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ABSTRACT 
Vortex lines in the superfluid cores of neutron stars carry flux due to the induced proton charge current which 

results from the Fermi liquid interaction between neutrons and protons. As a consequence the scattering of 
charges off these magnetic vortex lines equilibrates the core superfluid to the plasma and the crust on time scales 
of order 1 second after a glitch. Thus, the core superfluid cannot be responsible for the observed time scales of 
the Vela and Crab pulsars. This result supports the theory of Alpar et al, in which both the glitch and the slow 
postglitch relaxation are determined by the interaction of vortices with nuclei in the crust. 
Subject headings: dense matter — hydromagnetics — pulsars — stars: neutron 

I. INTRODUCTION 
In their paper on superfluid solutions of 3He and 4He, Andreev and Bashkin (1975) show that the superfluid velocity of one 

condensate induces a particle current of both species. In this article we develop this idea in the context of recent theories of the 
rotational dynamics of pulsars. Specifically, we show that because of the interaction between neutron and proton condensates, 
neutron vortices in the interior superfluid are magnetized, and that electron scattering from these vortices couples the superfluid 
core to the conducting plasma on short time scales on the order of seconds. 

We assume a standard model (Shaham and Pines 1981) for a 1.4 M0 neutron star with a radius of roughly 10 km. The outer 
crust is approximately 1 km thick and comprises a crystalline lattice of nuclei embedded in a liquid of relativistic degenerate electrons 
and, in the inner crust, a degenerate neutron liquid. The neutron liquid in the inner crust (4.3 x 1011 g cm-3 < p < 2.4 x 1014 

g cm“3) condenses into a Fermi superfluid with Cooper pairs in a state for temperatures below estimated to be 
0.1-1.0 MeV (Yang and Clark 1971 ; Takatsuka and Tamagaki 1971). The interior of the star (p > 2.4 x 1014 g cm“3) is a quantum 
liquid mixture of neutrons, protons, and electrons, with proton and electron number densities of approximately 5 % of the total 
baryon number density. 

Both neutron and proton liquids in the interior are expected to condense into BCS-like superfluids with transition temperatures 
somewhat lower than that of the S-wave neutron superfluid in the crust. However, because of short-range repulsion and the 
spin-orbit interaction between nucleons, the interior neutrons form a condensate of 3P2 Cooper pairs (Hoffberg et al 1970). The 
protons are comparatively dilute so that they always pair in S-wave states. There is no pairing between neutrons and protons 
because of the large differences in their Fermi energies. 

The neutral superfluids, both in the interior and in the crust, must be threaded by an array of vortex lines in order to rotate 
with the crust, stellar field, and conducting plasma. The bulk of the superconducting protons do not rotate by forming vortices, 
but corotate with the crust and electron fluid by adjusting the London current to produce the required rigid-body circulation. 
The protons are expected to form a type II superconductor (Baym, Pethick, and Pines 1969); thus superposed on the rigid-body 
rotation are microscopic proton currents circulating around the flux lines that accommodate the stellar magnetic field. 

The rotational dynamics of a decelerating neutron star is determined by electromagnetic forces acting on the conducting plasma, 
and the frictional and pinning forces acting on the neutron vortex lines. The coupling time of the interior plasma to the stellar 
magnetic field and crust is expected to be very short, Tplasma ^ 1 s; so it is usually a good approximation in describing postglitch 
behavior of pulsars to treat the plasma as rigidly coupled to the stellar magnetic field and crust (Easson 1979). The rotational 
dynamics of the neutral crust superfluid is determined by external torques and pinning forces that tend to maintain constant 
superfluid velocities. The vortex density, and therefore the macroscopic superfluid velocity, change because of both thermally 
activated vortex creep and sudden unpinning of vortices so that the crustal superfluid response is a sensitive function of the stellar 
history (Alpar et al 1981a, b). The dynamics of the interior superfluid is believed to be simpler than that of the crust superfluid 
since, presumably, there are no pinning forces. A longstanding view has been that the interior superfluid is weakly coupled to 
the rest of the star (Baym, Pethick, and Pines 1969; Baym et al 1969) and consequently responds to external torques on the 
longest time scales. Specifically, the two-component theory of Baym et al (1969), combined with estimates of velocity relaxation 
in the superfluid core (Feibelman 1971; Sauls, Stein, and Serene 1982), attributes the observed postglitch relaxation times in the 
Crab and Vela pulsars (1 week and 2 months, respectively) to the slow response of the core superfluid to external torques. 

In this article we argue that within the standard model for neutron stars the core superfluid is coupled to the conducting 
plasma on short time scales on the order of seconds; thus, the core superfluid cannot be responsible for the observed postglitch 

1 This research was supported in part by NSF grants DMR 80-2063, PHY 80-23721, PHY 80-25605, and NATO Research Grant RG 186.81. 
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relaxation times. Observationally, Boynton’s (1981) analysis of timing noise from the Crab pulsar and Her X-l shows that at least 
about half of the neutron star’s total moment of inertia rotates rigidly with the crust on time scales longer than a few days. 

In § II we discuss the superfluid drag effect and its importance for the magnetohydrodynamics of an interacting mixture of 
degenerate neutrons, protons, and electrons. Easson and Pethick (1979) have discussed the importance of the Fermi liquid 
interaction between the neutrons and protons. Specific attention is given to the magnetic structure of a neutron vortex that results 
from the proton drag current. In the Appendix we give some of the relevant details of the hydrostatics of a uniform rotating 
mixture of interacting charged and neutral condensates.2 

In § III we consider the response of the charged-neutral mixture to a glitch—a discontinuous change in the velocity of the 
normal fluid relative to that of the neutral superfluid. We discuss electron-magnetic-vortex scattering, which gives the time scale 
for dynamical coupling between the core superfluid and conducting plasma, and compare our result with those of Feibelman (1971) 
and Sauls, Stein, and Serene (1982). We also comment on the time scale for the coupling of the plasma to the crust when the 
protons are superconducting. 

Finally, in § IV we compare these results with the observed postglitch relaxation in the Crab and Vela pulsars, and with the 
theory of Alpar et al (1981a, b; 1984a, b). 

II. DRAG EFFECT IN NEUTRON STAR INTERIORS 

Andreev and Bashkin (1975) have shown that Khalatnikov’s hydrodynamical theory (1973) for a noninteracting mixture of two 
superfluids must be modified in an essential way because of the interactions between the two species. Basically they argue that the 
most general constitutive equations relating the superfluid mass currents to their corresponding superfluid velocities are 

9p — PPsPvp + PTVn •> (1) 

9n = PTVn + P?Vp , (2) 
where the labels refer to the two species of superfluid—in our case proton (p) and neutron (n) condensates. The superfluid 
velocities are defined, as usual, in terms of the gradient of the phase of the corresponding order parameter (eqs. [6] and [7]). 
These equations exhibit the superfluid drag effect, in which the velocity of one condensate induces a particle current of the other 
species. These drag currents are a consequence of the mean field interaction between the two species of particles. 

A convenient way to obtain equations (1) and (2), and to explore the consequences of the drag effect for the rotational dynamics 
of neutron star interiors, is to introduce a Ginzburg-Landau (GL) free energy functional for an interacting superfluid mixture. 
However, the GL theory is a convenience; the calculations and conclusions we present are not restricted to temperatures close to 
either transition temperature. For simplicity we consider two condensates described by complex scalar order parameters 
ij/p and \¡/n. This would be an appropriate description of the neutron star interior if both protons and neutrons condensed into 
% states. The complications associated with the 3P2 order parameter are not essential here. For the purposes of the discussion 
that follows the order parameters \¡/p and i/',, can be thought of as two-particle wave functions under Galilean transformations, 
gauge transformations, etc. The GL free energy functional, when minimized, gives the difference in free energy between the superfluid 
and normal states. This functional F[i/^, i/^] = J d3rfGL(\J/p, ^„) is constrained by the symmetries of the normal phase, so that 
the general form of/GL, including terms of second order in the gradients, consistent with invariance under global phase changes 
of either order parameter is 

/GL = fu + fg , (3) 

fu = <Xp\'l'P\2 + ßpl^pf+ oi„\il/n\
2 + ßn\il/n\

4+ v\\l/p\2\il/n\
2 , (4) 

fg = yPlv'/'pl2 + yn\^n\
2 + MViAp • • via„)iAp^* + n3(\ii/p ■ , (5) 

where ^ = ¿4, and all other coefficients are real. The relevant hydrodynamic coefficients, calculated in BCS plus Fermi 
liquid theory, are given in equations (19)-(21). We have temporarily omitted the proton charge, rotation, external fields, etc. 
For slow spatial variations, \fg\ |/M|, the amplitudes are fixed by the condensation energy density /M, so that = \l/0e

iXp, 
il/n = (f)0e

lXn, and /u = constant. The superfluid velocities are defined by the Galilean transformation properties of the order 
parameters, which imply that 

(6) 

P) 

The free energy density can then be written in terms of the superfluid velocities, the “bare” superfluid density (pfp and p””), 
and the coupling density p”" as 

foL = fu + ?PPsPV2p + 1PTV¡ + Pffp • V„ (8) 

2 After completing this work we found that Vardanyan and Sedrakyan (1981) and Sedrakyan and Shakhbasyan (1980) have also considered the drag effect in 
charged-neutral mixtures; however, they do not discuss the implications of the drag effect for the rotational dynamics of pulsars. 
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where /)fp = 2yp(2mp/h)2i¡/l, p"s" = 2yn(2mn/h)24>fJ, and pf = p"s
p = (pl + p2 - p3 - p4)(2mp/h)(2mjh)\pl 4>l. The velocity fields are 

related to the superfluid mass current by 

9s = PÍ% + P""v„ + Pp
s
n{vp + r„) . (9) 

Equation (9) follows directly from the Galilean transformation rules for the free energy and velocities (see, e.g., Mermin 1978). 
We can make the correct identification of the particle current of each species by noting that one component is charged (protons 

in this case with charge e). Gauge invariance implies that if the vector potential is transformed by AA -h then 
ÿpe

l2elhcÀ and -> ij/n. Thus, the gauge-invariant proton superfluid velocity becomes 

(10) 

and the superfluid mass current and free energy density are modified only by the interpretation of vp with equation (10), the 
addition of a background of normal electrons for charge neutrality, and the addition of the magnetic field energy density 
/m = |V x A\2/%ti to equation (8). The vector potential is determined self-consistently (as in ordinary superconductors) by 
equation (10) and Maxwell’s equation, which is obtained by minimizing E = J d3r(fGL + fM) with respect to A. The corresponding 
Èuler-Lagrange equation gives for b = \ x A, 

■is = ¿ (V x A) = A [pnnv + ppnVn] ) (H) 471 mp 

which defines the charge current and shows explicitly the drag effects. Equations (1) and (2) for the mass currents of both species 
follow directly from equations (9) and (11). 

So far we have obtained superfluid velocities and currents in the special reference frame in which the normal fluid is at rest. In 
neutron stars the normal fluid comprises the electron fluid as well as excitations of neutrons and protons. The normal fluid mass 
density pex = p — pHp — p""* where p is the total mass density, follows directly from the Galilean transformation rule 
for the total mass current,# — pu, and equation (9) for the superfluid mass current. In a general reference frame, where normal 
fluid has a velocity rex, the charge current is still given by equation (11) except that the right side is modified by the replacements, 
vp^vp-vexdLndvn->vn-vex. 

The drag effect is important in neutron stars because, as equation (11) implies, a nonvanishing neutron superfluid velocity 
generates a charge current. In a rotating neutron star this situation is required (see Appendix) because the neutron superfluid 
rotates only by forming an array of neutron phase vortices, with an area density determined by the rotation speed Q = 2n/P: 

Hy 
4m, 

- P“1 = 6.3 x 103 cm-2 P-1(s) (12) 

For a uniformly rotating star, the neutron superfluid rotates rigidly on macroscopic length scales, and these neutron vortices 
rotate rigidly with the rest of the star. However, microscopically the neutron velocity deviates significantly from rigid-body rotation 
near a neutron vortex line. In the rest frame of a neutron vortex line (the frame rotating with the superfluid), the neutron 
velocity field near an axially symmetric vortex is 

v n 
h 

2mnr 
(13) 

where (r, </>, z) are cylindrical coordinates measured from the center of the vortex line. 
In contrast to the neutron condensate, the protons rotate rigidly with the star without forming vortices. They satisfy the 

condition = Q x r by adjusting the London current (see Appendix). Thus if there were no interactions between neutrons and 
protons, the proton mass current would corotate with the normal fluid, which includes the electrons, so that there would be no 
charge current. However, because of the drag term in equation (11) there is an induced charge supercurrent, and an associated 
magnetic field, around each neutron vortex line. This field and current can be calculated from equations (10), (11), and (13) for a 
uniform proton condensate (V%p = 0).3 In the gauge V • A =0, the vector potential satisfies London’s equation 

W2A — A~2 A = 
4ne 
MpC prvn (14) 

with A* = (mlc2/4ne2ppp) as the effective London penetration depth. The important feature of equation (14) is that the neutron 
vorticity appears as a source term for the magnetic field. The solution of equation (14) for a single neutron vortex is known from 
the theory of type II superconductors (see, e.g., Fetter and Hohenberg 1969), and gives for the magnetic field and supercurrent 

b = Z 
jl - (i/AjK^/Aj/oir/AJ, 
l^/AJ/^/AJ/ioir/A*), 

0 < r < £ ; 

r>£ ; 

Js=i 
c 

4ti¿ 
<ï>* 
ttAï l/^/Aj^r/AJ , 

0 < r < £ ; 

(15) 

(16) 

3 For clarity we ignore for the moment the proton phase vortices (flux lines) that accommodate the stellar magnetic field; equation (14) is easily generalized 
to include them. 
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where O* = (he/2e)(mJm„)pp
s
nlplp, and the modified Bessel functions in these equations are defined in Abramowitz and Stegun 

(1972). Equations (15) and (16) also give the field and current inside the neutron vortex core (r < £). However, the interior 
solutions (r < f) are approximate because we use an approximate neutron amplitude |tA„(r)|/i/'0 = ®(r ~ c) + {r/Ç)®{£ - r). 
For numerical calculations we take the core radius to be the neutron coherence length given by 

2 
7T 

15.9 fm (1-*)1/3/^3 »V 
m* 

A^MeV)“1 , (17) 

where EFn, A„, and k„ are the neutron Fermi energy, neutron gap, and neutron Fermi wave vector; x = np/nb is the ratio of 
proton density to the total baryon density, p14 is the mass density in units of 1014 g cm-3, A„(MeV) is the neutron gap in MeV, 
and m*/m„ is the neutron effective mass. 

The structure of a neutron vortex line differs from that of a flux line in type II superconductors in several respects. The flux 
of a neutron vortex line is given not by the flux quantum (¡)0 = he/le as it is for a flux line in a type II superconductor, but 
rather by 

^ •d/ = a>0 
(18) 

The charge current around a neutron vortex is screened beyond the effective London length A*, as in terrestrial superconductors; 
however, in contrast to ordinary flux lines the mass current circulating the neutron vortex line is not screened, but decays as 
\gn\ ~ 1/r, which is necessary for an array of these vortices to produce macroscopic rigid-body rotation of the neutron superfluid. 
Furthermore, since it is rotation of the neutron superfluid that requires the existence of these magnetic vortices in neutron star 
interiors, there is no restriction on the ratio k* = A*/c. In superconductors, flux lines are energetically possible only when 
K = (London length/coherence length) > l/v 2. Of course, there is an analogous inequality for flux lines in the proton condensate, 
namely kp = AJÇp > l/v 2, where cp is the proton coherence length, which determines whether the protons form a type I or 
type II superconductor. 

The magnetic flux of a neutron vortex is proportional to the drag coefficient pf", and consequently depends on the neutron- 
proton Fermi liquid interaction. The superfluid densities for the interacting mixture have been calculated in BCS plus Fermi 
liquid theory (Sauls 1984), and for temperatures, T < A„, Ap, where A„ and Ap are the neutron and proton gaps, they reduce to 

pPsP 

Pps" = PsP 

(19) 

(20) 

(21) 

where pp{pn) is the proton (neutron) mass density, m*(m*) is the proton (neutron) effective mass, and <5m*(c>ra*) is the contribution 
to the proton (neutron) effective mass due to the interaction with the neutron (proton) medium. In neutron star matter Sjöberg 
(1972) has shown that m* ^ jmp, which implies that the drag current is opposite to the neutron velocity field. 

The magnetic field of a neutron vortex is confined within a radius of order A*, which for neutron star densities and temperatures 
T<Tcpxl MeV is 

A* 29.5 
mp 

x 'p^ 
1/2 

fm . (22) 

The magnitude of the field is determined by 

3.8 x 1015 gauss . (23) 

For typical estimates of the proton effective mass, proton concentration, and interior density [x = 0.05, = 4] (Pandharipande, 
Pines, and Smith 1976), the screening length and vortex field are A* = 47 fm and bv = 7.7 x 1014 gauss. 

III. ELECTRON VELOCITY RELAXATION IN NEUTRON STAR INTERIORS 

Easson (1979) has shown, for a normal Fermi liquid of protons, that the plasma inside neutron stars corotates with the crust 
because of electromagnetic forces; any change in the rotation rate of the crust is communicated to the plasma on time scales 
Tpiasma < 10 s. Thus, on time scales comparable to those observed following a glitch of the Vela or Crab pulsar—interpreted as 
a rapid speedup of the crust—the plasma is locked to the crust. To begin with, we assume that the plasma is locked to the crust 
when the protons form a type II superconductor. We return to this point at the end of the section. 

The rotational dynamics of the neutron superfluid is determined by the response of the distribution of neutron vortices to 
changes in the crust (and plasma) rotation speed. In particular, the neutron superfluid spins up or spins down only by increasing or 
decreasing the vortex density. Thus, changes in the crust rotation speed are communicated to the neutron superfluid through 
the vortices, whose motion is driven by scattering from excitations in the plasma. Proton and neutron excitations are frozen out 
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of the bulk interior for temperatures T A„, A^,, so electron-vortex scattering couples the core superfluid to torques acting on 
the crust, like pulsar radiation torques, accretion torques on neutron stars in binary systems, or glitches. 

Electron scattering off magnetic vortices has previously been considered by Sauls, Stein, and Serene (1982). These authors point 
out that electron-magnetic-vortex scattering provides a qualitatively different mechanism for velocity relaxation in neutron star 
interiors than that considered by Feibelman (1971). The Feibelman mechanism is electron scattering from the low-lying neutron 
excitations in the core of a neutron vortex, via their magnetic moment interactions. By contrast, electron-magnetic-vortex 
scattering does not require thermally excited neutron excitations, and consequently is comparatively insensitive to the temperature 
and density of the interior provided T < Tcn, Tcp. 

This calculation of the velocity relaxation time for the interior starts from the equations derived in the Appendix of Sauls, 
Stein, and Serene (1982) for relativistic electron scattering from a static flux line. However, there are several important differences 
between this work and that of Sauls et al who discuss electron scattering from ferromagnetic 3P2 neutron vortices. In § II we 
discussed the generation of vortex magnetic flux by the proton drag current around neutron vortices. This mechanism does not 
depend on whether the neutrons form a or 3P2 condensate. On the other hand, the drag effect operates only if both the 
neutrons and the protons are superfluid. In addition, the induced magnetization generated by the proton drag current is roughly 
103 times the spontaneous magnetization of a 3P2 vortex, using the same estimates of the neutron gap, etc. Thus, we obtain 
electron velocity relaxation times that are significantly shorter than those calculated by Feibelman or Sauls et al for typical 
neutron star parameters. 

The relaxation time for the electron distribution function due to relativistic electron scattering from a localized flux line, calculated 
in the Born approximation, is (Sauls, Stein, and Serene 1982) 

(24) 

(25) 

r00 

n(q) = 2n\ r\b(r)\J0(qr)dr, 
Jo 

(26) 

where hk± is the magnitude of the electron momentum in the plane perpendicular to the vortex line ; nv is the vortex density given 
by equation (12); me, £e, and ke are the electron mass, Fermi energy, and Fermi wave vector, respectively; and J0(x) is the 
zeroth-order Bessel function of the first kind. It is easy to see from equations (24) and (26) that t - 1 oc O3 in the Born approximation. 
If we assume the vortex flux is confined to a tube of vanishingly small radius, then H(g) = <D^, so that t-1 = 7riVt0^. However, 
as Aharonov and Bohm (1949) show (see also Landau and Lifshitz 1977) for nonrelativistic electron scattering from a flux line 
in the zero radius limit, the full scattering rate depends on the flux as 

t"1 ccsin2 (Íti^/íDo), (27) 

where <1>0 = hc/2e is the superconducting flux quantum. In our case I^/Oq] < \ôm*/mp\, and since the range of the proton 
effective mass in neutron star matter is 0.8 > m*/mp > 0.5, the Born approximation is reasonably good. At worst, the Born 
scattering rate overestimates the true zero-radius scattering rate by 23% for m*/mp = 0.5. Also note that the neutron-proton 
interaction is attractive for neutron star densities, m* < mp, and so the vortex flux lines are never transparent to the electrons. 

A more accurate calculation of the electron relaxation time must also include the finite size of the flux line A* and the distribution 
of flux |A(r)|. These effects are described by the form factor H(g), calculated using equations (15) and (26) to be 

n(4) = «l>*(^|^)(1+^)-1. (28) 

The velocity relaxation time for the equilibration of the conducting plasma and the vortex lattice after a discontinuous change 
u in their relative velocities (a glitch) can be calculated from the initial rate of decay of the electron current 

ge(t) = 2 Í (2^ ^ ~ ee){hkeK ' w)('^/c)e"'/t<2'íl, ’ (29) 

neglecting for the moment the electromagnetic coupling between the electrons and protons. If we define T~n 
1 = — dgjdt ^=0lge (t = 0), 

then in the limit Tplasma Ten (i.e., rapid equilibration of velocity differences between the electron and proton fluids) the velocity 
coupling time between the plasma and the core superfluid is 

zv = (mpc
2/hcke)Ten . (30a) 

The factor (mpc
2/hcke) reflects the increase in inertia of the electron fluid in the strong-coupling limit Tplasma Te„. From 

equations (24)-(26) and (28)-(29) we obtain 

1 = 3 
hcK 

T0 ^ 
3 

i 
x2 + a2 

o (*2 + ß2)2 

Jl(x) 
dx (30b) 

where t0 
1 = nNt<I>l is the zero-radius scattering rate, a = 2keÇ, and ß = 6 A*. Since the dimensions of the flux line are large 
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compared with typical electron wavelengths, A*, £ /c"1, the finite size of the flux line significantly modifies the scattering rate. 
Typical values for the neutron coherence length and proton London penetration depth imply that a > 1 and ß æ 1 (eqs. [32b] 
and [32c]), so to lowest order in a-1 

3n(hcke\ -iißXr. 
'• =i6fc?r yi1-»'«!' 

«(«- x 
(2m + l)r(2m + 3) 

r(m + l)r(m + 2)2r(m + 3) 
(2m)F(2m + 4) 

r(m + 3/2)r(m + 5/2)2r(m + 7/2) 

(31a) 

(31b) 

with g(0) = 0 and g(l) ^ 0.132. Equation (31a) shows that the finite dimensions of the flux line increase the coupling time relative 
to the zero-radius value, i^zero radius) = (mpc

2/hcke)T0. For typical temperatures, T Tcp, Tcn, so equation (31a) can be written 
in neutron star units as 

t» 1 = 11.5P(s) ^öm^/nipfiß/ci)^ - g(ß)]s ^ (32a) 

a = 38.5[x1/3pi/43(mm/m*)A„(MeV)_1] , (32b) 

ß = 0.54[x1/2pf/46(mp/m*)1/2(m„/m*)A„(MeV)_ ^ , (32c) 

where P(s) is the rotation period of the neutron star in units of seconds. 
In Table 1 we list the values of tv appropriate for the Vela pulsar, P = 0.089 s, and for different densities in the neutron star 

interior, together with velocity relaxation times calculated from Feibelman (1971) for electron-vortex-excitation scattering, and 
from Sauls, Stein, and Serene (1982) for electron scattering from the intrinsic magnetization of a 3P2 neutron vortex line. We 
find that electron scattering from the drag-induced magnetic field of a neutron vortex determines the coupling time of the core 
superfluid to the plasma for temperatures below the superconducting transition temperature Tcp ~ IO10 K. This coupling time, which 
is of order 1 s throughout the neutron star core, suggests that the core superfluid is coupled to the outer crust and all nonsuperfluid 
components of the star, including the electrons in the core, on much shorter time scales than had been previously thought. 

The above interpretation requires that Tplasma < tv, or at least the electrons must be coupled to the crust on a short time scale. If 
Easson’s calculation of the plasma coupling time for a normal Fermi liquid of protons is approximately correct when the 
protons form a type II superconductor (i.e., Tplasma ~ 1-10 s), then although the transient response will be more complicated because 
^plasma ~ U? the core superfluid is still coupled to the crust on short time scales of order Tpiasma or tv. However, the response of the 
plasma to a discontinuous change in the crust velocity is more complicated when the protons form a type II superconductor. 
First of all recall that in Easson’s calculation (1979), spin-up of the plasma proceeds by the formation of a boundary layer at the 
crust-liquid interface, which sucks low angular momentum fluid into the boundary layer to be replaced by an inward radial flow 
of higher angular momentum fluid in the inviscid interior. There are two types of boundary layers depending on whether the plasma 
viscosity (corresponding to Ekman spin-up) or the hydromagnetic-inertial modes are primarily responsible for the boundary layer 
formation. In either case spin-up occurs on a time scale of the order of 1-10 s. Although for a type II proton superconductor 
several new features appear which modify the dynamics of the plasma spin-up, the time scale for spin-up of the electron component 
is expected to be no longer than the Ekman spin-up time te = R(rjeeQ/pe)~

1/2, where rjee is the viscosity due to electron-electron 
scattering, pe is the electron mass-energy density, and R is taken as the radius of the star. Using rjee = 3.2 x 1019T8 poise, 
calculated by Flowers and Itoh (1976) for an interior density of Pi4 = 1.3, the Ekman spin-up time is of order of 1-10 s; 
te ^ 30 T8 s. The neutron superfluid then follows on roughly the same time scale. 

Before continuing the discussion of the rapid spin-up of the neutron superfluid core, we include some additional remarks on the 
plasma response to a glitch. As Easson (1979) has noted, the response of the proton condensate involves dynamical processes that 
are absent for normal proton matter. The magnetic field is localized into flux tubes of radius A* ^ 50 fm with a nearest neighbor 
distance d = (O0/Bs)

1/2 ^ 5,000 fm, so most of the plasma is in a region where there is no magnetic field. A model for the spin-up 

TABLE 1 
Coupling Times for the Vela Pulsar' 

Pi4 * Mfm A) Ufm) A* (fm) K/mP MMeV) g(ß) V T(ex) *(3p2) Mdrag) 
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

1.00 2.01 h 
2.31   0.046 0.573 60.9 57.2 0.40 0.34 0.14 0.10 5.03 d 1.78 y 1.65 s 

0.01 8 x 106 y 
1.00 5.22 h 

4.52   0.057 0.770 32.7 33.4 0.33 0.79 0.13 0.10 2.90 y 0.82 y 1.02 s 
0.01 2 x 1028 y 
1.00 5.81 h 

6.01   0.068 0.898 30.7 25.3 0.30 0.92 0.17 0.10 6.82 y 0.75 y 0.87 s 
0.01 9 x 1031 y 

a Plasma-superfluid core coupling times for Vela (P = 0.089 s). Columns (10) and (11) give the coupling times calculated from Feibelman 
(1971) and Sauls et al (1982), respectively. Column (12) is the coupling time calculated from eqs. (32). We assumed m*/mn= 1. The 
parameters in the table were taken from references given earlier in the paper. 
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of the superconducting component should include dynamical equations for the flux lines as well as for the plasma outside the flux 
lines. Here we point out three relevant time scales that enter the plasma dynamics, 

i) Electron-flux-line scattering leads to an average drag force/length on a flux line 

fd = -Pe *e/n} l{Vf -Ve), (33) 

with a coupling time, Tef æ (nv/nf)i;en æ 10“14 s, which is very short because the density of flux lines, nf = Bs/<!>0 ^ 5 x 1018 cm~ 2, 
is much greater than the density of neutron vortices, nv ^ 105 cm-2 (this is a rough estimate for re/ based on the zero-radius Born 
approximation discussed earlier). This drag force is also several orders of magnitude larger than the Lorentz force/length 
fL= -{enp<S>0/c)(vf-ve) x z, 

L/2/IA 
mfc 

eBsTef 
103 , (34) 

where (vf — ve) is the velocity of the flux line relative to the electron fluid velocity, m*c2 ^ 100 MeV is the electron effective mass, 
and Bs æ 1012 gauss is the average stellar field. 

ii) The free motion of the flux lines is viscous (see, e.g., Gorkov and Kopnin 1971) with a very long viscous relaxation time, 

Pe®oR2 

tBx T 
101 

ef 
(35) 

where e = (Oo^nA*)2 is the energy per unit length of a flux line. This estimate follows from a balance of the tension and drag 
force that result from an initial transverse distortion (on length scale R) of the flux line. As a consequence of the two different 
time scales, zef Tvis, the flux lines bend and move with the electron fluid velocity rather than vice versa. 

iii) We expect that the proton fluid outside the flux lines spins up rapidly to the electron fluid due to an adjustment of the 
surface supercurrent that is responsible for both the London field and the rigid rotation of the proton condensate. To see the 
time scales involved in this motion, assume that the electron fluid velocity is ve = fl x r, then the response of the London field, 
and therefore then the proton fluid velocity vp = —(e/mpc)A, to a discontinuity in the rotational velocity, (5Í1 = e0(i)Q£, is 
given by 

c~2ôfôb - V2ôb + A~2ôb = - eÇi@(t)z , (36) 

where öb is the perturbation of the London field. For i < 0, 3b = 0, and for t-+co, 3b— [(Stth^ c/c)A2]6Dz, which is the 
necessary increase in the London field that brings the proton condensate velocity into rigid rotation at the final rotation speed 
(1 -h ¿)Q. The longest time scale that enters equation (36) is the propagation time across the star, R/c ^ 10-4 s. 

Thus, our conclusion regarding the spin-up of the proton superconductor is that both the flux lines and the proton fluid outside 
the flux lines are rigidly coupled to the normal electron component, which spins up on the Ekman time scale, te ~ 1-10 s, 
determined by the electron viscosity. However, a model for the spin-up of a type II superconducting plasma, analogous to Easson’s 
model calculation (1979) for the spin-up of the normal proton plasma, needs to be worked out. 

IV. DISCUSSION 

Observation of glitches from the Crab (Lohsen 1981 and references therein) and the Vela (Downs 1981 and references therein; 
McCulloch, Hamilton, and Royle 1981; McCulloch et al 1983; Hamilton, McCulloch, and Royle 1982) pulsars have resolved the 
date of glitch events with a typical uncertainty of a few weeks, the closest result being that of the recent fifth glitch from the Vela 
pulsar (McCulloch et al 1983), which has a one-day uncertainty. Our result implies that the core superfluid is already coupled to 
the outer crust of the neutron star (whose rotation frequency is monitored as the pulsar’s frequency), within the resolution of the 
glitch observations. This result is supported by the analysis of timing noise from the Crab pulsar and from Her X-l (Boynton 1981). 
This analysis, looking for relaxation times larger than about two days, shows that on these time scales, a large fraction of the 
neutron star’s moment of inertia is coupled rigidly with the crust. Thus, the observed postglitch relaxation times of the Crab and 
the Vela pulsars, which are of the order of weeks, months, and longer (Lohsen 1981; Downs 1981), indicate the response of some 
component of the star other than the core superfluid to the glitch. In view of the long postglitch relaxation times, this component 
must also involve a superfluid. 

It has been proposed that the postglitch relaxation is the response of the superfluid in the inner crust of the neutron star to the 
glitches. This is a region of the neutron star where a neutron superfluid coexists with a lattice of nuclei. The vortices are pinned 
by the nuclei (Anderson and Itoh 1975; Alpar 1977 ; Anderson et al 1982), and this determines the dynamical coupling of the inner 
crust superfluid to the outer crust and other normal matter. It is also proposed that sudden unpinning of vortices from a pinned 
superfluid region of moment of inertia Ip is responsible for the glitches (Anderson and Itoh 1975; Pines et al 1980; Anderson 
et al 1981; Alpar et al 1981a, b). The pinned superfluid is dynamically coupled to normal matter by thermal diffusion of vortices 
in the pinning layers. The postglitch relaxation is then explained as the response of this diffusion process to the glitch (Alpar et al 
1984a, b), and observed relaxation times can be understood in terms of theoretical parameters of neutron star structure. 

To explain the magnitude of the Vela pulsar glitches, or to fit the postglitch relaxation of the Vela pulsar’s rotation frequency 
Q(i) and its derivative Ù(t) with the pinned superfluid model, one must have 

7^1^1(r2 (Vela) 

~l<r3 (Crab). (37) 
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Here / is the total moment of inertia of all components of the star coupled to the outer crust on time scales shorter than the 
resolution of the glitch. AQ/Q is the observed jump in the spin-down rate Ù. From theoretical neutron star models, Ip/I ~ 10” 2 

only if I contains almost the entire moment of inertia of the star, that is, it includes the core superfluid, which is responsible for a 
large fraction of the star’s moment of inertia (Pandharipande, Pines, and Smith 1976; Nandkumar 1983). Thus our finding that 
the core superfluid is coupled on a short time scale to the outer crust provides crucial theoretical support for the pinned superfluid 
model of pulsar glitches and postglitch relaxation. 

We thank P. W. Anderson, D. L. Stein, and M. Ruderman for useful conversations. M. A. A. thanks M. Ruderman, the 
Astronomy Department of Columbia University, the Columbia Astrophysics Laboratory, and the Aspen Center for Physics for their 
hospitality. J. A. S. thanks the Low Temperature Laboratory of Helsinki University of Technology for their hospitality. We thank 
this institution, and the Physics Department of the University of Illinois, for services in preparing the final version of the 
manuscript for this paper. 

APPENDIX 

Here we consider the equilibrium state of a uniformly rotating mixture of superfluid neutrons, superconducting protons, and 
excitations—which include the normal electrons. For simplicity we consider a cylindrical geometry and neglect the spatial 
variations of the density. The hydrodynamic free energy in the nonrotating frame is a functional of the velocity fields of the three 
components and the vector potential, 

F = j d3r[^pv2
p + ip"s

nv2 + p¡nvp ■ v„ + jpes v
2

x + (¿7r)|V x A\2], (Al) 

where vn and vpjust also satisfy equations (7) and (10). 
The equilibrium state of a uniformly rotating mixture minimizes the free energy in the rotating frame, F = F — L • il, where 

L is angular momentum of the fluid, 

L ^ d ry x (</s -b pex vex), (A2) 

with gs given by equation (8). Since there are no constraints on the rex, solid body rotation of the normal fluid, vex = il x r, 
always minimizes the free energy, and F reduces to 

F = j d3rp(il x r)2 + J d3r[^p%p(vp — Q x r)2 + — Í1 x r)2 + ppn{»p - £1 x r) • - H x r) + | V x |2/87t] . (A3) 

The first term, which we omit hereafter, is the kinetic energy, in the rotating frame, of a rigid body with mass density p. The rest 
of the terms give the corrections to the rigid body kinetic energy which are required by the constraints on the velocity fields 
vn and vp. The free energy takes a simple form when evaluated at the stationary condition öF/öA =0, 

(Ppsn)2] 

f=¿íd3r(|A|2 + A*|v XÄ|2)+^i 
^\d3r Ps - ■ 

Ps 
(vn-ilx r)2 , (A4) 

with 

V X A = [pPsP{v - ii x r) + pf (»„ - n X »•)] . (A5) 
mpc 

For a single-component neutron superfluid the magnetic field terms are absent from equation (A4) and the minimum energy is 
obtained by an array of phase vortices with total circulation 2Q, the classical rigid body value. However, the velocity field vn 
deviates from fl x r near a vortex line (eq. [13]), so the correction to the rigid body kinetic energy, for a cylinder of radius R 
and height L, is approximately the total number of vortices, Nv = 2mQ,R2/h, times the energy of a single vortex in a unit cell of 
radial dimension a = R/^/Nv, Fi vortex = np™{hl2m)2L In (a/¿), where ¿ is vortex core radius. Thus, Fv = Nv Fx vortex, normalized by 
F0 = i j d3rp(fl x r)2 = ^np&R^L, is 

Fv/F0x4(pr/p)(a/R)2\n(a/t). (A6) 

By contrast, the single-component superconductor does not rotate by forming an array of phase vortices. The presence of the 
gauge field A allows rigid rotation of the proton fluid at the small cost of a uniform field in the interior (the London field), 

2mpc 
e 

il . (Al) 

As can be seen from equation (10), the vector potential AL = jbL x r associated with this field yields vp — ilxr with V/p = 0 
everywhere. This field is generated by a surface current which can be obtained from the solution of equation (A5) with ppn = 0 
and A = 0 on the surface of the (very long) cylinder. Since vp = il x r, except on the surface, the order of magnitude of the 
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superconducting correction to the classical rigid body kinetic energy is given by the magnetic energy of the London field, 
FL « (|AL|

2/87r)(7tR2L), which can be written 

Fl/F0 « 2(p^/p)(AJRf . (A8) 

When both neutron and proton condensates are present, rotating equilibrium corresponds to the minimum of equation (A4) 
with b given by equation (A5). Since the coefficient p"" = p™ - {pp

s
n)2!Pp

s
p is necessarily positive (Andreev and Bashkin 1975), the 

second term in equation (A4) is minimized by an array of neutron phase vortices with circulation 2D, as in the single-component 
neutron superfluid. The corresponding contribution to equation (A4) is given by equation (A6) with p"" replaced by p"n = 
p""[l + 0(*)]- Because of the drag effect the magnetic terms in equation (A4) also contribute to the free energy of the neutron 
vortex array. The magnetic field of a neutron vortex is approximately («F^ttA2) in a volume of size (ttA2 L). Thus, the order of 
magnitude of the magnetic field energy of the vortex lattice is 

Fm!F0 « 2(pr/p)(pf/pf )2(«/R)2 . (A9) 

Since (pr/p"") ~ ^ 1 and a ç, FM is small compared with Fv, the deviation of the kinetic energy from rigid rotation. This 
means that the only important modification to the equilibrium state of a rotating mixture of superfluid neutrons and super- 
conducting protons arising from their mutual interaction is a magnetic field at each neutron vortex resulting from the proton 
drag currents in equation (A5). 
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