulae is not appropriate here. Moving to the non-standard frame worsens the problem, therefore throwing into question the multimode mass determination for M3 and consequently adding a note of uncertainty to the M15 result. If the masses of the M3 variables are similar to those in M15, then the larger value of A for M3 enables consistency to be achieved within the standard frame at values of $Y<0.3$ (see Table 11), i.e. values of Y less than those required to fit the M15 pulsational results into the standard frame.

3.5.2 Comparison of M15 and M3: mean quantities

Understanding the Oosterhoff problem centres on the interpretation of the differential period shifts from cluster to cluster, as typified by the comparison between M15 and M3 for which we have derived
$\Delta\{\log P\}_{\mathrm{M} 15-\mathrm{M} 3}=0.065 \pm 0.03$ at constant T_{e}, and
$\Delta\left\{\log M^{0.81} / L\right\}_{\mathrm{M} 15-\mathrm{M} 3}=-0.07 \pm 0.04$.
The pulsation equation (2) may be used in conjunction with the linearized interpolation formulae (9), (10) for standard models given earlier to see if such a period shift would be predicted by the models. From (2) we have
$\Delta \log P=-0.68 \Delta \log M+0.84 \Delta \log L$
Table 12 indicates values of the parameters needed to satisfy this equation. Substituting for $\Delta \log M$ and $\Delta \log L$ in (9) and (10) yields the prediction, for ZAHB models, that
$\Delta \log P=1.137 \Delta Y-0.011 \Delta \log Z$
Values of $\Delta \log P$ as a function of $\Delta Y, \Delta \log Z$ according to (14) are given in the following table:

Values of the predicted period shift, $\Delta \log P$, based on ZAHB models

$\Delta \log Z$	-0.25	-0.50	-1.00
$\Delta Y=0$	0.003	0.006	0.011
$\Delta Y=0.05$	0.060	0.063	0.068

Table 12. Mass and luminosity differences between M15 and M3 needed to satisfy the pulsation equation (13).

$(\Delta \log M)$	$\text { M } \quad / \mathrm{M}$	M	($\Delta \log \mathrm{L}$)	$(\Delta M \quad)$
M15-M3	M15 M3	$\text { if } \underset{M 15}{M 3}=0.65 \mathrm{M}_{9}$	M15-m3	bol M15-M3
0.0	1.0	0.65	0.08	0.20
-0.047	0.90	0.72	0.04	0.10
-0.096	0.80	0.81	0.0	0.0

It can be seen that the models fail to predict a significant period shift between two clusters of differing metal abundance unless the helium abundance also differs. In the particular case of M15 versus M3, $-0.5 \leqq \Delta \log Z \lesssim-0.2$ depending on whose abundances are used (e.g. see Pilachowski et al. 1983, PSW). Thus the observed period shift of $\Delta \log$ $P=0.065 \pm 0.03$ would require a difference in Y between the clusters ~ 0.05 in the sense that the more metal-poor cluster (M15) would have a higher Y. The same conclusion was reached by SKS following a somewhat different route. Generalizing the problem to many clusters, Sandage has derived the following correlation between period shift and metal abundance
$\Delta \log P=-0.116 \Delta[\mathrm{Fe} / \mathrm{H}]$
based on Zinn's (1980) abundances. As discussed earlier (Section 3.4), we find $\Delta \log P=$ $(-0.094 \pm 0.018) \Delta[\mathrm{Fe} / \mathrm{H}]$ essentially confirming Sandage's result. Thus the sensitivity of $\Delta \log P$ to $[\mathrm{Fe} / \mathrm{H}]$ required by the observations is an order of magnitude higher than that predicted by standard ZAHB models, equation (14), unless Y is inversely correlated with Z according to $\Delta Y \sim-0.08 \Delta \log Z$. Sandage (1982a) has again reached a similar conclusion. Thus one has either to accept such an anti-correlation (arising perhaps through additional Z-dependent envelope enrichment of helium during evolution) within the framework of existing HB models or search for another explanation which of necessity will require either a non-standard frame and/or some change in the physics of the models. Renzini (1983) has discussed this question and suggests that, since increasing [CNO/Fe] will not have a sufficiently large effect on $\Delta \log P / \Delta[\mathrm{Fe} / \mathrm{H}]$ (based on Rood \& Seitzer 1981), one should seriously question the input physics. He suggests that there are grounds for increasing the sensitivity to metal abundance of the opacities in the HB models which, when coupled with the observed trend in $[\mathrm{O} / \mathrm{Fe}]$ with $[\mathrm{Fe} / \mathrm{H}]$ are likely to be able to increase $\Delta \log P / \Delta[\mathrm{Fe} / \mathrm{H}]$ to the observed value.

Alternatively, CCG have pointed out that the inverse correlation between Y and $[\mathrm{Fe} / \mathrm{H}]$ is removed in a non-standard frame if $D M_{c}$ and $[\mathrm{CNO} / \mathrm{Fe}$] increase with decreasing [$\mathrm{Fe} / \mathrm{H}]$. Indeed equation (12) and Table 11 indicate that a change in core mass is also required for any realistic value of [$\mathrm{CNO} / \mathrm{Fe}$], as was pointed out by Renzini. As discussed previously, an increase in core mass is produced by rotation which, to remove the $Y /[\mathrm{Fe} / \mathrm{H}]$ anti-correlation, must increase with decreasing Z, for which there is no obvious physical justification at
present. A further difficulty with this hypothesis is presented by the expected effects of rotation on the effective temperatures of the models, a higher rotation moving the models bluewards (Fusi Pecci \& Renzini 1975). If the distribution in rotation is Gaussian-like giving rise to a similar distribution in core mass on the HB , then the HB morphologies of M15 and M3 (e.g. see Fig. 29) require that amongst the RR Lyraes, we would expect to find comparable or even higher rotations on average in M3 than in M15, the converse of what is needed if M15 is to have a higher luminosity than M3 as a result of rotation. Thus in a nonstandard framework within which M_{c} needs to vary, other possible physical causes must be sought. In this connection, Renzini (1983) has pointed out that an underestimate of the electron conduction opacity coefficients in the partially relativistic regimes of the helium cores would lead to an underestimate of the core mass.

3.5.3 The horizontal branch morphology

We have seen in the previous sections that for values of $Y \leqslant 0.25$, currently thought to be most plausible, current HB models cannot explain (1) the luminosity of the RR Lyraes in M15 derived from pulsation theory alone, the predicted model luminosity being too faint in $\log L$ by ~ 0.1 and (2) the correlation of observed period shift with metal abundance between M15 and M3, or over a range of globular clusters, unless Y is anti-correlated with $[\mathrm{Fe} / \mathrm{H}]$, through mixing or some other unknown mechanism.

Despite these difficulties, it may be useful to compare the observed distribution of RR Lyraes in the HR diagram with theoretical predictions. It is important to attempt such a comparison, since the availability of accurate colour data for many variables in the principal clusters of each Oosterhoff group might shed further light on the cause of the Oosterhoff effect, over and above the mean properties of the groups that have been discussed already. Two such aspects concern the appropriate direction of evolution through the instability strip and the nature of the transition zone, aspects that have provided an important stimulus through the van Albada \& Baker (1973) interpretation of the Oosterhoff effect and subsequent work (Stellingwerf 1975). Comparison with standard evolutionary tracks should be a reasonable procedure since the track morphology is unlikely to change dramatically, except perhaps to have variation in the extent of the loops if the opacities are increased (Renzini 1983), and changes in [CNO/Fe] can be simulated within the standard grid by appropriate adjustments to Z (since CNO is the important abundance parameter on the HB).

Fig. 27 shows the HR diagram of horizontal branch stars in M15, including the RR Lyraes, within an annular region between radii $r=1.9 \mathrm{arcmin}$ and $r=5.0 \mathrm{arcmin}$. The colours of the non-variable stars are taken from Buonanno et al. (1983a). Fig. 15 shows the histogram of the colour distribution along the HB discussed earlier. Fig. 28 shows the same stars plotted in a $\log L / \log T_{e}$ diagram. For the non-variable BHB stars with $B-V>0.07$, temperatures and bolometric corrections were obtained from the individual $V, B-V$ observations using BK. For the hotter group of BHB stars, the $V, U-V$ diagram for the individual stars was used to define a mean relation, for which temperatures and bolometric corrections are given as a function of $(U-V)$ from BK. Temperatures for individual stars were derived from their observed V magnitudes via the mean $V / U-V$ relation whereas bolometric corrections were obtained directly from $U-V$, again using BK models. This procedure reduces the large scatter produced by even small errors in the observed colours if they are used directly with the BK grid to derive temperatures, at the same time retaining some dispersion reflecting the (effectively) smaller errors in V. Thus whilst the distributions of these stars in the HR diagram of Fig. 28, and in the histogram of Fig. 29a may not be truly representative of the 'theoretical' stellar distributions at the blue end of the HB , their mean locations should be

Figure 27．Colour－magnitude diagram of all horizontal branch stars within an annulus，defined by $1.9<r<5$ arcmin using present RR Lyrae data from Table $8\left[\langle V\rangle\right.$ and $\left.(B-V)_{\mathrm{eq}}\right]$ and that of Buonanno et al．for the non－variables．Note the obvious gaps or low density regions at $B-V=0.07,0.25$（see Fig．15） and the sprinkling of brighter stars away from the principal HB population including both non－variable and variable stars．

Figure 28．As Fig．27，but plotted in the theoretical $\log L / \log T_{e}$ framework．The precise location of the hot group of BHB stars is uncertain observationally for reasons discussed in the text，but they do indicate the general region of the theoretical HR diagram occupied by the stars，which extend to temperatures around 17000 K ．The precise locus of these stars is also very sensitive to the bolometric corrections used， which in this case were taken from Buser \＆Kurucz．
essentially correct，subject to the further uncertainties in the photometric calibration of the faint end of the HB，as discussed by Buonanno et al．（1983b），and the uncertainties in the models．The distribution with effective temperature remains clearly bimodal in M15，in strong contrast with that found in M3（Fig．29b），where the data are taken from diagrams published by Sandage \＆Katem（1982）．

Figure 29．A comparison of the distribution with temperature of stars on the HB of M15（a）and M3（b）． The latter is derived from diagrams published by Sandage \＆Katem．The distribution in M15 appears dichotomous with the peak of the main redder population occurring bluewards of the instability strip， whereas that in M3 is much more uniform，with the peak in the HB distribution to the red of the instability strip．

The uncertainty in Y and Z for M15 indicate，via equation 2.11 given by Renzini（1977）， an uncertainty in possible core masses of $(0.480) \pm 0.012$（for $M_{\mathrm{RG}}=0.8 M_{\odot}$ ）．Since the expected spread is relatively small，it will be sufficient for our purposes to consider models with a core mass of $0.475 M_{\odot}$ ，and interpolate in the SG grid for values of Y and Z of interest．Fig． 26 shows the location of interpolated tracks for $Z=0.0002$（e．g．M15）and $Z=0.0005$（e．g．M3）for three values of the helium content and for masses chosen to represent the instability strip region（ $\sim 0.7 M_{\odot}$ ）and the blue BHB region（ $\sim 0.6 M_{\odot}$ ）．It is evident that the track morphology is very similar until Y becomes quite close to 0．2．（Tick marks correspond to the time intervals along tracks given in the SG tables and mostly represent equal time intervals of 10^{7} yr．）Since $\Delta\{\log L\}_{3.85} \sim 3.2 \Delta M_{\mathrm{c}}$ and $\Delta\{M\}_{3.85} \sim 1.72 \Delta$ M_{c} ，an increase in core mass of $0.03 M_{\odot}$ would move the $M=0.68, Y=0.25$ model to approximately the position of the $Y=0.30$ model，for which M would then be 0.73 ．The shape of the track should be quite similar to that shown．Similarly，if $[\mathrm{CNO} / \mathrm{Fe}]=1$ ，this track would be appropriate for a model of mass $\sim 0.60 M_{\odot}$ with Y slightly higher than 0.30 （e．g．see SG，Rood \＆Seitzer 1981）．

Considering first the M15 case，we show in Fig． 30 the tracks for $Y=0.3$ superimposed upon the M15 $\log L / \log T_{e}$ diagram．（The higher Z tracks would be quite similar to lower Z tracks of a slightly higher mass．）The derived value of $\log L=1.77$ has been used to set the ordinate scales．It can be seen that for $\log T_{e}<4.0$ there is acceptable agreement with the evolutionary tracks in terms of the detailed characteristics of their evolutionary behaviour． We believe the errors in $\log L$ and T_{e} to be sufficiently small to make it unlikely that a single evolutionary track can account for the observed distribution．It is more likely that the clumpy distribution and observed spread of points is a natural consequence of the variable rates of evolution typical of these tracks，with some smearing of the distribution in tem－

Figure 30．Evolutionary tracks for $Y=0.3$ shown superimposed on the M15 HR diagram．Satisfactory representation of the main part of the M 15 HB would be possible with a mass distribution characterized by a dispersion of a few hundredths of a solar mass and values of Y, Z, M and L within the formal uncer－ tainties of those derived pulsationally（ M, L, Y ）or observed（ Z ）（see text）．A clumpy low mass tail contributing to the non－uniform distribution displayed in Fig． 15 is also suggested．Note that the dashed track shown for $Z=0.0005$ would be quite similar to a lower Z track of slightly higher mass．
perature expected for a spread in mass amongst the RR Lyraes．The few stars lying away from the main clumps occur at the brighter luminosity expected for a more advanced evolu－ tionary stage．The location of the hot clump of BHB stars is less satisfactory，although it must be kept in mind that the luminosities and temperatures for these stars are rather uncertain，for reasons stated earlier．Indeed the sharp break in temperature around log $T_{e}=4.0$ is impossible to explain with a theoretical HB for which the physical parameters vary continuously．It looks as though a clumpy low mass tail would be required to explain the distribution of the hotter BHB stars．

As is evident from the preceding discussion，the fits shown are not unique，in that small differences in the choice of total mass，core mass，Y and Z allow various combinations which could lead to consistency with the observations．Our main concern here is to show that the distributions of the RR Lyraes，and stars in neighbouring regions of the HB are broadly con－ sistent with that expected from the evolutionary tracks of approximately the correct parameters．

The above considerations indicate that the bulk of the RR Lyraes in M15 are in an early stage of evolution from the ZAHB evolving through the instability strip from right to left， after the initial small excursion redward as they first leave their ZAHB location．As mentioned earlier，this pattern of evolution will only be significantly changed if Y becomes close to 0.2 where there are much smaller temperature excursions through most of the HB lifetime．It is important to consider whether such a low value of Y could also lead to accept－ able agreement between pulsation and evolution parameters as regards the expected distribu－ tion of stars in the HR diagram appropriate to those parameters．Inspection of Fig． 26 shows that a fit of the $Y=0.2$ track to M15 would require a luminosity of $\log L \sim 1.55$ or less，as expected from considerations given earlier．Moving to a non－standard frame to match the evolutionary parameters with the pulsational results would require $D M_{\mathrm{c}}>0.03$ and
[CNO/Fe] >1 to give $M \gtrsim 0.7$ and $\log L \sim 1.77$. These parameters and the retention of the $Y=0.2$ track morphology could also probably satisfactorily account for the appearance of the HB , but would require a more clumpy initial mass distribution to produce the observed non-uniform distribution of stars between $\log T_{e}=3.8$ and $\log T_{e}=3.94$. Evolutionary effects would then be less important than the case with higher Y in determining the distribution along the HB. However, since we believe Y to be $\gtrsim 0.23$, this situation is rather extreme and therefore it is more likely that tracks of the kind shown in Fig. 30 are appropriate to the M15 variables.

Do these considerations also apply to M3? From the point of view of HB morphology, one obvious difference between the cluster horizontal branches, as indicated in the histograms in Fig. 29 is that the mean HB of M3 is shifted redwards from that of M15, giving rise to the significant population of RHB stars, the filling of the instability strip with RR Lyraes and the absence of the hotter BHB stars found in M15. The distributions in the redder parts of the HBs would be reasonable for a simple shift in the mean location of the ZAHB caused solely by the difference in Z between the clusters, as illustrated by the broken track in Fig. 30. However, this would not explain the larger shift in the blue HB or why the gap in the M15 BHB vanishes in such a transformation. We have seen earlier that if the only difference between M3 and M15 is one of abundance, the period shift would not be predicted within the standard frame. Clearly, similar considerations to those discussed above for M15 could equally well be applied to M3 in order to obtain the appropriate 'non-standard' values of M and L to match the dashed tracks in Fig. 30. We also note that consistency with the standard models can only be achieved from the pulsational mass-to-light ratio of M3 if $Y \gtrsim 0.3$ and we take the lower error limit to $\log \left\{M^{0.81} / L\right\}=-1.88$ and accept $M \gtrsim 0.77$ (i.e. ignoring the result from the multimode variables in M3). Note also that in M15 this was achieved by taking the upper limit to $\log \left\{M^{0.81} / L\right\}=-1.89$. This effectively minimizes the difference in the observed period-colour relations (and hence $\Delta \log P$) which we believe to be unrealistic and unlikely in view of the widespread nature of the correlation of period shift with $[\mathrm{Fe} / \mathrm{H}]$ over many clusters.

It seems more likely, therefore, that the overall morphology of the evolutionary tracks in the instability strip is very similar for the horizontal branches of M3 and M15, the mean of the distribution being shifted to the red in M3 through a change in one or more of the parameters discussed. Since the overall pattern of evolution is therefore similar, this would appear at first sight to dispose of the interpretation of part of the Oosterhoff effect in terms of a difference in morphology (and hence dominant direction of evolution) of the evolutionary tracks appropriate to each Oosterhoff group, as put forward by van Albada \& Baker (1973). Clearly the star-by-star shift in period at a given temperature, amplitude, or light curve shape is an important contributor. However, if the pattern of evolution within the horizontal branches of M15 and M3 is really the same, what is the explanation for the very different populations and distributions with period of $a b$ - and c-types within these clusters? We discuss this point in more detail in the next section.

3.5.4 The Oosterhoff dichotomy within M15 and M3

A comparison of the properties of RR Lyraes in M3 (group I) and M15 (group II) typifies the Oosterhoff problem and is illustrated in Fig. 24, which shows the $\log P_{0}^{\prime} / \log T_{e}$ relations of these two clusters and has been described earlier (Section 3.4). The mean period shift and different modal behaviour around the transition temperature combine to produce the difference in mean period of $a b$ - and c-types between clusters of each Oosterhoff group.

We concentrate attention now on the principal difference between the distributions with
temperature, which can be seen most clearly in the amplitude-colour relations of Fig. 23. Excluding (for an unknown reason!) the one large-amplitude $a b$-type in M15, the transition temperatures probably differ by less than $0.01 \mathrm{in} \log T_{e}$ and may in fact be identical in the two clusters at $\log T_{e}=3.84$. The essential difference between them can be seen to be in the larger amplitude and frequency of the $a b$-types in M3 on the cool side of, but near to the transition temperature, and the converse situation with the c-types on the hot side. Lying closest to the transition temperature are found the multimode variables in either cluster. Can these differences and similarities be understood in terms of the evolutionary tracks (Fig. 26) and current ideas on pulsation theory? If one allowed some residual uncertainty in the precise locations of the transition temperatures, such distributions would have been a natural consequence of a finite either/or region of width ~ 0.02 in $\log T_{e}$ in the middle of the strip, as found by Stellingwerf (1975), together with predominantly left-to-right evolution in M15 and right-to-left evolution in M3, as proposed by van Albada \& Baker (1973). However, more recent theoretical work on pulsation (e.g. see report by Cox 1980) has essentially removed the second transition line at these luminosities and extended the either/or region over most of the instability strip, from the FBE to the red edge (RE). If dominant evolution were left-to-right, the first harmonic pulsators would populate the whole strip, whereas if it were right-to-left, a sharp transition would be observed at the FBE, as appears to be the case in both clusters. Furthermore, the preceding discussion favours a similar track morphology for both M15 and M3, the main difference being the higher Z for M3 (and/or 'non-standard' parameters) shifting the tracks redward from M15 and significantly populating the RHB, as illustrated by the upper right evolutionary track shown in Fig. 26. In fact even if the lower Y of ~ 0.2 were appropriate to M15, the lack of significant track excursion in temperature over most of the HB lifetime (see lower tracks in Fig. 26) would greatly diminish the effect of the rapid left-to-right evolutionary phase on the final HB distribution.

There may well be small differences in mass and luminosity between the two clusters, reflected in the observed period (and other) differences as has been discussed earlier and elsewhere (see Dickens 1982, for a recent assessment) but an outstanding question remains, what is the reason why, in the neighbourhood of the transition region, there are many more first harmonic pulsators in M15-like clusters (Oosterhoff II) than in M3-like clusters (Oosterhoff I)? A possibly important aspect of this problem concerns the multimode variables which occur only in this regime in clusters of both Oosterhoff groups. [The two cases in M3, V68 and V87 have $\log T_{e} \sim 3.840$ based on photometry given by Roberts \& Sandage (1955) although the photometry is of lower precision.] The time-scales for modeswitching are currently thought to be much too fast (Cox et al. 1983) to expect to see any caught in the act of switching. Therefore it seems more likely that multimode behaviour is a mode of pulsation stable over time-scales comparable to evolutionary time-scales within the instability strip. If the upper tracks of Fig. 26 or the tracks in Fig. 30 are representative of M15 (solid) and M3 (dashed), then the distributions of stars with $\log T_{e}$ given in Fig. 29 suggests that many M3 stars start their evolution on the RHB, or near the red edge of the strip whereas very few, if any, in M15 do.

Thus virtually all the RR Lyraes in M15 must begin their HB life within the strip whereas many RR Lyraes in M3 have evolved into the strip from cooler temperatures. Dominant evolution is eventually to the blue, with the region bluewards of the FBE $\left(\log T_{e} \sim 3.84\right)$ populated by first harmonic (1 H) pulsators in both clusters. In M3, the RR Lyraes are well established in the fundamental mode and as they evolve to the blue, only switch mode when the growth rate of IH in F becomes positive close to the FBE. Because the HB does not extend very far redward in M15, this region of the instability strip is likely to be dominated by stars near the beginning of their HB life-times and inspection of Fig. 26 shows that they
initially evolve redwards by ~ 0.01 in $\log T_{e}$ before changing their direction of evolution towards the blue. It seems plausible then on theoretical grounds that a significant fraction of stars found in this temperature regime in M15 are likely to be initially unstable to first harmonic or mixed-mode pulsation (being bluewards of the FBE), and will remain as dominantly 1 H pulsators throughout their subsequent evolution within the strip (on the grounds of track morphology). The morphology of the tracks alone will tend to increase the density of stars in this temperature regime over those in M3 by perhaps a factor of 3 or so, which would then contribute significantly to the observed population difference between the clusters. In addition to these effects, the time-scales and direction of the evolutionary approach to the ZAHB could be relevant or even crucial, as has been discussed by Caputo, Castellani \& Tornambé (1978).

It is interesting to speculate that since this intermediate region is dominated in M15 by variables exhibiting mixed-mode pulsation, that it is just in this region, in the neighbourhood of the transition edge that growth from zero amplitude develops into the stable mixed mode behaviour. Alternatively, it could be the preferred mode only at the transition edge, the much smaller number in M3 reflecting the relatively rapid evolution across the transition edge in that cluster.

Thus the very different frequency distributions with period, temperature and amplitude between RR Lyraes in clusters of each Oosterhoff group can plausibly be seen to arise naturally as a consequence of the likely morphology of the evolutionary tracks together with current ideas in pulsation theory. Inadequacies in the models are thought unlikely to significantly affect the track morphology, and therefore unlikely to effect these conclusions. However, non-standard parameters in the models, or improved physics may well be needed to reconcile the derived physical parameters and in particular the correlation of Oosterhoff period shift with metal abundance. Only when such improvements have been carried out can one attempt to tie down more precisely the parameters involved.

Acknowledgments

We thank L. Rosino for making available the Asiago plate material, Alvio Renzini for helpful discussions, Dave Pike for help with the light curve fitting programs, Monica Everest for tracing the diagrams and Joy Hamblyn, Barbara Herbert, Lise Karen-Alun and Hilary Saunders for their typing services. CC and FFP acknowledge the hospitality of the Royal Greenwich Observatory during the plate measurements, CC acknowledges support of a NATO fellowship. This research was supported in part by the National Group of Astronomy (GNA) of the National Research Council of Italy (CNR).

References

Andrews, P. J., 1980. Star Clusters, IAU Symp. No. 85, p. 425, ed Hesser, J. E., Reidel, Dordrecht, Holland.
Arp, H. C., 1955. Astr. J., 60, 317.
Aurière, M. \& Cordoni, J.-P., 1981. Astr. Astrophys., 100, 307.
Baker, R. H. \& Baker, H. V., 1956. Astr. J., 61, 283.
Barbuy, B., 1981. Astrophysical Parameters for Globular Clusters, IAU Coll. No. 68, p. 85, eds Davis Philip, A. G. and Hayes, D. S., Dudley Obs. Report No. 15, New York.
Bell, R. A. \& Gustafsson, B., 1978. Astr. Astrophys. Suppl., 34, 229.
Bica, E. L. D. \& Pastoriza, M. G., 1983. Astrophys. Space Sci., 91, 99.
Brown, B., 1951. Astrophys. J., 113, 344.
Buonanno, R., Buscema, G., Corsi, C. E., Iannicola, G. \& Fusi Pecci, F., 1983a. Astr. Astrophys. Suppl., 51, 83.

Buonanno，R．，Corsi，C．E．\＆Fusi Pecci，F．，1984．Astr．Astrophys．，in press．
Buser，R．\＆Kurucz，R．L．，1978．Astr．Astrophys．，70， 555.
Burstein，D．\＆Heiles，C．，1978．Astrophys．J．，225， 40.
Burstein，D．\＆McDonald，L．H．，1975．Astr．J．，80， 17.
Butler，D．，1975．Astrophys．J．，200， 68.
Butler，D．，Dickens，R．J．\＆Epps，E．A．，1978．Astrophys．J．，225， 148.
Buzzoni，A．，Fusi Pecci，F．，Buonanno，R．\＆Corsi，C．E．，1983．Astr．Astrophys．，128， 94.
Cacciari，C．，1979．Astr．J．，84， 1542.
Cacciari，C．，1984．Astr．J．，89， 231.
Caputo，F．\＆Castellani，V．，1975．Astrophys．Space Sci．，38， 39.
Caputo，F．，Castellani，V．\＆Gregorio R．di，1983．Astr．Astrophys．，123， 141.
Caputo，F．，Castellani，V．\＆Tornambé，A．，1978．Astr．Astrophys．，67， 107.
Caputo，F．\＆Cayrel de Strobel，G．，1981．Astrophysical Parameters for Globular Clusters，IAU Coll． No．68，p．415，eds Davis Philip，A．G．\＆Hayes，D．S．，Dudley Obs．Report No．15，New York．
Clegg，R．E．S．，Lambert，D．L．\＆Tomkin，J．，1981．Astrophys．J．，250， 262.
Cohen，J．G．，1978．Astrophys．J．，223， 487.
Cox，A．N．，1980．Space Sci．Rev．，27， 475.
Cox，A．N．，1982．Pulsations in Classical and Cataclysmic Variable Stars，p．157，eds Cox，J．P．\＆Hansen， C．J．，Boulder，Colorado．
Cox，A．N．，Hodson，S．W．\＆Clancy，S．P．，1983．Astrophys．J．，266， 94.
Davis，C．G．\＆Cox，A．N．，1980．Current Problems in Stellar Pulsation Instabilities，NASA Tech．Memo 80625，p．293，eds D．Fischel，L．R．Lesh \＆W．M．Sparks，Washington DC．
Demers，S．\＆Wehlau，A．，1977．Astr．J．，82， 620.
Deupree，R．G．，1977．Astrophys．J．，214， 502.
Dickens，R．J．，1970．Astrophys．J．Suppl．，22， 249.
Dickens，R．J．，1972．Mon．Not．R．astr．Soc．，157， 281.
Dickens，R．J．，1982．Pulsations in Classical and Cataclysmic Variable Stars，p．182，eds Cox，J．P．\＆ Hansen，C．J．，Boulder，Colorado．
Dickens，R．J．\＆Flinn，R．，1972．Mon．Not．R．astr．Soc．，158， 99.
Dickens，R．J．\＆Saunders，J．，1965．R．Obs．Bull．， 101.
Filippenko，A．V．\＆Simon，R．S．，1981．Astr．J．，86， 671.
Fusi Pecci，F．\＆Renzini，A．，1975．Astr．Astrophys．，39， 413.
Hansen，R．B．，1979．Mon．Not．R．astr．Soc．，186， 875.
Harris，H．C．\＆Canterna，R．，1977．Astr．J．，82， 798.
Hartwick，F．D．A．，1968．Astrophys．J．，154， 475.
Hesser，J．E．，Hartwick，F．D．A．\＆McClure，R．D．，1977．Astrophys．J．Suppl．，33， 471.
Iben，I．，1968．Nature，220， 143.
Iben，I．，1971．Publ．astr．Soc．Pacific，83， 697.
Johnson，H．L．\＆Schwarzschild，M．，1951．Astrophys．J．，113， 630.
J ϕ rgensen，H．E．\＆Peterson，J．O．，1967．Zeitschrift fur Astrophys．，67， 377.
Kemper，E．，1982．Astr．J．，87， 1395.
Kron，G．E．\＆Guetter，H．H．，1976．Astrophys．J．，81， 817.
Kukarkin，B．V．，1974．The Globular Star Clusters Catalogue，Nauka，Moscow．
Lub，J．，1977．The RR Lyrae Population of the Solar Neighbourhood，PhD thesis，University of Leiden．
Menzies，J．，1974．Mon．Not．R．astr．Soc．，168， 177.
Mosley，D．R．\＆White，R．E．，1975．Bull．Am．astr．Soc．，7， 535.
Oosterhoff，P．Th．，1939．Observatory，62， 104.
Oosterhoff，P．Th．，1944．Bull．astr．Inst．Neth．，10， 55.
Pagel，B．E．J．，1982．Phil．Trans．R．Soc．Lond．A，307， 19.
Peimbert，M．，1973．Mem．Soc．R．Sci．Liege，Coll．8， 6 Ser．，Vol．5， 307.
Pike，C．D．\＆Meston，C．J．，1977．Mon．Not．R．astr．Soc．，180， 613.
Pilachowski，C．A．，Sneden，C．\＆Wallerstein，G．，1983．Astrophys．J．Suppl．，52， 241.
Preston，G．W．，1961．Astrophys．J．，133， 29.
Renzini，A．，1977．Advanced Stages of Stellar Evolution，p．184，eds Bouvier，P．\＆Maedier，A．，Geneva Obs．
Renzini，A．，1983．The First Stellar Generations．Mem．Soc．astr．Ital．， 54.
Roberts，M．S．\＆Sandage，A．，1955．Astr．J．，60， 185.
Rood，R．T．，1972．Astrophys．J．，177， 681.
Rood，R．T．，1973．Astrophys．J．，184， 815.

Rood，R．T．\＆Seitzer，P．O．，1981．Astrophysical Parameters for Globular Clusters，IAU Coll．No．68， p．369，eds Davis Philip，A．G．\＆Hayes，D．S．，Dudley Obs．Report No．15，New York．
Sandage，A．，1959．Astrophys．J．，129， 596.
Sandage，A．，1969．Astrophys．J．，157， 515.
Sandage，A．，1970．Astrophys．J．，162， 841.
Sandage，A．，1981a．Astrophys．J．，244，L23．
Sandage，A．，1981b．Astrophys．J．，248， 161.
Sandage，A．，1982a．Astrophys．J．，252， 553.
Sandage，A．，1982b．Astrophys．J．，252， 574.
Sandage，A．\＆Katem，B．，1977．Astrophys．J．，215， 62.
Sandage，A．\＆Katem，B．，1982．Astr．J．，97， 537.
Sandage，A．，Katem，B．\＆Kristian，J．，1968．Astrophys．J．，153，L129．
Sandage，A．，Katem，B．\＆Sandage，M．，1981．Astrophys．J．Suppl．，46， 41.
Sandage，A．\＆Smith，L．L．，1966．Astrophys．J．，144， 886.
Sandage，A．，Smith，L．L．\＆Norton，R．H．，1965．Astrophys．J．，144， 894.
Sandage，A．\＆Wallerstein，G．，1960．Astrophys．J．，131， 598.
Sawyer Hogg，H．，1973．Publ．David Dunlap Obs．，3，No． 6.
Schwarzschild，M．，1940．Circ．Harward College Obs．， 437.
Searle，L．\＆Zinn，R．，1978．Astrophys．J．，225， 357.
Shapley，H．\＆Sawyer，H．B．，1935．Harward Repr．， 116.
Smith，H．A．\＆Sandage，A．，1981．Astr．J．，86， 1870.
Smith，H．A．\＆Wesselink，A．J．，1977．Astr．Astrophys．，56， 135.
Sneden，C．，Lambert，D．L．\＆Whitaker，R．W．，1979．Astrophys．J．，234， 964.
Stellingwerf，R．F．，1975．Astrophys．J．，195， 441.
Stellingwerf，R．F．，1978．Astrophys．J．，224， 953.
Stobie，R．，1971．Astrophys．J．，168， 381.
Sturch，C．R．，1966．Astrophys．J．，143， 774.
Sturch，C．R．，1977．Publ．astr．Soc．Pacific，89， 349.
Sweigart，A．V．\＆Gross，P．G．，1976．Astrophys．J．Suppl．，32， 367.
Tuggle，R．S．\＆Iben，I．，1972．Astrophys．J．，178， 455.
van Albada，T．S．\＆Baker，N．，1971．Astrophys．J．，169， 311.
van Albada，T．S．\＆Baker，N．，1973．Astrophys．J．，185， 477.
van Albada，T．S．\＆de Boer，K．S．，1975．Astr．Astrophys．，39， 83.
van Albada，T．S．，de Boer，K．S．\＆Dickens，R．J．，1981．Mon．Not．R．astr．Soc．，195， 591.
Wehlau，A．\＆Potts，N．，1973．Variable Stars in Globular Clusters and in Related Systems，IAU Coll． No．21，p．95，ed Fernie，J．，Reidel，Dordrecht，Holland．
Wesselink，A．J．，1974．Astr．Astrophys．，36， 163.
Zinn，R．，1980．Astrophys．J．Suppl．，42， 19.

[^0]: * Present address: Space Telescope Science Institute, Homewood Campus, Baltimore MD 21218, USA.
 \dagger Present address: Space and Astrophysics Division, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX, UK.

[^1]: *Adopted periods and epochs are different from SKS

