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ABSTRACT 
A limit cycle driven by thermal instabilities in the accretion disk may account for the periodic outbursts of 

cataclysmic variables and certain X-ray transients. The outbursts will depend on specific properties of the vertical 
accretion disk structure such as convection, partial ionization, opacity, and viscosity. As a step toward 
understanding the physical processes that determine the time-dependent nature of accretion disks, we have 
undertaken a parameter study of the vertically explicit structure corresponding to steady-state, a-model, 
thin-disk accretion for accreting objects of 1 M0. Solutions are presented for 109 <;/*(cm) f^lO11; 10-14^ 
M(Moyr-1)^10-7; 10-4^a<;1.0. Particular attention is paid to the role of convection in the vertical 
structure and to the location of critical points which represent the onset of thermal instability. Optically thin 
conditions are also examined in detail. The presence of molecules at low temperatures gives rise to double-valued, 
discontinuous solutions separated by “forbidden” regions. We show that the temperature in quiescence is likely 
to be low (T< 2500 K) for the bulk of the matter. Quiescent temperatures of - 6000 K are possible in thermal 
equilibrium only for r < 7 X109 cm for a = 0.1. This will promote the storage of material in an outer, cold ring. 
Scaling laws are presented for the fundamental properties of the vertically explicit models, and these are used to 
derive time scales for various idealized phenomena. We present an ordering of three disk time scales. This 
ordering would enable one to discriminate between different models were reahstic characterizations of the time 
scales available. We compare the instability associated with hydrogen recombination with the instability 
associated only with the onset of convection. 
Subject headings: stars: accretion — stars: binaries — stars: dwarf novae — X-rays: bursts 

I. INTRODUCTION 

Mass transferred onto a compact companion in a binary 
system has a preferred sense of angular momentum and is 
thought to form a geometrically thin disk. Any viscosity will 
subsequently cause this material to spiral to smaller radii. The 
study of accretion disks has matured in the last decade (Pringle 
1981) but is still hampered by a lack of understanding of the 
physical nature of the viscosity. Time-dependent accretion 
phenomena provide a means by which empirical bounds can 
be put on the viscosity, but the cause of the time dependence 
is generally ill-understood, so the issues of viscosity and time 
dependence are coupled in a confusing manner. 

Although much attention has been focused on accretion 
disks by the revelations from X-ray astronomy concerning 
binary neutron star systems, the best laboratory for testing 
accretion disk theory probably remains the classical cata- 
clysmic variables (Robinson 1976). In these systems a star, 
normally a main-sequence dwarf, fills its Roche lobe and 
transfers mass onto a white dwarf. These systems can be 
studied at optical wavelengths where the disk may produce the 
bulk of the flux. Classical novae, aside from their rare thermo- 
nuclear outbursts, appear to accrete steadily at relatively high 
mass transfer rates, in excess of -10“9 M0 yr-1 (Smak 
1982&, 1983û). A long-standing problem is the origin of the 

outbursts of the dwarf novae for which the transfer rate is 
smaller. Dwarf novae erupt on time scales of months, pro- 
ducing an outburst lasting a week or so. Even without a 
fundamental understanding of the nature of the dwarf nova 
instability, these outbursts set some constraints on the viscos- 
ity. Observed decay times of dwarf nova outbursts show the 
viscosity coefficient in the disk to be of order 1015 cm2 s-1 

(Mantle and Bath 1983), much larger than molecular viscosi- 
ties which are of order 1 cm2 s_1. Hence, some additional 
viscosity, usually postulated to be turbulent or magnetic, must 
exist. Progress toward understanding the dwarf nova outbursts 
thus promises to lead to a more fundamental understanding of 
the viscosity in general. 

A popular hypothesis to account for the outbursts of dwarf 
novae has been that material is stored in an outer ring and 
then suddenly accreted onto the white dwarf (Osaki 1974; 
Smak 1971,1976; Hoshi 1979,1981,1982). The problem with 
this hypothesis has been the lack of any realistic physical 
basis. Several independent groups of investigators have re- 
cently realized that the key to understanding dwarf nova 
outbursts and related phenomena may be the study of accre- 
tion disks using realistic input physics to construct detailed 
models of the vertical structure. Such structure can naturally 
lead to thermal instabilities. The interplay of viscous heating 
with temperature-sensitive cooling resulting from diffusion or 
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convection can produce double-valued temperature solutions 
for a given disk surface density and transitions between these 
alternate states, depending on whether the heating or cooling 
dominates. The possibility is raised that matter will build up 
in a cooler, low-viscosity state and then undergo a sponta- 
neous transition to a hotter, high-viscosity state. 

Cannizzo (1981) explored the double-valued nature of verti- 
cal disk structure induced by partial ionization in the context 
of disks around supermassive black holes. Meyer and Meyer- 
Hofmeister (1981, 1982; hereafter MM1 and MM2, respec- 
tively), first presented the possibility of a limit cycle behavior 
in dwarf novae resulting from similar effects in the stellar case. 
Smak (1982a, b, 1983a, b) has also constructed models for 
disks in cataclysmic variable systems with detailed vertical 
structure and discussed the effect of such structure on the 
stability of the accretion flow. Cannizzo, Ghosh, and Wheeler 
(1982; hereafter CGW) presented vertically explicit models of 
stellar accretion disks including optically thin portions and 
pointed out the thermal nature of the instability implicit in the 
structure for temperatures associated with hydrogen recombi- 
nation. They showed that another thermal instability would be 
induced at lower temperatures, - 2000 K, if the outbreak of 
midplane convection resulted in an increase in viscosity com- 
pared to radiative regions with similar conditions of density 
and temperature. They argued that the instability associated 
with hydrogen recombination would tend to lead to outbursts 
beginning at small radii where little mass was stored and, 
hence, in bursts which were too frequent and of too low 
luminosity to correspond to observed dwarf novae. The low- 
temperature instability seemed to provide a better match to 
observations. If confirmed, this would provide another partial, 
if crude, constraint on the viscosity of accretion disk matter. 
Cannizzo, Wheeler, and Ghosh (1982, 1983) extended the 
argument that the low-temperature instability better repro- 
duced the observations. They pointed out that a smaller 
viscosity parameter in cold radiative regions may be physically 
plausible. Such regions will be devoid of turbulence associated 
with convection, and the partial ionization will be so low that 
magnetic flux will not be frozen in the gas, precluding an 
efficient dynamo. They presented preliminary results of time- 
dependent models of the resulting outburst which displayed 
recurrence times, luminosities, and decay times in reasonable 
accord with dwarf novae. They also discussed the application 
of the theory to certain types of X-ray transients. Faulkner, 
Lin, and Papaloizou (1983; hereafter FLP), Papaloizou, 
Faulkner, and Lin (1983; hereafter PFL), Smak (1983a), 
Mineshige and Osaki (1983), and Meyer and Meyer-Hofmeister 
(1984; hereafter MM4) have explored the vertical structure 
and have begun to address the complex question of the global 
response of the disk to repeated instabilities in the context of 
nonthermal equilibrium evolution. 

In §§ II and III of this paper we concentrate on under- 
standing the physics that determines the steady-state vertical 
structure of accretion disks for a wide range of conditions. We 
discuss the comparison of our results to those of other workers 
in some detail. The implications of our steady-state calcula- 
tions for time-dependent situations are explored and we give a 
brief discussion of observations in § IV, and our conclusions 
are summarized in § V. 

II. STEADY-STATE DISK THEORY 

a) Alpha Model Disks 

The general equations governing steady-state disk structure 
are the following: 
Viscous (shear) energy generation: 

e = rdtt/dr), (l) 

Hydrostatic equilibrium: 

VP = - pg, (2) 

Energy transport: 

F= -4/3 ac/Kp T3VT 

+ cpp(g/T)1/2i2/4 (Ivri -1vrad|)
3/2Ä, (3) 

where all symbols have their standard meanings and h is the 
unit direction vector of the convective flux. 

One approach to geometrically thin disk accretion is the 
a-theory of Shakura and Sunyaev (1973; hereafter SS). In this 
approach the viscous stress tensor is set equal to an unknown 
constant a<l times the pressure. SS solved for the disk 
structure by neglecting convection and invoking a vertical 
averaging procedure in which the gradient v is replaced by 
l/h, where h is the disk semithickness. This reduces the above 
differential equations to algebraic equations. The structure 
equations then become 

F/h = 3/2 atiP, (4) 

P/h = pti2h, (5) 

and 

F =4/3 ac/Kp T4/h. (6) 

One can also derive an equation relating energy flux to accre- 
tion rate. It is 

Fs = 3/UMQ2[l-ß]f(^Jr)], (7) 

where rwd is the radius of the white dwarf and ß is a parameter 
measuring the flux of angular momentum across rwd (Novikov 
and Thome 1973). These equations can then be solved alge- 
braically for a given equation of state and opacity. SS pre- 
sented analytic solutions for three regions: (i) P = Pr, /c = /ces; 
(ii) P = P$,K = Kes; and (iii) P = Pg,K = K0pT~7/2. A 
numerical integration of equations (l)-(3) over the vertical 
structure using reahstic opacities and thermodynamic parame- 
ters produces solutions which agree well with these “ vertically 
averaged” results if the solutions are free of convection. In 
particular, we find that midplane temperatures and surface 
densities agree to within - 20%-30% for given /*, M, and a if 
accurate coefficients for mean molecular weight p and 
Rosseland opacity k are used in the solutions given by SS. 
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b) Convection 

The assumption of pure radiative diffusion can lead to a 
seriously erroneous solution if v > Vad somewhere in the 
vertical structure. Suppose such a solution showed only a thin 
strip near the disk surface which was convectively unstable, as 
shown schematically in Figure la. If one then introduced 
convection in the unstable region, the temperature gradient in 
this strip would be decreased. In steady state with energy 
transport only in the vertical direction, the mass accretion rate 
determines the flux at a given radius (see SS) and hence the 
effective temperature in the one-dimensional geometry. The 
temperature gradient can be reduced in the convectively un- 
stable region only at the expense of inducing a superadiabatic 
temperature gradient in a deeper region which was originally 
convectively stable, as shown in Figure lb. A. fully consistent 
solution may turn out to be completely convective as in Figure 
1c. We and others find that precisely this extreme situation 
arises for solutions with convection induced by the “opacity 
peak” (see § Illbiii). Pure radiative solutions show only a thin 
convectively unstable strip near the surface, whereas solutions 
with radiative transport and convection give solutions with 
convection extending from midplane to surface, and midplane 
temperatures much smaller than those given by the purely 
radiative solutions. This is in contrast to stars where the 
extreme sensitivity of nuclear reaction rates to temperature 
tends to yield a fixed central temperature. The inclusion of 
convection in an outer superadiabatic region (Fig. Id) does 
not disturb the inner structure set by the nuclear burning but 
results only in a small change in the effective temperature (Fig. 
le) which can be accommodated at constant luminosity in the 
two-dimensional geometry by a change in radius. 

Tayler (1980) derived inequalities giving necessary condi- 
tions for convection to occur in disks with power-law expres- 
sions for opacity and viscosity. For gas pressure-dominated 
«-disks with K = KQpaTh the necessary condition for convective 
instability is3a+2fr>-2. For « = 0 or 1, the critical value 
for neutral stability is bcúx = -1 or -2.5, respectively. Hence, 
Tayler predicts that solutions with Kramers’s like opacity 
(tf«l,fr--3.5) should not be convectively unstable, which 
we find to be the case. However, as T decreases and ap- 
proaches 104 K, 6 becomes less negative and then becomes 
positive and large as the peak in Rosseland opacity is passed. 
Solutions with T = 104 K somewhere in their vertical structure 
are found to be convective just as are the layers of partial 
ionization in stars. 

Several investigators have constructed vertically explicit thin 
disk solutions for various assumptions concerning viscosity, 
opacity, and equation of state (Koen 1976; Vila 1978, 1980; 
Kozlowski, Wiita, and Paczyhski 1979; Lin and Papaloizou 
1980; Cannizzo 1981; Robertson and Tayler 1981), and very 
recently the relevance of such solutions to outbursts in binary 
systems has been recognized (MM1, MM2, MM4; Smak 
1982u, b, 1983u, b\ CGW; FLP, PFL; Mineshige and Osaki 
1983). 

MM2 present steady-state solutions obtained by integrating 
the disk equations and incorporating realistic opacities and a 
mixing-length theory of convection. They use a slightly mod- 
ified «-theory [« -► «(1 — 2 (7 In P/d In z)] which is negligibly 

Accretion Disk : Effective temperature fixed 
by accretion rate 

z z 

a) neglect convection b) include convection 
in outer layer 

z 

c) result is complete convection 

Star: Fixed central temperature 

T 

d) neglect convection e) include convection 

Fig. 1.—Schematic representation of the difference convection has on 
accretion disks (with fixed surface temperature) and stars (with fixed 
central temperature). In accretion disks, a small amount of convection 
near the surface in a pure radiative treatment may force the midplane 
temperature to a much lower value after convection is correctly included. 
By contrast, if one were constructing a stellar model with fixed central 
temperature, convection near the surface decreases the outer temperature 
while leaving the interior temperature unaffected. 

different from simple «-theory. Their opacities are from Cox 
and Stewart (1969) and so do not include the effects of 
molecules. Their parameter study consists of steady-state solu- 
tions for 6.5 < log /*(cm) < 11 and M(M0 yr “x) = 10 "n, 10 “9, 
and 10 “1. They considered « = 1 /(lO^) for all three rates of 
accretion, with the M = 10_9Mo yr-1 track repeated for 
« = 3/(100;/2). Our results for this region of parameter space 
agree well with theirs (see the more detailed discussion in 
§ HI). 

Smak (1982«) and Vila (1978) also perform explicit vertical 
integrations of the disk equations but take « = 0 where con- 
vective energy transport is absent. They thus assume that only 
convection can induce viscosity. Smak showed that this as- 
sumption always leads to midplane convection. Vila’s con- 
clusion that convective viscosity alone cannot provide the 
accretion rates relevant for cataclysmic variables seems to 
ignore this midplane convection. 

c) Instabilities 

Piran (1978) has derived necessary conditions for the stabil- 
ity of vertically averaged accretion disk structure. These con- 
ditions depend on the logarithmic derivatives of cooling and 
viscosity with respect to disk thickness and surface density. 
They are generalized expressions of a linear instability analysis 
done by Shakura and Sunyaev (1976) for «-viscosity heating. 
In general, disks may suffer two kinds of instability. The 
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Lightman-Eardley (Lightman and Eardley 1974) instability 
causes the surface density to clump into alternately high and 
low density rings on a viscous time scale; a thermal instability 
causes the disk to contract or expand vertically on a thermal 
time scale while maintaining constant surface density. The 
viscous instability occurs when the vertically integrated stress 
is inversely related to surface density, and the thermal instabil- 
ity when heating and cooling are out of balance. An unstable 
structure will commonly be subject to both sorts of instabili- 
ties. The vertical thermal adjustment time scale is of order 
l/a£2, and the viscous evolution time scale is larger by a 
factor of (r/h)2, so that whenever an annulus goes from one 
temperature to another because of a thermal instability, this 
transition is rapid compared to the subsequent viscous re- 
sponse of the disk in the f direction. The time scale for the 
entire disk to go from one viscosity state to another is uncer- 
tain at present. 

The stability of steady-state models is indicated by the 
dependence of the surface density on some measure of the 
integrated stress, such as the mass accretion rate, flux, or 
central or surface temperature. For optically thick conditions, 
a sequence of steady-state models at constant radius for which 
the surface density decreases with increasing effective temper- 
ature is thermally unstable because a perturbation to larger 
temperature or density will induce conditions for which the 
heating dominates the cooling. If the unstable sequence con- 
nects to stable sequences (surface density increasing with 
effective temperature) at higher and lower temperatures, the 
resulting double-valued nature of the locus ensures that other 
stable solutions at higher or lower temperature are accessible 
at fixed surface density. The unstable portion is inaccessible to 
evolving disks as explained by Bath and Pringle (1982) and 
others. In general, the existence of an unstable sequence can 
give rise to limit cycle behavior (Pringle 1981). 

In a plot of effective temperature versus surface density the 
locus of vertically explicit steady-state a-models at a single 
radius shows a characteristic “S-shaped” curve containing an 
unstable portion with negative slope (see Figs. 4 and 11; 
MM1, MM2; Smak 1982a, CGW; FLP). The factors affecting 
the shape of these curves will be discussed in detail in the next 
section. The instability occurs at an effective temperature of 
5000-6000 K. It is related to the partial ionization of hydro- 
gen which results in very temperature sensitive diffusive or 
convective flux. MM1 proposed a limit cycle mechanism for 
dwarf novae based on this unstable sequence and presented 
power-law scalings for burst energies, durations, and recur- 
rence times in terms of a and the mass transfer rate from the 
companion, MT. With his models which neglect viscosity in 
radiative regions, Smak (1982 a) also discovered such an S- 
shaped behavior induced by partial ionization in steady-state 
curves and independently discussed its relevance to dwarf 
nova outbursts. 

CGW claimed this mechanism could only produce frequent, 
low-energy bursts. They argued that viscosity could plausibly 
be expected to increase with the outbreak of convection in 
cold models, - 2000 K, and that this would also induce 
instability. They proposed an ad hoc change in a in convective 
regions in order to get an appropriate S-shaped structure 
which could account quantitatively as well as qualitatively for 

the observations of dwarf novae. For given r and M one gets 
a larger surface density by making a smaller, so decreasing a 
substantially in the lower temperature radiative solutions pro- 
duces a surface density enhancement that dominates the one 
discussed by MM1, MM2, and Smak (1982a). 

The vertical integrations of Kozlowski, Wiita, and Paczynski 
(1979) are not based on «-theory. They have included reahstic 
opacities, equation of state, and treatment of convection, but 
the assumption is made that the ratio of self-gravity to the 
gravity of the central object, A = lirG^/^h, is a constant. 
This replaces an explicit prescription for viscosity. The result- 
ing steady-state solutions are completely stable. When plotted 
in the log ^eff -log2 plane, they do not show the S-shape 
characteristic of «-theory solutions near reff = 6000 K. This is 
because at constant r and T, 2 must be proportional to the 
scale height, h, but h is proportional to (where 7^ is the 
temperature at the disk midplane), independent of the viscos- 
ity. Thus, the surface density must increase monotonically 
with the midplane and effective temperatures in such models, 
and they will always be formally stable. There is no direct 
physical argument to show that this implicit treatment of 
viscosity is wrong. On the contrary, these models show how 
sensitive the results can be to differing treatments of the 
viscosity. The fact that this class of models cannot account for 
the dwarf nova instability may be an argument against them, 
again setting some constraints on the physical nature of the 
viscosity. 

One has the following general picture of the instability limit 
cycle in dwarf novae suggested by the «-models which has 
recently been explored in detail by PFL, Smak (1983a), 
Mineshige and Osaki (1983), and MM4. Material in quies- 
cence piles up in a broad ring at ~ 3 X1010 cm from the white 
dwarf (Hensler 1982a, b). When the surface density anywhere 
in the ring exceeds some critical value, 2max(r, «), that por- 
tion of the ring goes to the hot state on the local thermal time 
scale, and thickens vertically. Heat will then be diffused to 
adjoining annuli initially on a radial thermal time scale. This 
time scale is given approximately by 

rr = 9/32 I,2(ôr/h)2KR/acT3n 

= ~ 3 hr (2/100 gem-2)2 (dr/h)2 

X (k/10 cm2 g_1)/(7/104 K) 3, (8) 

where /c and T are representative midplane averages between 
the cold and hot state. Adjoining matter is heated by a 
combination of thermal and viscous effects and also ends up 
in the higher viscosity state. This higher viscosity material will 
rapidly form a disk which clears out in the course of the 
eruption. 

The disk formed during outburst has a structure approxi- 
mating that in steady state for which 2 cc /• ~3/4. The critical 
density for cooling, 2^, is proportional to radius (see 
§ IIIMv). This means the outer disk edge will first attain 
2 < 2^, and return to the low viscosity state. This transition 
will again be communicated to the rest of the disk, by radial 
diffusion and by perturbations in the surface density propa- 
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gated on a viscous time scale. In the low-viscosity quiescent 
stage, mass is once more stored up to power the next burst. 

III. SURVEY OF PARAMETERIZED STEADY-STATE MODELS 

a) Physical Assumptions 

To construct vertically explicit disk structure we integrate 
the disk equations (l)-(3) using a Henyey (relaxation) algo- 
rithm. Both gas pressure and radiation pressure are included, 
as are components of vertical gravity from both the central 
object and disk. The ratio of self-gravity to central gravity is 
always small ( ~ 10 - 7). For our preliminary results (CGW) 
we treated convection merely by setting v = min(v, Vad)- 
For the present study we used the mixing-length theory 
(MET) of convection (Schwarzschild 1958) taking / = 
xmn[z,{d\ñP/dz)~1 = Hp\ where z = height above mid- 
plane. These results are compared in § IIIZ?iii below with 
those of MM2 who use the Böhm-Vitense (1958) MET of 
convection as described in Kippenhahn et al (1967). 

For low accretion rates the solutions are optically thin. We 
treat these states by considering the disk to be a plane-parallel 
slab locally with continuum optical depth given by t = jap dz, 
where k is the Rosseland mean opacity. Then, replacing the 
appropriate frequency-dependent equation with a frequency- 
independent one, the source function (taken to be 
the Planck function) is multiplied by (l-e~lTmid) where 
Tmid = io^T- This causes an elevation of the disk temperature, 
for the same /*, M, and a, over that were the low r ignored 
(Tylenda 1981). Hence, optically thin solutions have higher 
temperatures than would optically thick solutions at the 
same rates of accretion. The Planck mean opacity /cP = 
(7T/oT4)ÍQ)KvBv(T)dv would be preferable for this ap- 
proximation to the Rosseland mean opacity = 
(7r/4oT3)¡Q°K~l(dBv/dT) dv. Only the latter was readily 
available, however. This treatment also ignores potentially 
important radiative transfer effects in the optically thick lines, 
but as shown below our results for the locus of solutions with 
T « 1 agrees well with frequency-dependent calculations. 

For r>104 K we used opacities from the subroutine 
OPACIT supplied by B. Paczyhski. It uses the opacities of 
Cox and Stewart (1969) supplemented by H20 opacities from 
Auman (1966) and was originally intended to be valid for 
T > 1500 K. Recently, Alexander, Johnson, and Rypma (1983 
AJR) have recalculated Rosseland mean opacities for 2.8 < 
logT(K)<4.0 and included C2, CN, CO, H20, TiO, and 
other molecular species. Their opacities show a peak at T « 
2300 K mainly due to H20 and TiO. Figure 2 compares the 
AJR and Cox-Stewart opacities. Note that the H20 peak is 
about a factor 5 larger than the corresponding OPACIT value. 
The bump in the AJR curves at T « 4000 K is from CN. The 
parameter study was originally done with the Cox-Stewart 
opacities and then the low-temperature portions repeated with 
the AJR opacities. For computations which pertain to the 
low-temperature convective/nonconvective critical points and 
the optically thin solutions the AJR opacity table was used. 

The equation of state routine was supplied by H. Saio and 
uses the physics described by Iben (1963). It is used to 
determine the mean molecular weight p and adiabatic temper- 

T 

  iii ii 
3.2 3.4 3.6 3.8 4.0 

log T (K) 

Fig. 2.—Rosseland mean opacities from Cox and Stewart (1969) and 
Auman (1966) {solid curve) and Alexander, Johnson, and Rypma (1983) 
{dashed curve) for logp(g cm_3)=-6, —7, —8, —9, and —10, and 
3.18 < log T(K) < 4.00 are compared. Alexander et al. opacities are larger 
at lower temperatures because of molecular absorbers. The only molecular 
contributor to the first set of opacities is H20. Alexander et ai opacities 
are about a factor of 5 larger than the former opacities at log T(K) ~ 3.3. 

ature gradient vad- The equation of state for determining 
partial abundances used by AJR has been used implicitly in 
their tabular opacities and so is independent and not neces- 
sarily consistent with the Saio routine. Fortunately, p and vad 
depend almost entirely on whether hydrogen is mostly H2, H, 
or H+, whereas the opacity depends mainly on species with 
small fractional abundance such as H20, TiO, and CN. The 
physical state of the dominant hydrogen reservoir depends on 
these species only to second order. Figure 3 presents a plot of 
p and vad versus logT for p=10~8 g cm-3. Note vad 

decreases substantially at log T(K) = 3.4 and 4.0 where H is 
partially dissociated and partially ionized, respectively. Note 
also that for log T(K) < 3.55, Vad is smaller than 0.4. The 
molecular hydrogen predominant at this temperature has two 
degrees of freedom in addition to the three translational 
degrees of a monatomic gas, so y = 7/5 and vad = (y -1)/y 
= 2/7 (vs. 2/5 for a monatomic gas). 

For optically thick solutions we integrated beyond the 
photosphere to the actual disk surface (p « 0). If $r is defined 
as the optical depth from disk surface inward, then the photo- 
sphere occurs at the vertical structure grid point where 8t = 
2/3. The temperature at this point is related to the surface 
flux given in equation (7) by Teff:= (Fs/o)1/4. Replacing the 
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3.2 3.6 4.0 4.4 4.8 
log T (K) 

Fig. 3.—Mean molecular weight jit and adiabatic index vad= 

(¿/In T/d\n P)ad for p = 10 ~8 g cm“3. The increased number of degrees 
of freedom in a partly dissociated or partly ionized gas causes vad t0 

decrease near log r(K) = 3.5 and 4.0. The small dip at log T^K) = 4.3 is 
from partly ionized helium. This is from an equation of state routine 
kindly supplied by Hideyuki Saio. 

diffusion equation 

F = - 4/3 üc/kp T3 dT/dz, (9) 

with a flux-limited diffusion equation 

F= -ac/3F4V[l+^(l/3+^"V2)] (10) 

(Ahne and Wilson 1973; Chevalier 1981), where x = 
1/Kpd/dz(ln F4), in the outermost grid points where 8r < 
2/3 has negligible effect on the results. 

b) Results 

Four main regimes are apparent in the steady-state solu- 
tions: (1) At very low rates of accretion the solutions are 
optically thin. (2) At higher rates of accretion the solutions 
become optically thick. (3) When the midplane temperature 
exceeds - 2200 K, midplane convection appears. As the 
accretion rate increases further, midplane convection increases 
and engulfs most of the vertical structure. A local maximum in 
2 occurs at Feff « 4000-7000 K. (4) At very high Af, solutions 
free of midplane convection appear. The latter two regimes 
have previously been studied in some detail by MM2. 

We discuss these four regimes separately below and present 
power-law scalings for the surface density and temperature 
associated with these regions and for related critical points. 

i) Optically Thin Solutions 

Figure 4 shows three tracks for constant r and a which 
extend from very low to very high M. The left-hand, ap- 
proximately horizontal portions are optically thin. They were 
computed with a vertically averaged code using the structure 
equations (15) and (16) and AJR opacities. The right-hand, 

vertical portions are optically thick. They were computed with 
the full vertical treatment detailed above. The connecting 
dashed points were not computed. The hash marks indicate 
the logarithms of accretion rate (in solar masses per year) and 
optical depth. The curve for a = 1.0 turns optically thin at 
T « 4500 K, whereas the curve for a = 0.01 stays optically 
thick down to far lower temperatures, -1500 K. This is 
because midplane density and temperature scale inversely with 
a. For the same M, solutions with lower a have higher optical 
depths. 

The negative slopes of the optically thin curves can be 
understood quantitatively in terms of the vertically averaged 
method. Using the fact that optically thin solutions are iso- 
thermal, and combining the equations of state, flux, viscosity, 
and hydrostatic equilibrium, letting the source function 
(1- e_2Tmid)aF4 go to 2rmid(jF4 (since r«:l) and adopting 

Fig. 4.—Three curves representing a series of steady-state solutions at 
r = 10105 cm. In order of increasing surface density the curves are for 
a = 1.0, 0.1, and 0.01. The log of a for each curve is indicated where the 
curve terminates at both low and high M.- Numbers to the right and above 
the curves are the log of mass accretion rate in solar masses per year. 
Numbers to the left and below the curves are the log of midplane to 
surface Rosseland mean optical depth. Isothermal disk temperature is 
shown for the optically thin curves, and effective temperature is shown for 
the optically thick curves. The optically thin curves are computed using a 
vertically averaged code described in § HIM. Optically thick curves are 
computed using the full vertical treatment. Hatched regions indicate 
“forbidden” zones that are discussed in the text. Near the forbidden zone 
at log T(K) * 3.4 the solutions are double-valued: for the same r, M, and 
a two solutions exist. These solutions are to the right of the large dots on 
the upper branch and to the left of the large dot on the lower branch. The 
a = 0.01 curve enters the lower forbidden region before this point. 
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an opacity law of the form 

K = K0P“Tb (11) 

gives 

¿/log T/dlogM = a/(l.5a - b-3), (12) 

¿/log2/¿/logM= (a—2b —6)/(3 a -2b—6), (13) 

and hence 

¿/log T/¿/log2 = 2a/{a—2b — 6). (14) 

The Piran criterion for thermal stability is (¿/logC/ 
d\ogh)^> (d\o%H/d\ogh)^ where C and H are heating 
and cooling functions, respectively. This criterion becomes 
a —2b -6 < 0, and the criterion for LE stability reduces to 
3a —2b —6 < 0. Note that these two inequahties, when in- 
serted into equations (12)-(14) give d log T/d log M< 
0, d log 2 /d log M > 0, and ¿/ log T/¿/ log 2 < 0. These rela- 
tions are obeyed by the optically thin solutions depicted in 
Figure 4. Opacity increases with density such that a ~ 0.5-1.0; 
hence, for general stability b>—2 to -3. When opacity 
decreases sharply with temperature such that Z? < - 3, “forbid- 
den zones” appear. These will be discussed below. We were 
unable to obtain numerical solutions in these zones, but the 
existence of such solutions is moot since they are not only 
unstable but also unattainable. 

Rewriting equations (12) and (13) leaving the opacity de- 
pendence explicit gives 

kT3 = 3/4clRÇI/ilo, (15) 

and 

pT3/2 = MSl2f/ATTa(n/R)V1, (16) 

where /= [1 - ß{{jw d/r)]. From this we see that for con- 
stant r and a, kT3 is constant and pT3/2 o: M. 

From equation (15), the locus of optically thin solutions for 
given r and a with varying M can be characterized by a 
straight line of slope -3 in the opacity plane (Fig. 3). For 
a «1 the optically thin solutions only exist for log T(K) >3.6 
because decreasing T leads to larger /c and optically thick 
conditions where equations (15) and (16) are invalid. The 
optically thin solution for a = 1.0 depicted in Figure 4 is 
consistent with this criterion. For smaller a the solutions can 
be double-valued, with a high-temperature branch of optically 
thin solutions separated from a low-temperature branch 
[log T(K) < 3.4] by a “forbidden” region where optically thin 
solutions do not exist as a result of the decrease of opacity 
with temperature, as just discussed. These two optically thin 
branches and the “forbidden” region are also illustrated in 
Figure 4 by the curves for a = 1.0, 0.1, and 0.01. The nature of 
the cold branch depends critically on the effect of molecules 
which produce the peak in opacity at log T(K) « 3.3. Note 
that the existence of the “forbidden” optically thin zone 
means, for example, that for a < 0.1 and 2 > 10 g cm"2 the 
only steady-state solutions are at log T(K) < 3.4. For given a, 

373 

the optically thin branches are shifted to higher temperatures 
as one goes to smaller r. 

If the quantity kT3 is greater than some amount, the 
forbidden region disappears because d log /c /¿/ log T > - 3 ev- 
erywhere on the optically thin locus of solutions, and hence all 
steady-state solutions are stable. From Figure 2 this occurs at 
roughly (k cm2 g -1)(7yi031 K)3 « 0.63. Hence, one has from 
equation (15) that for 3/4 aRti/po > (Kr3)crit~1091 or 
a > 0.1 pr3/2 there is only one branch of optically thin 
solutions. If a is less than this critical value, there is no warm 
optically thin state in thermal equilibrium, and the gas must 
cool to log T(K) < 3.4. For r = 3 X1010 cm a warm, optically 
thin, single-valued solution is only accessible if a > 0.7. For 
r = 1010 cm the critical value of a is 0.13. The critical value of 
a is less than 0.1 only for r < 7 X109 cm. 

The nature of these optically thin solutions implies that for 
a only moderately less than unity, the only steady-state solu- 
tion with 2 < 2min is cool: T < 1034 K at the outer edge of a 
standard dwarf nova disk where r10 « 3. Such a low-tempera- 
ture solution will have a long viscous time scale and a low 
accretion rate. At smaller radii warm, optically thin portions 
can remain in thermal equilibrium, but they will not build 
back up toward a critical density because they have a rela- 
tively high accretion rate and the flow from the companion 
star will be choked off by the outer, cooler, low viscosity 
regions. The warm, inner portions will be drained of matter 
during quiescence until they reach the low accretion rate 
corresponding to the outer, cool material, or until another 
outburst begins. If the cooler portions have lower a, this 
tendency to form a distinct cool ring which chokes the flow to 
inner portions of the disk will be exacerbated. Such a ring will 
be the natural site of the next outburst. 

On either side of the forbidden zone at log T(K) ~ 3.4 there 
is a range of 2 where, for the same r, M, and a, two solutions 
are possible. The portions of the optically thin branches for 
which this is true he between the large dots on the hot and 
cold curves in Figure 4. 

At very low temperatures [log T(K) < 3.25] another forbid- 
den region appears as dust absorption causes the opacity to 
increase. This occurs for large r and small a, and prevents the 
optically thin branch at 3.25 < log T/K) < 3.3 for a = 0.01 
shown in Figure 4 from connecting directly to the optically 
thick curve. Were an evolving ring of material to encounter 
these conditions, it would cool until it entered a region where 
d log k /d log T > -3 and then .be in steady state. From the 
AIR opacities the next such state occurs at T < 1000 K. 

Tylenda (1981) presents vertically averaged steady-state 
a-disk solutions computed with frequency-dependent opaci- 
ties. For a = 1.0 and several rates of accretion he calculates the 
radius for which his solutions become optically thin (see 
Tylenda 1981; p. 133; Fig 1.) This is indicated by an increase 
of the disk temperature over that expected from the optically 
thick expression aT/ñ = Fs. The locus of points of departure 
from optically thick conditions is given roughly by 

T(K) = 5800 - 1800[log r (cm) -10]. (17) 

Assuming these points correspond approximately to Tmid = 2, 
we computed solutions for 10 < log r(cm) < 11, a = 1, and 
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in this range. For Cox-Stewart opacities the effective tempera- 
tures corresponding to rmid = 2 are - 2%-3% higher than that 
given by equation (17), whereas with the larger AJR opacities 
the effective temperatures are 5%-10% lower than equation 
(17). This close agreement with a frequency-dependent study 
adds strength to our optically thin treatment. 

ii) Cool Radiative Solutions 

The vertical structure of cold radiative solutions just before 
the onset of convection is illustrated in Figures 5 a and 5 b for 
/* = 3X1010 cm and for a =1.0 and 0.01, respectively. The 
structures correspond to the points at 10- 9 and 10 “u 

Mq yr ”1 in two of the curves of Figure 4. The optical depth is 
slightly greater than unity. Note that the solutions are nearly 
isothermal, but the slight temperature gradient signals the 
approach to convective instability. The decline of density and 
pressure is only slightly steeper than the Gaussian form char- 
acteristic of a perfectly isothermal structure. 

Even though the location in parameter space of the first 
appearance of midplane convection is a complicated function 
of the vertical structure, one can write down the necessary 
condition for midplane convection to occur as a mixed expres- 
sion containing r, a, pmid, and 7^. Combining the equations 
of radiative transport and hydrostatic equilibrium and using 
THopital’s rule gives 

V = dlog T/d log P = 9/32a/oäK(pR/nT)2, (18) 

where all variables are evaluated at the midplane. When this 
quantity exceeds Vad> the Schwarzschild inequality for con- 
vection is satisfied. 

From the numerical steady-state solutions approximate 
power-law scalings can be obtained for the point where, for a 
series of solutions of increasing M and constant r and a, 
midplane convection first appears. Concurrent with this onset 
of convection is an increase in optical depth and midplane 
partial ionization. A numerical subscript x here and below on 
r, M, or T indicates that that parameter is expressed in units 
of 10* times cm, M0 yr ~ \ or K, respectively. For Cox-Stewart 
opacities the scalings are as follows. For r«=io10 cm and 
a « 10 ~ 2 we find 

T’mid.conv-SSOOKr^0^, (19) 

and 

Sconv^^gem-2^15«:^6. (20) 

For larger r these scalings break down. Beyond r « 1011 cm the 
exponents of both r and a are about one-third smaller. With 
the AJR opacities there is a broad region of parameter space 
over which the following power-law scaling for this critical 
value of 2 is quite accurate: 

2conv = 220gcm-2r1°0
76«:r9- (21) 

This differs from equation (20) because of the different de- 
pendencies of /c on p and T between the AJR and the 
Cox-Stewart opacities. The uniform scaling is apparent over 
the range of r and a shown in Figure 6. 

With the AJR opacities, the midplane temperature at the 
onset of convection cannot be written as a general power law. 

Fig. 5.—(a) Vertical structure of a cold radiative solution. Quantities are shown in terms of either their midplane or surface values. Of the three 
ascending curves, the solid one is optical depth, the dashed one is surface density, and the dash-dotted is flux. Of the three descending curves, the solid one 
is temperature, the dashed one is pressure, and the dash-dotted one is density. Dotted curve is Radiative/^totai; « = 1-0, r = lO10 5 cm, and M = 10 9 00 

M0 yr-1. Maximum values of the quantities shown are 7^= 1.85, 2 = 61.3 g cm-2, 7^ = 2.76X1010 ergs cm-2 s-1, Fmid = 4947 K (7^ = 4219 K), 
Pmid = 1-71x 104 dyn cm“ 2, and = 8.76 X10 “8 g cm“3. The structure is nearly isothermal because of its low optical depth, {b) Vertical structure of a 
cold radiative solution; a = 0.01, r = 10105 cm, and M = 10 “10-69 A/0 yr Curve designations are the same as in (a). Maximum values of the quantities 
shown are ^ = 4.04, 2 = 533 g cm“ 2, Fs = 5.64X108 ergs cm“ 2 s“1, 7^ = 2160 K (7; =1564 K), = 1.17X105 dyn cm“2, and p^ =1.56X10 “6 

g cm“3. As for the cold a = l solution, Lmid and Ts approach each other as the optical depth decreases. 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
84

A
pJ

S 
..

. 
55

. 
.3

67
C

 

a-MODEL ACCRETION DISKS 375 No. 3,1984 

Fig. 6.—Surface density of solutions where midplane convection first 
appears as a function of a for varying radii. Numbers over each curve are 
log r(cm). Curves are described to good accuracy by the power-law scaling 
given in text. 

Fig. 7.—Midplane temperature of solutions where midplane convec- 
tion first appears as a function of a for varying radii. Numbers to the right 
of each curve are log r(cm). For large a and small r the opacity is steeply 
increasing with F as the midplane becomes partially ionized. For small a 
and large r the midplane temperatures are lower and material is neutral. 

Figure 7 shows how the midplane temperature depends on a 
and r for this case. Note that it is not a monotonie function of 
a as it was for the Cox-Stewart opacities. The change in slope 
displayed in Figure 7 occurs where the opacity changes from 
having a weak to a strong dependence on temperature. Con- 
sider, for example, what happens to the convective critical 
point at one radius r as a is increased: e.g., starting at 
a = 10“ 4 and r = 1010 5 cm. From equation (18) for Vmid the 
quantity [a*(p/r)2 is constant for this sequence of solu- 
tions. One finds that as a increases, k and T are nearly 
constant (they decrease by a small amount); hence, p must 
decrease approximately as the square root of a. Starting at 
about a = 10 _18, however, the opacity begins to increase with 
temperature. The density decrease is now insufficient to bal- 
ance the increase of a/c, so T must increase. This change 
occurs at larger a for larger r since the density is less. Note in 
Figure 6 the relative change in the dependence of 2conv on a 
is small as this transition is made. 

More details of the physical conditions at the onset of 
midplane convection are given in Table 1. The rate of accre- 
tion at these solutions is 0.01 dex below that at which a trace 
of superadiabaticity develops at the midplane. Note that for 
given r the rate of accretion for these points is higher for 
higher a. This occurs for the following reason. If r and M are 
held constant and a increases, the midplane temperature ^mid 
of a steady-state solution increases. However, at 71 « 
2000-2200 K and p «10-6 g cm-3, Figure 2 shows that the 
opacity is starting to increase with temperature, so that solu- 
tions with this midplane temperature are beginning to have a 
large temperature gradient and hence midplane convection, 
independent of the value of a. Thus solutions at this critical 
point at which midplane convection is just starting represent 
approximately a locus of constant 7^ « 2000 K. To increase 
a at constant requires the rate of accretion to increase. 
That is not exactly constant reflects the weak density 
dependence of the opacity. In summary, the onset of midplane 
convection using the AJR opacities is caused by the increase 
in opacity at T ~ 2000 K and hence conv « 2000 K with 
small regard for a. Keeping Tmid conv roughly constant in this 
fashion and raising a causes 2conv to decrease. 

The AJR opacities give lower rates of accretion associated 
with these critical points for midplane convection than origi- 
nally reported (CGW Fig. 2). This is a consequence of the new 
larger opacities. Lower M is required for the midplane temper- 
ature gradient to be small enough to be convectively stable. 
Note that solutions with smaller a have larger optical depths. 
This is because p and a are inversely related. CGW also 
reported that r « 1 at the points where convection starts. 
Those results were based on a « 0.01, however, and it is now 
apparent with a more complete coverage of parameter space 
that this is not true in general. 

The low-temperature convective instability mechanism of 
CGW depends critically on having a small a in the low-tem- 
perature, radiative regimes. The idea of using steady-state 
«-solutions to describe a cold, low-viscosity state of course 
ignores radial energy transport and the radial pressure gradi- 
ent as mentioned previously. Hence, these results are probably 
only approximately correct for the purpose of describing a 
radially extended, low-viscosity disk state. In particular, when 
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-log a 

TABLE 1 
Conditions at the Onset of Midplane Convection 

-log M(Mq yr“1) 
2 

(gem“2) 
1 mid 
(K) 

'eff 
(K) Tmid 

h/r 
(P/Pmid=] 

11.50 . 3.5 
3.0 
2.5 
2.0 
1.5 

9.24 
8.99 
8.75 
8.50 
8.25 

16750. 
9531. 
5338. 
3041. 
1734. 

2140 
2111 
2062 
2028 
1990 

747 
862 
990 

1143 
1321 

149. 
79.2 
40.6 
20.8 
10.3 

0.0364 
0.0364 
0.0360 
0.0357 
0.0357 

11.25 , 3.0 
2.5 
2.0 

9.55 
9.30 
9.05 

6081. 
3467. 
1974. 

2127 
2097 
2065 

959 
1109 
1279 

52.6 
27.5 
14.2 

0.0273 
0.0273 
0.0273 

11.00. 3.5 
3.0 
2.5 
2.0 
1.5 

10.34 
10.10 

9.85 
9.60 
9.35 

7038. 
3943. 
2244. 
1276. 
726.0 

2205 
2156 
2128 
2097 
2065 

933 
1071 
1237 
1428 
1649 

68.6 
35.4 
18.7 

9.49 
4.59 

0.0207 
0.0206 
0.0206 
0.0207 
0.0212 

10.75 . 3.0 
2.5 
2.0 

10.64 
10.40 
10.15 

2581. 
1445. 

821.0 

2199 
2151 
2124 

1201 
1379 
1592 

24.2 
12.3 

6.19 

0.0156 
0.0156 
0.0159 

10.50 . 3.5 
3.0 
2.5 
2.0 
1.5 

11.44 
11.19 
10.94 
10.69 
10.41 

2893. 
1648. 

938.8 
532.7 
296.1 

2246 
2218 
2187 
2161 
2323 

1157 
1336 
1542 
1781 
2097 

30.0 
15.9 

8.13 
3.96 
2.43 

0.0118 
0.0118 
0.0119 
0.0122 
0.0126 

10.25 . 3.0 
2.5 
2.0 

11.73 
11.48 
11.22 

1060. 
602.8 
338.8 

2241 
2214 
2250 

1489 
1719 
1999 

10.4 
5.21 
2.65 

8.94-3 
9.11-3 
9.22-3 

10.00. 3.5 
3.0 
2.5 
2.0 
1.5 

12.51 
12.26 
12.01 
11.72 
11.46 

1204. 
683.1 
385.8 
211.9 
107.3 

2288 
2267 
2249 
2505 
2825 

1438 
1660 
1958 
2271 
2646 

13.2 
6.74 
3.26 
2.36 
1.93 

6.74-3 
6.83-3 
6.82-3 
7.37-3 
7.93-3 

9.75 3.0 
2.5 
2.0 

12.78 
12.51 
12.25 

437.3 
243.4 
123.6 

2284 
2400 
2697 

1849 
2163 
2520 

4.21 
2.44 
1.95 

5.26-3 
5.41-3 
5.81-3 

9.50 4.0 
3.5 
3.0 
2.5 
2.0 

13.77 
13.52 
13.27 
13.01 
12.77 

890.1 
502.4 
279.2 
144.0 

70.03 

2341 
2328 
2342 
2592 
2913 

1550 
1789 
2069 
2411 
2780 

10.6 
5.41 
2.70 
2.01 
1.69 

3.86-3 
3.86-3 
3.98-3 
4.27-3 
4.55-3 

a is smaller than /z/r«10-2, the a-theory formalism of 
decoupling the vertical structure differential equations from 
the r-structure equations becomes questionable. This was re- 
cently pointed out by Kippenhahn and Thomas (1982). When 
a< h/r, the time scale for hydrostatic equilibrium to main- 
tain itself in the f direction is shorter than the thermal time 
scale in the disk; i.e., hydrostatic equilibrium prevails in both 
the r and i directions. Pressure and density therefore must 
remain constant on lines of constant effective potential. For 
z r this potential is given by \p~l/2GM z2/r3. In par- 
ticular, the midplane is a surface of constant potential. 
Hence, «-theory solutions, which give d log P/d log r and 
d log p/d log r < 0, are inconsistent. Kippenhahn and 
Thomas conclude, however, that a small baroclinicity (varia- 
tion of orbital speed with z) produced by weak meridional 

flow alters the structure of this effective potential. Thus, 
«-theory may not suffer badly from this particular kind of a 
fundamental inconsistency. 

iii) Solutions with Hydrogen Recombination 

The S-shaped features near T «1038 K, as shown on the 
rising portion of the curves in Figure 4, are associated with the 
partial ionization of hydrogen at this temperature. There are 
two principal phenomena that combine to cause a nonmono- 
tonic relation between effective temperature and surface 
density. One is the rapid variation of opacity as hydrogen 
recombines, and the other is the convection associated with 
the large opacity. We shall denote these 2max x and 2max2> 
respectively. The increase in opacity at small optical depths 
due to H20 and TiO can also have a minor effect. 
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Combining the steady-state equations of flux and viscosity 
gives 

9/8 ^ 2S22 = 3/4 aR/ti = oT^. (22) 

Note that need only be proportional to the fourth power 
of reff to have 2 and Teff inversely related to each other and 
hence give a negatively sloping curve. We will see how the 
phenomena mentioned above can lead to a steep dependence 

^mid 0Û ^eff* 
For a > 0.3, the increase in surface density as the effective 

temperature decreases is caused by the rapid decrease in 
opacity as hydrogen recombines. This effect comes in at 
^mid < 104 K and Teïï < 4000-7000 K, depending on r, and is 
caused by the following. Even with convection present, the 
midplane and effective temperatures are approximately related 
by the diffusion equation ^mid Ä Timd ^eff in tins regime. Since 
the opacity decreases as ~ T10 for T<104 K, the midplane 
temperature drops precipitously as the effective temperature 
decreases. From equation (22), the surface density is forced to 
increase to maintain thermal equilibrium. When the opacity 
begins to drop less steeply with temperature, around 4000- 
6000 K as shown in Figure 2, the midplane temperature is not 
as sensitive to the effective temperature, and the surface 
density begins to decrease with decreasing effective tempera- 
ture once more, causing 2maxa. Hence, although these solu- 
tions have convection present, it is not the cause of the 2 
inversion. 

For a < 0.3 the increase in 2 as the effective temperature 
decreases is caused by strong convection which lowers the 
temperature gradient drastically. This causes the required steep 
dependence of T^d on 7efr and induces 2max 2- This effect 
comes in at about the same Teïï as before, but now Tmid « 17,000 
K. The reason convection is more important for low-« solu- 
tions will be explained below. The 2 reversal associated with 
Tmid dropping below 104 K (2maxj) is still seen, but it now 
occurs at lower Teñ (see Fig. 11). 

Figures Sa and Sb depict the vertical structure of models on 
the optically thick negatively sloping portions of the log Tefr 

log2 curves of Figure 4 for r = 3xl010 cm and for « = 1.0 
and 0.01, respectively. Note that there is a density inversion 
due to convection just as one finds in layers of partial ioniza- 
tion in stars (Chitre and Shaviv 1967; Joss, Salpeter, and 
Ostriker 1973). The pressure gradient depends only on pgz, 
which changes slowly (even where convection is occurring). 
The temperature gradient is quite steep, however, because of 
the large superadiabaticity. Hence, given that P cc pT, p in- 
creases if T decreases too fast. Figures Sa and Sb show that 
convective energy transport is sluggish at the midplane where 
material is in free fall (in an orbiting reference frame). This is 
in contrast with stars where the higher core densities promote 
efficient convection. A short distance above the midplane 
convection is carrying all but one part in 102-104 of the total 
flux. Convection carries a smaller portion of the total flux at 
its maximum efficiency for the solution with « = 1.0, so the 
temperature gradient is larger, and the density inversion is 

Fig. 80 Fig. %b 

Fig. 8.—{a) Vertical structure of a solution between 2^ and 2max; a = 1.0, r = 10105 cm, and a7 = 10~8-60 Mq yr_1. Curve designations are the 
same as in Fig. 5a. Maximum values of the quantities shown are = 1740, 2 = 56.9 g cm- 2, Fs = 6.93 X1010 ergs cm- 2 s ' \ 7^ = 17,350 K (Ts = 5191 
K), Pmid = 4.80X104 dyn cm-2, and = 2.20x10“8 g cm"3. The “opacity peak” convection is more extensive than in Fig. 13¿z. Convective energy 
transport weakens as one nears the midplane since i?conv oc {g:)

l/2z = 0(z3/2). One sees a density inversion because of the steep temperature gradient. 
Minimum value of Frad/Ftot is 0.028. (b) Vertical structure of a solution between 2^ and 2max; a = 0.01, r = 10ia5 cm, and M = 10“ 860 MQ yr"1. 
Curve designations are the same as in {a). Maximum values of the quantities shown are = 6.43 X105, 2 = 1580 g cm" 2, Fs = 6.93 X1010 ergs cm" 2 

s_1> = 32,060 K (Ts = 5191 K), = 2.30XlO6 dyn cm"2, and p^ = 5.64X10"7 g cm"3. The structure has strong convection which extends 
almost to the photosphere (Teff = 5930 K). Minimum value of ^rad/^tot is 1.15X10 3. 
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Fig. 9a Fig. 9b 

Fig. 9—(a) Vertical structure of a 2max solution; a = 1.0, r = 10105 cm, and A/= 10“882 MQ yr-1. Curve designations are the same as in Fig. 5a. 
Maximum values of the quantities shown are Tmid = 13.7, 2 = 74.7 g cm- 2, Fs = 4.18 X1010 ergs cm- 2 s -1, rmid = 7040 K (7; = 4588 K), = 3.83 X104 

dyn cm~2, and pmid = 8.50X10 - 8 g cm- 3. There is only weak convection occurring, although it extends over 57% (in 2) of the structure, (b) Vertical 
structure of a 2max solution; a = 0.01, r = 10105 cm, and A/ = 10-8‘80 Mö yr-1. Curve designations are the same as in Fig. 5a. Maximum values of the 
quantities shown are rmid = 1.76 X106, 2 = 1910 g cm- 2, Fs = 4.38 X1010 ergs cm- 2 s - \ 7^ = 18,510 K (Ts = 4641 K), = 1.99 X106 dyn cm- 2, and 
Pmid = 9.80 X10 _ 7 g cm - 3. The structure is again dominated by convection. Minimum value of ^rad/^tot is 4.22X10 5. 

more severe than for the solution with a = 0.01. The structure 
for a = 1.0 also has a larger core of inefficient convection. This 
is because the convective flux increases with density, whereas 
the radiative flux decreases. The higher density at lower a thus 
increases the convective efficiency. 

The photosphere occurs where T ~ 1.14 Ts, Ts being the 
temperature in the top of the disk. Note that the disk becomes 
isothermal in the outermost part because of the very small 
densities. The disk optical depth is far larger than predicted by 
the diffusion equation 7^id « because of convection. 
All solutions with rinid « 10,000-20,000 K and Tefr « 5000 K 
show this same gross structure. 

Figures 9a and 9b present the vertical structure at the local 
maximum in 2 with respect to Tefr, 2max, for r = 3 X1010 cm 
and for a = 1.0 and 0.01, respectively. These figures illustrate 
the dramatic difference in structure at 2max between large and 
small a. The solution for a = 0.01 has a density inversion near 
the midplane and a smaller one near the photosphere, as for 
the solution for a = 0.01 of Figure 8b. For a = 1.0, convection 
carries a small part of the flux, although it extends over 57% of 
the structure as measured by the surface density. This is 
because the opacity is small at 7^ = 7040 K. The a = 0.01 
solution has 7^ = 18,510 K. Convection carries all but 10 " 4 

of the flux at the point of greatest convective efficiency. 
Table 2 gives some of the physical conditions at points of 

2max = max (2max !, 2max 2) in this partial ionization regime. 
Figure 10 presents the dependence of 2max on r and a. These 
critical points were determined to 0.01 dex in M. For cl > 0.3 
the maximum caused by the opacity decrease is at larger 2 
and for smaller a the convective maximum is at larger 2. 

Figure 11 shows in more detail the manner in which the 
locations of the maxima in surface density depend on a. For 
a = 1 the effect of the opacity decrease is dominant. As one 
approaches this inflection point from higher temperatures the 
midplane temperature drops below 104 K. From Table 2 the 
midplane temperature at the maximum in surface density can 
range from 6500 to 7700 K depending on r. For a = 0.3 three 
peaks are evident, and the surface density associated with the 
opacity decrease is slightly larger than that induced by convec- 
tion. For gl = 0.1 the surface density maximum associated with 
the opacity decrease (2max J is less than that associated with 
convection (2max 2). The third peak, which is only evident in 
the curve for a = 0.3 in Figure 11, is caused by a combination 
of two effects. The opacity at the midplane begins to decrease 
less rapidly with temperature because of absorption by H20 
and TiO, and the optical depth is small, so the term 1- e~2Tmid 

has some effect on the structure. We do not know specifically 
how this combined effect of opacity and optical depth causes 
this bump. This peak is not evident in the curve for a = 1.0 
because the midplane temperature never gets small enough. It 
does not appear in the curves for smaller a because the optical 
depth is too high. 

For a < 0.1 the effect of the opacity peak is merely to cause 
a change in slope in Figure 11, and the effect of convection is 
entirely responsible for the maximum in surface density. Ap- 
parently, MM2 did not explicitly study the maximum induced 
by the rapid decrease of opacity (2max l) because they only 
considered a = 0.07 and 0.02. For these values the effect of the 
opacity per se is only a very minor feature compared to the 
principal maximum in surface density induced by convection. 
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TABLE 2 
Conditions at Local Maxima of Surface Density with Respect to reff 

log r(cm) — log a -log M(M0 yr (gem 2) 
T 1 mid 
(K) 

Teff 
(K) 'mid 

h/r 
(P/Pmid=1%) 

11.50. 2.0 
1.5 
1.0 
0.5 
0.0 

6.32 
6.29 
6.26 
6.70 
6.39 

21440. 
8190. 
3232. 
1379. 
840.2 

16980 
17450 
18210 
6571 
6468 

4011 
4082 
4153 
3223 
3853 

1.03 + 7 
1.93 + 6 
3.40 + 5 

82.7 
36.0 

0.141 
0.127 
0.114 
0.0620 
0.0724 

11.00. 2.0 
1.5 
1.0 
0.5 
0.0 

7.52 
7.53 
7.61 
7.90 
7.60 

6419. 
2462. 
985.8 
443.5 
250.8 

18960 
18210 
15900 
6794 
6901 

4729 
4702 
4490 
3800 
4516 

4.30 + 6 
8.33 + 5 
1.03 + 5 

49.1 
25.9 

0.0851 
0.0736 
0.0603 
0.0377 
0.0460 

10.50 . 2.0 
1.5 
1.0 
0.5 
0.0 

8.80 
8.79 
8.84 
9.10 
8.82 

1906. 
733.4 
298.2 
133.2 

74.74 

18510 
18090 
16260 
6793 
7040 

5286 
5317 
5166 
4448 
5226 

1.76 + 6 
3.36 + 5 
4.48 + 4 

23.2 
13.7 

0.0465 
0.0414 
0.0351 
0.0256 
0.0277 

10.00. 2.0 
1.5 
1.0 
0.5 
0.0 

10.07 
10.07 
10.06 
10.28 
10.03 

546.6 
210.8 

86.61 
39.84 
20.97 

18250 
17360 
16580 

7396 
7528 

5858 
5858 
5892 
5191 
5994 

6.41 + 5 
1.16 + 5 
1.86 + 4 

18.7 
9.85 

0.0256 
0.0227 
0.0204 
0.0155 
0.0166 

9.5 2.0 
1.5 
1.0 
0.5 
0.0 

11.27 
11.27 
11.29 
11.43 
11.21 

152.8 
59.11 
24.12 
11.48 

5.63 

18530 
17440 
15920 

7525 
7674 

6534 
6534 
6459 
5959 
6764 

2.31 + 5 
4.13 + 4 
5.42 + 3 
9.53 
4.91 

0.0144 
0.0128 
0.0114 
9.30-3 
9.55-3 

Fig. 10.—Values of 2max as a function of r for varying a. The scaling 
with a changes slightly for a > 0.3, while the vertical structure associated 
with 2max changes drastically. 

Recently Mineshige and Osaki (1983) have independently 
discovered these two 2 inversion features associated with 
steady-state solutions. They use a = 0.1 and a = 0.032 and yet 
a third mixing-length prescription different from either that 
employed here or by MM2. They too find that 2max 2 > 2maxj 
for these small a. 

The relative ordering of the effect of the opacity decrease 
and convection with a holds true for all radii. This is true 
because convective flux is proportional to density and radia- 
tive flux is inversely proportional to density (see eq. [3]). Since 
lower a solutions have larger densities, convection becomes 
more important in carrying the flux and determining the 
vertical structure. Although convection carries most of the flux 
over much of the vertical structure of the solution depicted in 
Figure Sa for which a = 1.0, it does not lower the temperature 
gradient sufficiently to bring about a 2 reversal in that region 
of parameter space. 

As stated earlier, CGW assumed an adiabatic vertical struc- 
ture for regions which were convectively unstable. As 
Mineshige and Osaki (1983) note, this corresponds to mixing- 
length convection with / = oo. In stellar interiors this is often a 
good approximation, but for the solutions encountered here 
p « 10 - 8 g cm- 3, so this assumption is questionable, and we 
have incorporated the effects of a mixing-length theory of 
convection. With MLT we find V exceeds vad by as much as 
102-103 in convective regions near the midplane. Near the 
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Fig. 11.—Curves of constant r and a and varying M for four values of 
a. Small numbers to the left of the curves'are loga; r = 10ia5 cm for all 
four curves. Vertical bars show where the first midplane convection 
appears as one ascends the curves. Full disk optical depth at these points 
is ~ 3. For a < 0.3, 7^(2^) ~ 17,000 K, and the vertical structure is 
very convective. For a = 0.3 the Tmid « 7000 K peak is slightly larger than 
the Fmid « 17,000 K peak. The 7^ « 7000 K peak has negligible convec- 
tion. There is a third peak for this a at log refr- 3.5 because of TiO and 
H20. For a = 1.0 only the 7^-7000 K peak is evident. At slightly 
cooler temperatures convection goes away, and just below that the solu- 
tions become optically thin. The relative ordering of these peaks does not 
depend on r. 

midplane the gravity and the temperature gradient decrease, 
and the convection is very inefficient. Away from the mid- 
plane the radiative gradient drops off rapidly to a value just a 
little in excess of the adiabatic gradient, and convection 
carries a major portion of the flux. Thus, portions of the 
convective regions can be very inefficient by stellar interior 
standards. 

If convection dominates the maximum in 2 (i.e., small a) 
the maximum occurs when the midplane temperature is very 
near the peak in the Rosseland opacity curve for that mid- 
plane density. This is true regardless of the convection theory 
used and comes about because these solutions with the largest 
opacity and, hence, radiative gradient are most strongly 
affected by convection. Since MLT convection has a steeper 
temperature gradient, it will have a smaller effective tempera- 
ture for the same midplane temperature, a, and r than adia- 
batic convection. This means that the effective temperature 
corresponding to 2max will be smaller for inefficient MLT than 
for adiabatic convection. 

Using the adiabatic assumption v = Vad> we fiad the loci 
of maximum 2 is given roughly by 

max *13,550 K«"0-1, (23) 

and 

2max = 47.1gcm-2«-°-85r1
1o31. (24) 

The effective temperature of this point is relatively insensitive 
to r and a: 

Te[Lmax = 9500Krw‘^, (25) 

where ^ * 0.04 and e2
<0.01. For this convection 2max = 

2max,2 f°r ^ The hydrogen recombination feature 2max x is 
a very minor effect. Using the mixing-length theory of convec- 
tion described in Schwarzschild (1958), we find 

T’mid.max.z^lSlOOKa-004, (26) 

(27) 

and Teff « 5300 K quite different from the adiabatic 
models. This shows, unfortunately, that the results are sensi- 
tive to the treatment of convection, or more specifically, the 
value of the mixing length used. For the hydrogen recombina- 
tion feature we find 

^max,i * 22 g cm- 2 a~0'5 r¡¿05, (28) 

and 

?’mid,max,l~7000K. (29) 

Although the scaling for 2max is not given explicitly in 
MM2, it can be taken from their plotted results to be ap- 
proximately 

2max=l2-6gcm_2«“0'8Mó11, (30) 

very close to our results. They also find ^ « 16,000 K 
for a = 0.07 independent of r, again in quantitative agreement 
with the present results. Their value of Tefr max = 6500 K is 
somewhat above ours. This 2max corresponds to 2max 2, the 
convective feature. As mentioned above, they do not find 
2max,i sbice only a small a is used. 

If one changes the mixing length drastically, the portions of 
the structure where convection is important are moved to 
different surface density. We recomputed several steady-state 
solutions using /* = 1/3 and 3/2 [/* = //min (z, F/^)]. 
For example, for /* =1 /3, the reduced convective efficiency 
causes the midplane temperature to rise and the surface den- 
sity to decrease for given r, M, and a compared to the 
present solutions. The surface density maximum 2max = 
max (2max x, 2max 2) is larger by a factor of ~ 2 for a ~ 0.01 
and by a few percent for a ~ 1. An increase in the mixing 
length causes the point representing 2max to correspond to a 
larger rate of accretion. For example, for /*—1.5, Tefr is 
-15% higher and 2 -10% larger than when /* =1 is used. 

As /* increases, convection becomes more efficient, and the 
temperature gradient is reduced. This reduces and raises 
2. Hence, the fact that 2max 2 > 2max x for a < 0.3 and 2max 2 
<2max,i f°r «^0.3 is a direct result of using /*=L If /* 
were smaller than some critical value /f, one would find that 
2max,i would be larger for all a, and if /* were larger than 
some critical value /*, then 2max 2 would be dominant. Since 
convection is so unimportant for solutions with « 7000 
K, 2max x is insensitive to the value of /*. Only 2max 2 is 
affected—and more so for smaller a. 
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The fact that the present results for « = 0.1 agree so well 
with those of MM2 and Mineshige and Osaki (1983), all of 
whom use slightly different theories of convection, suggests 
that the value of the mixing length / is much more important 
in setting the disk structure than the mixing theory used. 
Hence, although the Schwarzschild treatment ignores the 
radiative losses of the convective elements and the Böhm- 
Vitense treatment considers this effect, the disk is sufficiently 
thin that the elements only move a short distance in their 
lifetime in either event. A determination of /* and /* would 
require considerably more effort and is beyond the scope of 
this work. These quantities are probably roughly 1/2 and 2, 
respectively. Mineshige and Osaki (1983) examine how 2max 2 

depends on /* for «= 0.1 by computing tracks for /* = 0.7, 
1.0, and 2.0. For /* = 0.7 they find 2max 2 

Ä For 
/* = 2.0 they start to recover the solutions of CGW, for which 
/* = oo. 

One important difference between the maximum in surface 
density induced by the opacity decrease and that induced by 
convection is that the viscous time scale at 2max is consider- 
ably different for the two effects. The viscous time scale is 
proportional to For the convective maximum 
Tmid «17,000 K and « 0.65, while for the opacity maxi- 
mum « 7000 K and «1.3.) Thus, the viscous time 
scale is ~ 4 times larger for the latter peak for comparable a. 
This will effect the rate at which material accumulates to a 
critical surface density, and the time between bursts. 

iv) Radiative Solutions 

When the midplane temperature is - 20,000-40,000 K 
(depending on «), a local minimum in 2 occurs. In the limit 
cycle model of MM1 this is the feature which causes the disk 
to go from a high to low viscosity state as 2(r) decreases 
below the minimum critical value. At these minima, convec- 
tion just barely extends down to the midplane. For higher M, 
convection is only present in layers of partially ionized hydro- 
gen and helium above the midplane. Our results for 2^ 
agree very closely with those of MM2. We find 

2minœ191 gcnr2 rJo^alî1-70, (31) 

whereas MM2 find 

2min Ä162 g cm“ 2 rio^a: 1
0'80. (32) 

Also we get 

39,000 K/-Í0.5«:?'2, (33) 

where e is several hundredths. The scaling of 2min with r and a 
is shown in Figure 12 and given in Table 3. 

Figures 13 a and 13 b show the vertical structure at 2^ for 
r = 1010 5 cm and « = 1.0 and 0.01, respectively. These solu- 
tions have higher midplane temperatures than vertical struc- 
tures depicted in the previous structure graphs but still have 
^eff < 104 K, so some portion of the vertical structure must 
correspond to the peak in the opacity. The density inversion 
caused by “opacity peak” convection is a localized bump near 
the disk surface, and the flux carried by convection at that 

Fig. 12.—Values of 2min as a function of r for varying a. These are 
given quite accurately by power-law scalings. 

point is much smaller than in the 2max solutions. The « = 0.01 
solution has, in addition, a region at smaller z where convec- 
tion is induced by partially second-ionized helium. This is not 
found in the « = 1.0 structure because it is at a much lower 
temperature. 

At hotter temperatures there is no midplane convection. 
The solutions obtained are close to a power law scaling 

2 = 2240 g cm"2 a - 0'81M°-6
6
6r1ö °-66. (34) 

The vertically averaged approach of Shakura and Sunyaev 
(1973) gives 

2 = 6560 g cm - 2 a - °'75 (35) 

for P = Pg, k = /cff, and 

2 = 5210 g cm“ 2 « " omM°:trü 0-60 (36) 

for P = Pg, /c = /ces. The vertically integrated solutions contain 
a mixture of free-free “like” opacity and electron scattering, 
so it is not surprising that the functional dependencies in our 
equation he between these two extremes. Our scaling for 
midplane temperature is 

452.000 K « - 0-20M°-3
6
0r1ö °-72, (37) 

while SS give for gas pressure and free-free opacity 

228.000 K «- “^MOf/ië0-75, (38) 

and for electron scattering 

288.000 K a“o ^M^ô0-90. (39) 
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TABLE 3 
Conditions at Local Minima of Surface Density with Respect to Teff 

log r(cm) - log a -log M(Mq yr ^ 
2 

(gem-2) 
T 1 mid 
(K) 

'eff 
(K) 'mid 

h/r 
(p/Pnlid=l%) 

11.5 2.0 
1.5 
1.0 
0.5 
0.0 

5.77 
5.78 
5.75 
5.72 
5.65 

13100. 
5443. 
2350. 
1085. 
514.7 

69020 
53740 
43580 
34270 
28080 

5506 
5474 
5569 
5666 
5900 

9.82 + 4 
5.00 + 4 
1.77 + 4 
7.75 + 3 
2.88 + 3 

0.302 
0.246 
0.209 
0.174 
0.154 

11.0 . 2.0 
1.5 
1.0 
0.5 
0.0 

7.07 
7.07 
7.06 
7.02 
6.96 

3777. 
1573. 
681.6 
310.6 
144.8 

66730 
52670 
41660 
32780 
26640 

6128 
6128 
6163 
6306 
6527 

5.11 + 4 
2.36 + 4 
9.22 + 3 
3.34 + 3 
1.22 + 3 

0.167 
0.138 
0.114 
0.0985 
0.0871 

10.5 2.0 
1.5 
1.0 
0.5 
0.0 

8.38 
8.39 
8.37 
8.33 
8.28 

1059. 
438.1 
191.3 

86.46 
39.71 

62910 
49630 
39210 
30740 
24970 

6732 
6694 
6771 
6928 
7131 

2.86 + 4 
1.29 + 4 
4.61 + 3 
1.59 + 3 
5.56 + 2 

0.0904 
0.0740 
0.0629 
0.0547 
0.0484 

10.0 . 2.0 
1.5 
1.0 
0.5 
0.0 

9.67 
9.67 
9.66 
9.63 
9.58 

291.5 
121.2 

52.87 
23.71 
10.84 

59320 
47440 
36570 
28630 
23340 

7375 
7375 
7417 
7547 
7767 

1.51 + 4 
6.04 + 3 
2.27 + 3 
8.23 + 2 
2.62 + 2 

0.0494 
0.0412 
0.0346 
0.0299 
0.0268 

9.5 2.0 
1.5 
1.0 
0.5 
0.0 

10.90 
10.90 
10.88 
10.85 
10.79 

80.15 
33.76 
14.68 
6.54 
3.00 

56330 
44470 
34380 
27140 
22340 

8085 
8085 
8179 
8321 
8614 

7.88 + 3 
3.13 + 3 
1.08 + 3 
3.88 + 2 
1.27 + 2 

0.0269 
0.0225 
0.0194 
0.0169 
0.0154 

The different numerical coefficients between our formulae 
(eqs. [34], [37]) and those of SS (eqs. [35], [36], [38], [39]) comes 
from using realistic values of mean molecular weight and 
opacity. 

Figures 140 and \4b present radiative vertical structure 
solutions at r = 3 XlO10 cm for a = 1.0 and 0.01, respectively. 
Note that the ratio of midplane to surface temperature is 
much larger than for previous vertical structure solution plots. 
Convection carries a small amount of the flux at z = 2.3 X109 

cm in the a = 1.0 solution. 
Equation (34) gives radiative curves which are quite close to 

those presented graphically by MM2. This equation begins to 
fail when the midplane temperature becomes too large. Then 
radiation pressure starts to contribute more to the total pres- 
sure, and so curves of constant r and a in the log Teff - log 2 
plane have increasingly large slope which tends to 00 as they 
approach the LE unstable regime. Setting the viscous stress 
tensor proportional to gas pressure instead of total pressure 
avoids this situation. It is not known whether it is more 
physical to take = aPioi or aPgas. 

IV. DISCUSSION 

Osaki (1974) proposed that the optical bursts seen in dwarf 
novae may be caused by a ringlike structure of low-viscosity 
material formed from the Roche lobe overflow of the sec- 
ondary which piles up around the white dwarf. Hoshi (1979) 
was the first to investigate the physical basis of this proposal. 

After some critical mass is stored, an instability is presumed to 
develop, and the accumulated material goes to a state of 
higher viscosity and much faster evolution time. The burst is 
caused by a rapid dumping of this gas onto the white dwarf 
and release of its gravitational energy. The two-dimensional 
calculations of Hensler (1982 Z?) mentioned above support this 
idea. His low-viscosity run with the parameters relevant to a 
“disk in quiescence” shows a ringlike build up of material at 
roughly the injection radius (see model 3, Fig. 6, p. 325). Such 
a feature also shows up in the time-dependent models of PFL 
and Smak (1983û). The word “ring” is taken here and below 
to mean a structure which has 2(r) less than some 2crit(r) for 
all r, as opposed to a standard “disk” which has a surface 
density maximum at small r which greatly exceeds 2crit. Most 
of a “disk” is hence by definition in a bursting state. Regard- 
less of which instability is invoked, 2crit is roughly propor- 
tional to radius. 

MM1 suggested thé 2max 2 feature as the specific instability 
mechanism, while CGW suggested the transition between 
nonconvective and convective solutions at T « 2500 K as the 
cause. Constraints on either model can, in principle, be set 
without a complete time-dependent calculation by examining 
the fundamental time scales. Two basic observational time 
scales are the time between bursts (riwixt) the length of the 
burst (/burst). The rise time provides another independent 
constraint, but the physics of it is very model dependent, and 
we have not found a satisfactory semianalytic description of it 
even in the context of our favored model which starts from a 
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Fig. 13.—(a) Vertical structure of a 2^ solution; « = 1.0, r = 10ia5 cm, and A/= 10” 8 28 M0 yr”1. Curve designations are the same as in Fig. 5a. 
Maximum values of the quantities shown are = 556, 2 = 39.7 g cm” Fs= 1.45 X1011 ergs cm” 2 s ” \ rmid = 24,970 K (7^ = 6261 K), Pmid = 5.41 X104 

dyn cm”2, and =1.67X10”8 g cm”3. The structure shows “opacity peak” convection caused by partially ionized hydrogen. This inefficient 
convection produces a superadiabatic temperature gradient and a density inversion. Minimum value of FTad/Ftot is 0.10. (b) Vertical structure of a 2min 
solution; « = 0.01, r = 1010 5 K, and M = 10 ~ 8 38 A/0 yr ”3. Curve designations are the same as in Fig. 5a. Maximum values of the quantities shown are 
rmid=_2.86Xl04, 2 = 1060 g cm”2, F, =1.15 X1011 ergs cm” 2 s3-1, Tmid = 62,910 K (7; = 5911 K), 7^ = 2.41 X106 dyn cm” 2, and pmid = 2.83 X10 ” 7 

g cm 3. The “opacity peak” convection at z« 2.7x109 cm induces a small density inversion, while the less efficient He + ~He + + convection at 
z «1.7 X109 cm does not. The previous 2^ solution (for « = 1.0) did not show He+” He + + convection because its midplane temperature was below that 
needed to ionize He+. Minimum value of ^rad/^tot ÍS 0.020. 

well-defined ring. We do not address it here except in a 
general way. There are three relevant physical time scales, the 
time to build to a critical surface density in the vicinity of the 
injection radius (istore)> the time for the cold ring to spread 
through an appreciable range in radius (tspTead), and the 
duration of the bursts (/burst)* ^ ^ context of models in 
which a well-defined ring grows to critical density at the point 
of mass input (i.e., that of CGW), /store represents the time 

between bursts, ¿twixt* For these models, the time scales set two 
boundaries on the transfer rate and the radius of the ring, as 
discussed in CGW and Cannizzo, Wheeler, and Ghosh (1983). 
One of these constraints is /burst < /store. If this constraint is 
•violated, the burst lasts longer than the time to reach a critical 
state; that is, steady-state accretion occurs. Another bound is 
/store < ^spread • This not a physical boundary, but a 
bound on ¿is class of models (a point not appreciated at the 
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Fig. 14<2 Fig. 14b 
Fig. 14.—(a) Vertical structure of a hot radiative solution; a = 1.0, r = 1010 5 cm, and Af = 10 _ 70° A/0 yr -1. Curve designations are the same as in 

Fig. 5a. Maximum values of the quantities shown are = 806, 2 = 222 g cm-2, Fs = 2.76XlO12 ergs cm-2 s-1, Tmid = 64,670 K (7] =13,080 K), 
Pmid = 4.93XlO5 dyn cm-2, and p^d = 5.72XlO"8 g cm'3. Ratio of gas pressure to total pressure at the midplane is 0.918. This solution is radiative 
everywhere, except for a small amount of convection due to partially ionized He+ at z = 2.3 X109 cm. (b) Vertical structure of a hot radiative solution; 
« = 0.01, T = 1010'5 cm, and Air = 10_7-30 M0 yr'1. Curve designations are the same as in Fig. 5a. Maximum values of the quantities shown are 
7-d = 2.60 X104, 2 = 5730 g cm' 2, Fs = 1.38 X1012 ergs cm' 2 s ' 7^ = 129,300 K (Ts = 11,010 K), Pmid = 1.93 X107 dyn cm' 2, and pmid = 1.08 X10'6 

gem'3. Ratio of gas pressure to total pressure at the midplane is 0.963. This solution is radiative, except for a small amount of convection due to partially 
ionized Fte+ at z = 4.5XlO9cm. 

time of writing of CGW and Cannizzo, Wheeler, and Ghosh 
1983). If this boundary is violated, the material will spread 
inward, and the instability will be triggered at a smaller radius 
where the surface density is not, in general, a global maxi- 
mum. For such a case the time scale ¿Spread sets the 

between bursts, ttwbiV This class of models is that implied by 
MM1, MM2 and explored in some detail by PEL. We discuss 
below the manner in which a comparison of the observational 
and physical time scales sets limits on the two classes of 
models. From these limits, one can, in principle, place bounds 
on the location of the quiescent ring (rríng) and, hence, on the 
amount of material stored and on the burst luminosity. 

We have approximated ¿Spread f burst with preliminary 
results obtained from time-dependent work. We used the 
method described in Bath and Pringle (1981) which combines 
the equations of conservation of mass and angular momentum 
in the r direction with the vertically averaged treatment. We 
followed the viscous evolution of rings of material initially 
placed at = 1010 5 cm around a 1 M0 object. These rings 
were given Gaussian profiles of surface density peaked at rnng 

with varying half-widths ö/*initial = / X and maxima 
2peak,initiai- These runs were confined to “radiative solutions” 
described in § IIIMv which are characteristic of the outburst 
disk. We used a = L After the runs start, the rings spread out 
and accrete onto the central object. The maximum value of the 
surface density decreases during the initial spreading and then 
increases as the bulk of the ring moves to small r. A 
quasi-steady-state disk is established with a density profile 
approximating that given by SS for the “outer region”: 2 oc 
r-3/4[l _y(/*wd/r)]° 7 'pjie rate 0f accretion at the inner edge 

of the disk is very high, and the collected ring material drains 
out of the disk during the subsequent evolution. 

For our purposes we have extracted approximations for two 
time scales. These are the time iSpread f°r ^peatto g>° through a 
minimum during the initial spreading, and the one e-fold 

decay time /fal] for the bolometric luminosity, starting from the 
time when Ldisk peaks. This latter phase occurs when the 
stored material is being accreted. 

One might expect one or both of these viscous time scales to 
behave like tss = AM/M(AM), where M(AM) is the rate of 
accretion in a steady-state accretion disk with a mass equal to 
that in an initial ring of mass AM. If one takes 2 = 20r

aaôMc, 
then a simple integration over the disk gives 

iss= [2w20/(2+a)]1/VAAM(1-1A)rK2+iJ)Ai) (40) 

where rout is the outer edge of the disk. A steady-state model 
calculated with the vertically averaged time-dependent treat- 
ment gives a =-0.75, ¿>=-0.8, and c = 0.7; hence, tsscc 
AM-043. We find for the calculation of the spreading torus 

'spread = 200 min (2peak init/600 g cm“ 2 f/03) ° 42,(41) 

and 

ítall *2000min (Speak.imt/600gem“2 ) 037(//0.3)-03, 

(42) 

where these scalings apply for 2peak^ « 600 g cm-2 and 
aspect ratio /« 0.3. We ignore the a dependency of /. From 
equation (40) one would expect the time scales to go. as 
(2/)(1_1/c) = (2/) ~043. Thus, we see that equation (40) pro- 
vides a reasonable representation of the spreading time scale. 
That the magnitudes of the exponents of 2 and / in the 
expression for /fa]1 are less than 0.43 seems to indicate that rout 

goes as some small positive power of these quantities. We 
initially expected that the time for the ring to spread in 
surface area would also represent the rise time to peak 
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luminosity, but our numerical models give rather different 
scalings (i.e., not a simple function of AM). We do not yet 
understand the factors determining the rise time in this class 
of models. 

To describe the spreading of material in the cold, quiescent 
state, the time scale in equation (41) must be scaled to 
appropriate conditions. This is done in the following way. The 
classical disk drift time ¿drift is given by 

¿drift = 2wr22/M = 2.4 weeks IJ-mdrio5/aTmd 4 <x (¡i/aT)mid. 

(43) 
Hence, the numerical coefficient of Spread scaled by the value 
of (ii/aT)^ for the quiescent ring being considered. The 
coefficient of equation (41) is for the parameters ««1.0, 

Ä105 K, and « 0.65. The conditions for the CGW 
model are « « 0.01, 7^ « 2000 K, and « 2.4. For the 
MM model: ««0.1, Tmid «17,000 K, and /xmid « 0.65 for 
« < 0.3; « « 1.0, Tmid « 7000 K, and « 1.3 for « > 0.3. For 
2 the value for either 2conv(CW) or 2max(MM) is used. This is 
admittedly crude because it assumes the ring is in its critical 
state all through quiescence. In reality, the ring starts at some 
lower temperature and viscosity and builds up to this state as 
more material is deposited. This scaling also neglects the fact 
that if the material is optically thin in quiescence, the evolu- 
tion time is increased. Hence, the expression used for ¿drift is 
an underestimate. Also, even though we have used time- 
dependent results to adjust the numerical coefficients on the 
time scales, they are still only approximations to complicated 
time-dependent phenomena. These approximations are no 
substitute for a complete time-dependent study, but they do 
give some feel for the behavior of the models and do illustrate 
some of the qualitative differences between the different classes 
of models. 

We now take the spreading time from equation (41), with 
the coefficient modified as just discussed, /5urst = 3/fall using 
equation (42), and 

¿store = 2w¿'2/2crit/V7-. (44) 

We rewrite the 2crit values for r = H)1"5 cm as 

2(CW) = 533 gcm-2«:r4756, (45) 

2(MM, a> 0.3) = 74.8 g cm-2 a_0'5rí¿°|, (46) 

and 

2(MM, a< 0.3) =1900 g cm”2 a!£8r}0
0l (47) 

The luminosity is taken to be 

L =1/2 GMwdMT/rwd min ( ̂ spread > ^store )/^burst * (48) 

For the different classes of models we find the following 
relations which are evaluated at r = 3x 1010 cm. For CGW : 

¿burst = 0-86 weeks a®;1* 2a/ 11/S1
0'3, (49) 

¿store = 8.73 weeks a~ -4
2
9f-1 9, (50) 

¿spread =11.1 yr <5 2/-l, (51) 

385 

and 

L = 8.49X1034 ergs s^ «," -f«1^/-?. (52) 

For MM with «> 0.3: 

¿burst = 1.29 weeks a®19«/11/-/;/, (53) 

¿store = 3.70 weeks a/ °'5/- 0.5 ^-9, (54) 

¿spread = 1 -30 Weeks «°'21/T0
0
5

42, (55) 

and 

L = 8.42X1033 ergs s-1 a^025«),1/-^12. (56) 

For MM with « < 0.3: 

¿burst = 0.767 weeks a°f° i«/11/-/];), (57) 

¿store = 14.8 weeks a/ ° jf_ 0,5M^, (58) 

¿spread = 15 -0 weeks a®;34 ¡/Sqj42 , (59) 

and 

L = 1.61 X1035 ergs s-1 «“^«W-o.5, (60) 

where the subscripts c and h stand for cold and hot (i.e., 
quiescent and outburst). Here the MM model is also gener- 
alized to a 2 «-model, although it was originally proposed by 
MM that « is constant. Note that we have assumed /* = 1, so 
that «cold = 0.3 divides 2max^ and 2max 2. 

We see that for the CGW models with a cold torus, the 
orientation of time scales is rburst < ¿store < tspreSLd, but that for 
the models based on the partial ionization instability the 
orientation for all reasonable parameters is r5urst < iSpread 
¿store. This means that in terms of these idealized time scales 
/store is t0 be identified with /twixt, as was done in CGW and 
Cannizzo, Wheeler, and Ghosh (1983), but that for the MM 
models one must take /twixt = Spread- A comparison of these 
time scales with those of nonthermal equilibrium treatments 
(Smak 1983 û; PFL), however, shows that the burst time (rate 
of dechne of bolometric luminosity, for example) can, in 
general, be much faster than the simple viscous time used both 
here and by Mantle and Bath (1983). The controlling time 
scale is, in fact, the cooling transition front which takes the 
disk from a high to a low viscosity state. The argument by 
Mantle and Bath (1983) and Cannizzo, Wheeler, and Ghosh 
(1983) that « «1 in the outburst state also ignores this effect, 
taking into account only viscous evolution of the disk and not 
nonthermal equilibrium phase transitions. In addition, our 
values for /spread appear smaller than those found in other 
studies because of the neglect of optically thin conditions. 
Hence, although equations (49)-(60) are useful in setting the 
general ordering of time scales, they cannot be used to set 
quantitative limits on the instability mechanisms in the manner 
attempted by Cannizzo et al. With appropriate expressions for 
t burst Cpread> useful inequalities based on the time scales 
could still be constructed. 
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For any model, a sufficient amount of material must be 
stored in the quiescent state to give a bright burst. The 
bolometric luminosity can be cast in a form which is indepen- 
dent of the above time scales to use as a check against 
observed dwarf novae. From standard disk theory the effective 
temperature in a steady-state disk is obtained by equating 
oT^ to the surface flux given in equation (7). Because of the 
correction term [1 — ß^{r^d/r) ], the quantity ^eff peaks at 
r = 49/36 rwd for ß =1. This maximum effective temperature 
can be written as 

Wax = 19,900 K (Mwd/1 Mg)
1/4(M/1016 g s“1)174 

X (''wd/109 cm) V4. (61) 

The disk luminosity is given by Ldisk =1/2 GMwdM/rwd. (In 
the outburst disk this relation should not be directly applied 
because Af decreases somewhat with /*, but we shall ignore 
this.) Eliminating M between these relations gives 

Ldisk = 4.19 X1035 ergs s “Ht^/IO5 K)Vwd/109 cm)2. 

(62) 

It is unfortunate that Ldisk depends so strongly on an uncer- 
tain parameter like max • SS Cyg is the only system for 
which a rehable value has been obtained for the outburst disk 
(Kiplinger 1979; Cordova and Mason 1982). By fitting theo- 
retical disk spectra to observed spectra, a value for Teff max of 
roughly 100,000-150,000 K is obtained. Taking rwd = 5 X108 

cm gives Ldisk «1-5 X1035 ergs s -1. 
One can get some idea of how the burst luminosities of 

other dwarf novae systems compare to SS Cyg by comparing 
their peak visual magnitudes—after correcting for disk in- 
clination and distance. Cordova and Mason (1982) list a total 
of seven objects classified as dwarf novae for which distances 
have been measured. These are shown in Table 4. The last 
column contains the visual luminosity times d2/cos i, normal- 
ized to 1 for SS Cyg. Inasmuch as visual magnitude is propor- 
tional to bolometric luminosity, this quantity corresponds to 
Ldisk- The luminosities of the last four systems are within a 

factor of 2.5 of SS Cyg and hence should also be of order 1035 

ergs s_1. The first three systems have much smaller luminosi- 
ties. This is to be expected from the standpoint of a disk 
instability. Their periods and hence binary separations are 
smaller, so a smaller amount of material is stored in quies- 
cence. 

v. CONCLUSION 

This numerical study of thin disk accretion covers the 
region of parameter space appropriate to dwarf novae and 
X-ray transients. We have used new opacities to investigate a 
previously unstudied regime of steady-state models in which 
the solutions are cool, radiative, and optically thick. A sim- 
plified optically thin treatment was used to study solutions at 
even lower rates of accretion. These solutions are complex and 
double-valued. We have also shown that for all values of a less1 

than unity the steady-state models are optically thick at 2max. 
Thus, the instability cannot recur by increase of surface den- 
sity without the system becoming optically thick. 

A thorough examination of the previously discovered ex- 
trema in the loci of steady-state models reveals that two effects 
induce maxima in surface density: the rapid variation of 
opacity with temperature at a near unity, and the change in 
convective efficiency with temperature at lower a. The pres- 
ence of these two maxima can have several effects. The 
midplane temperature and molecular weight and hence the 
viscous time are different for the two maxima. Since the 
dominant maximum is different for different a, care must be 
taken to choose conditions self-consistently; i.e., physics based 
on the opacity peak maximum should not be combined with a 
choice of a which causes the convective maximum to be 
dominant. In addition, Mineshige and Osaki (1983) have 
shown that when both maxima are of roughly equal value, a 
plateau on the rise to maximum in the theoretical light curves 
can result, which is not observed. This can be avoided by 
reducing the mixing length to enhance the opacity peak maxi- 
mum, or by reducing a to enhance the convective maximum. 

The models of steady-state structure we have presented are 
only a prelude to a complete time-dependent study. These 
steady-state solutions do provide the locations of the points of 
instability and can be used to define various time scales of 

TABLE 4 
Relative Peak Visual Luminosities'1 

P d 
DN (hr) r105

b Kpeak LlJapp
c /d. cos/ (pc) Z^corr

e 

OY Car  L51 0.37 11.7 0.036 78 (±3) ,0.208 150 0.20 
EXHya  1.64 0.39 10.0 0.174 >70 <0.342 76-190 0.15-0.96 
Z Cha   1.79 0.41 11.9 0.030 79 (±2) 0.191 125 (±20) 0.13 
U Gem   4.25 0.73 8.8 0.525 67 (±8) 0.391 76 (±30) 0.39 
SS Cyg  6.60 0.98 8.1 1.000 37 (±3) 0.799 125 (±25) 1.00 
EM Cyg  6.98 1.02 11.9 0.030 ~ 65 0.423 320 0.37 
BVCen  14.63 1.67 10.5 0.110 61 (±5) 0.485 450 2.40 

aFrom Cordova and Mason 1982. 
bAssuming P2(M} + M2) = 47rV/<7, Ml + M2 =1 M0> and r = a/4. 
Apparent peak visual luminosity, SS Cyg = 1. 
dDisk inclination in degrees. 
ePeak visual luminosity corrected for distance and disk inclination, SS Cyg = 1.. 
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interest. We defer to future papers detailed discussions of the 
implications of these models for time-dependent behavior. 

Our preliminary vertically averaged time-dependent models 
based on the instability at the point of convective onset give a 
satisfactory picture of many aspects of the outbursts of dwarf 
novae and soft X-ray transients (Cannizzo, Wheeler, and 
Ghosh 1983). A ring formed at the expected radius for dwarf 
novae, ~ 3 X1010 cm, containing the amount of matter ex- 
pected for the convective instability model for = 0.01 
gives an appropriate asymmetric burst with a rapid rise and 
slower decay, with the proper peak magnitude, ~1035 

ergs s"1, to match the observations with a in the hot state of 
order unity. The same values of « in the hot and cold states 
and a critical density appropriate to the larger orbit of Aquila 
X-l give a reasonable fit to the X-ray and optical outbursts of 
that classical soft X-ray transient. 

The rise to optical maximum in these models occurs as the 
material spreads out from the original ring on a viscous time 
scale which is rapid enough, of order 10 hr, to be comparable 
to the time scale of the thermal instability. This means our 
approximation of placing the ring in the hot state instanta- 
neously is somewhat crude, and a complete time-dependent 
study resolving the evolution of the instability on a thermal 
time scale will be necessary. Nevertheless, the evolution of the 
continuum from the disk is similar to that observed. There is 
at first an approximately Planckian spectrum, peaking in the 
optical, from the hot ring. As the ring spreads into a disk, the 
peak shifts to the ultraviolet, and in the middle wavelengths 
the continuum has a vl/3 slope. The continuum then decays in 
an approximately self-similar manner as material drains out of 
the disk. A time-dependent spectral evolution is shown in 
Figure 15. 

As we noted in § IY, these simple models may be in error 
by neglecting the effects of the cooling transition wave which 
may speed the evolution of the light curve in the drop from 
maximum light. This phase is complex and has not yet, in our 
point of view, been treated with reahstic physics. 

As the material cools from the point of instability at 2^, it 
will tend to become optically thin before reaching steady state 
at the lower temperature. Williams (1980) and FLP argue that 
this will cause the emissivity to decrease and the temperature 
to remain at ~ 6000 K. We have shown here (Fig. 4, and 
associated discussion) that this tends to happen only at smaller 
radii and large a « 1. The critical value of a above which only 
a warm branch exists is given by O.l/i^Y2. For the inner 
regions (r10 < 1) a > 0.1 will give only a warm solution, but in 
material present at larger r the disk will be in a cold state 
(T<2500 K). For ««0.1, as assumed by PFL, the only 
equilibrium solutions near the injection radius, - 2 X1010 cm, 
are at low temperature, viz., ~ 2000 K. If « decreases with 
temperature, this tendency to develop cold solutions in quies- 
cence is enhanced. In such a case, the cold, low-viscosity 
region should store the injected matter but choke the flow to 
the inner regions. Any matter which is hung up in an inner 
warm, optically thin regime should have a higher viscosity and 
continue to drain onto the central star rather than accumulate 
matter, as shown by present time-dependent models based on 
less detailed physics. Such regions could be the origin of the 
emission lines observed in quiescence, but seem likely not to 

Fig. 15.—Spectral evolution of a hot ring spreading into an outburst 
disk is shown. Time-dependent method of Bath and Pringle (1981) is used. 
Initial conditions are 2max = 590 g cm" 2, $r/rÚTlg = 0.2, rúng = 3 X1010 

cm. We used a = 1. Times shown aie for t = 0, 0.05, 0.1, 0.5, and 1 week. 
Curve with the peak at À ~ 1000 Á represents the initial hot ring which 
radiates like a blackbody at Tefr ~ 30,000 K. Disk which is subsequently 
formed is much hotter (Tefr max-100,000-200,000 K). As the stored 
material is cleared out, the power at all frequencies decreases. 

represent the bulk of the matter which is too cool to be 
observed easily. 

Our current analysis suggests that the material must turn 
optically thick before it can undergo an outburst. For any 
value of «, especially for «<0.3 where «104-106, we 
find that the surface density corresponding to optical depth 
unity is at least a factor of 2 or 3 less than 2max. From 
prehminary time-dependent work we find the time scale to 
augment 2 by this amount in the quiescent ring just before 
2crit is attained is ~ 10 days. Optically thin emission lines are 
observed, however, up until a few hours before the burst 
occurs (Hessman 1983). This suggests that the material re- 
sponsible for the emission lines is not the source of the 
outburst. If the outburst occurs in cold dense material which is 
not contributing to the emission lines, then the lines could be 
emitted by the dilute warm inner material right up to the point 
of outburst. 

Finally, the relatively large optical depths which we find in 
this study also have consequences for the model of dwarf nova 
eruptions induced by variations in the mass transfer rate from 
the secondary (Bath and Pringle 1981; Mantle and Bath 1983). 
In particular, since no optically thick disk is observed in 
quiescence (Kiplinger 1979), the rate of accretion in the disk 
must be small. One can then ask at what rate of accretion the 
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inner edge of the disk turns optically thin. A typical white 
dwarf radius is 5X108 cm, so that our solutions near 3X109 

cm are approximately representative. These solutions are opti- 
cally thick for accretion rates as low as 1013 M0 yr-1. The 
quiescent value of the mass transfer rate adopted in the 
studies of mass transfer variation is ~10-9 M0 yr-1. Such 
rates would seem to demand optically thick disks in quies- 
cence, in contradiction to the observations. 
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