
19
84

A
pJ

. 
. .

28
0.

 .
82

5B
 

The Astrophysical Journal, 280:825-847,1984 May 15 
© 1984. The American Astronomical Society. All rights reserved. Printed in U.S.A. 

THE EVOLUTION AND FATE OF VERY MASSIVE OBJECTS 

J. R. Bond 
Institute for Theoretical Physics, Department of Physics, Stanford University; and 

Institute, of Astronomy, Cambridge University 
W. D. Arnett 

Astronomy and Astrophysics Center, University of Chicago 
AND 

B. J. Carr 
Institute of Astronomy, Cambridge University 

Received 1982 July 26; accepted 1983 August 23 

ABSTRACT 

The structure and evolution of Very Massive Objects (stars of mass ~102-105 M0) are discussed in terms 
of simple semianalytic models. We estimate the helium enrichment due to mass loss, and present evidence for a 
dynamical instability arising in the hydrogen shell burning phase of a 500 M0 Population I star. The fate of 
a VMO is decided in its oxygen core phase, Calculations of the effects of the pair instability, oxygen and 
silicon burning, and alpha-quenching on the global binding energy of initially isentropic polytropic cores 
allow us to predict the critical oxygen core mass above which complete collapse to a black hole occurs: 
M0c ä 102 M0 corresponding to an initial star mass greater than 200 M0. Cores smaller than this explode; 
we estimate the kinetic energy liberated. 
Subject headings: stars: interiors — stars: massive 

I. INTRODUCTION 
We define Very Massive Objects (VMOs) to be those stars 

which are pair unstable during their oxygen core phase. 
For stars of Population III, which we take here to mean 
those of nearly zero metallicity, the mass range of VMOs 
extends from ~102 to ~105 M0. Because of the paucity 
of VMOs in the present epoch, the theory of their stellar 
evolution has not been well developed. VMOs are, however, 
excellent candidates for Population III stars. The lack of 
metals and the influence of the cosmic background radiation 
at early times may shift the fragmentation mass spectrum 
of star-forming clouds to larger scales than those inferred to 
arise from Population I and II clouds (Hartquist and 
Cameron 1977; Silk 1977; Tohline 1980; Silk 1980; Kashlinsky 
and Rees 1983). In a companion paper (Carr, Bond, and 
Arnett 1984, hereafter CBA), we study the cosmological 
consequences of Population III stars, with special emphasis 
on the potential role of VMOs in solving various cosmological 
riddles. In particular, they could produce: black holes 
(the dark matter problem); an early injection of heavy 
elements with accompanying abundance anomalies (the G 
dwarf problem, and the oxygen anomaly at low metallicity); 
a nonprimordial source of helium; spectral distortions in the 
microwave background (Woody and Richards 1979); signific- 
ant contributions to other radiation bands; explosive injection 
of supernova energy into the pregalactic and protogalactic 
medium with its potential role in galaxy formation (Ostriker 
and Co wie 1981; Ikeuchi 1981). To quantify these possibilities, 
we need a detailed understanding of the stellar evolution 
and fate of Population III VMOs, which we provide in this 
paper by utilizing a variety of analytical and numerical 
methods. Some results of this work have been previously 

reported (Bond, Arnett, and Carr 1982; Carr, Arnett, and 
Bond 1982; Arnett, Bond, and Carr 1982; Bond, Carr, and 
Arnett 1983). 

The possibility that a physical mechanism exists which 
limits the upper range of stellar masses has received much 
attention over the years. The standard stellar evolution texts 
of the 1960s pointed to the nuclear pulsational instability 
in radiation-dominated stars (Ledoux 1941) as the reason 
there are few, if any, very massive stars (e.g., Cox and Giuli 
1968). In the early 1970s, a number of workers showed that 
if hydrodynamical nonlinearities are taken into account, 
the pulsational amplitude remains finite, and the mass loss 
rate, though perhaps quite large, is also finite. 

Larson and Starrfield (1971) suggested that an upper mass 
limit for stars arises as a result of processes which occur 
during formation. Collapse of a y < 4/3 gas is nonhomologous 
which leads to a strong central condensation, an embryo 
star upon which matter from the protostellar envelope is 
accreted. They estimated the time scale for accretion by 
assuming the envelope of a given mass protostar begins 
collapsing at the free-fall rate when its density has risen to 
the point at which it is just marginally Jeans unstable. 
As a result, the cooler the cloud, the longer the accretion 
time for a region of the same mass due to the smaller density 
required for the Jeans instability. The temperature of 
molecular clouds from which stars form now (~20 K) is 
determined by grain cooling. In this case, they estimate that 
the accretion time exceeds the time for the star to contract 
to the main sequence and ignite hydrogen if M>6 M0. 
Certainly this cannot represent an upper mass limit. However, 
they show that radiation pressure on grains, radiative 
heating, and H n region formation prior to complete envelope 
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accretion all conspire to limit the star mass to values less 
than about 60-100 M0. These analytic arguments are 
supported by the numerical calculations of spherically 
symmetric massive star formation by Appenzeller and 
Tscharnuter (1974) and Yorke and Krügel (1977). Though 
these processes may explain why there are so few very 
massive stars around, they do not exclude their formation 
for a variety of reasons: (1) Regions more massive than the 
Jeans mass would collapse faster than the marginally Jeans 
unstable region. (2) Deviations from spherical geometry due 
to rotatonal flattening, clumpy infall, and coalescence of 
protostellar regions would considerably modify these limits. 
(3) If stellar collapse is pressure-driven—for example, by 
externally applied shock waves from supernovae or by 
expanding H n bubbles—one can clearly get higher mass 
collapses. (4) In dense star clusters, such as may occur in 
active galactic nuclei, star collisions may lead to very 
massive star formation (Begelman and Rees 1978). Indeed, 
the standard models for quasars and active galactic nuclei 
require that large black holes form, presumably from either 
a VMO or a Supermassive Object (SMO) (M > 105 M0). The 
required precursor star depends upon the efficiency of accretion 
for the lower mass holes, but would likely be at least 103 M0 
(Duncan and Shapiro 1983). 

In a Population III cloud, there are no grains to keep the 
temperature low. Accretion from a 104 K neutral hydrogen 
gas which is marginally Jeans unstable occurs much more 
quickly (~2M/M0 yr-1) than from a 20 K gas for a 
protostar of the same mass. Consequently, Larson and 
Starrfield’s value of 6 M0 goes up to ~5 x 104 M0, which 
we obtained by computing the Kelvin-Helmholtz time for 
Population III VMOs, íKh ~ 3 x 104 (M/103 M0)1/23 yr. 
The effects of molecular hydrogen cooling in dense regions 
can lower the temperature below 104 K, to ~300 K, 
corresponding to a limit of ~300 M0. In any case, the 
upper mass boundary is higher without grains, making the 
formation of some VMOs more likely. 

It has often been suggested that there may even be a 
lower mass boundary in the VMO range for metal-free stars 
(Yoneyama 1972; Hutchins 1976; Tohline 1980). These 
arguments usually involve the details of molecular hydrogen 
cooling. Recently, Palla, Salpeter, and Stabler (1983) have 
shown that at high densities, molecular cooling is enhanced 
by three-body effects, with the result that solar-type stars 
could form in Population III environments. However, if the 
first stars formed at a redshift above 100, when the back- 
ground radiation had a temperature in excess of 300 K, 
the formation of molecular hydrogen would be inhibited, 
though it could still have appeared at high density. Though 
the minimum possible stellar mass is certainly larger in 
metal-free regions than in those with grains, we can only 
take this as suggesting that VMOs could be much more 
numerous at early epochs. 

In this paper, we step through the various stages in the 
evolution of VMOs, illustrating how simple agruments, often 
based on the distribution, generation, and transmutation of 
entropy, can be used to understand quantitatively many of 
the steps. In particular, in § II, we analyze the hydrogen 
and helium burning phase of VMO evolution using the 
Eddington standard model and the point source model with 
special emphasis upon Population III abundances. We 
present simple calculations of the helium loss due to winds, 
and of the various boundaries that define VMOs. In § III, 

the evolution of the oxygen core is analyzed by considering 
the transmutations of the entropy that occur as a consequence 
of the pair instability, nuclear burning, and alpha-quenching. 
We calculate the changes in the core’s binding energy during 
these three processes to determine the fate of the core. 
More detailed descriptions of the content of the many 
subsections of §§ II and III are given at the beginning of 
the respective sections. In § IV, we present our conclusions 
regarding the state of VMO research. 

II. VMO EVOLUTION THROUGH CORE HYDROGEN AND HELIUM 
BURNING 

In this section, we discuss the main features of early 
VMO evolution. In § lia we review the pulsational mass 
loss estimates. In § lib we utilize entropy in discussing the 
Eddington standard model and the predictions of luminosity, 
central temperature and density, stellar radius, and surface 
temperature. We then provide a simple explanation of the 
characteristic CNO abundance ~10-9 found in Population 
III models, which is so fundamental to their structure. In 
§ lie, we use the point source model to refine the estimates 
made in § lib. Formulae for the evolution of the convective 
core fraction and for the helium core mass are derived. 
The lifetime of VMOs is then calculated. In § lid, evolution 
with mass loss is discussed, and the yield of helium from 
winds is derived. In § lie, we present a model of a 500 M0 
star in which the hydrogen envelope is ejected by a super- 
Eddington luminosity generated in a hydrogen burning shell. 
In § II/, we consider the Eddington model of the helium core, 
and use it to calculate the helium ignition temperature. In 
§ Ilg, the mass boundary between VMOs and SMOs is 
calculated using general relativistic polytropes. 

a) Mass Loss in VMOs 

The calculation of the mass loss rate driven by the 
nuclear pulsational instability poses a difficult problem in 
nonlinear hydrodynamics, and only incomplete theoretical 
information is now available. 

Upon ignition of hydrogen, VMOs become unstable, 
energized by the fusion reactions in their stellar cores 
(Ledoux 1941), provided their mass is in excess of the critical 
pulsational mass for hydrogen burning: 

Mp x (108 + 20Za)(l - 5XJ8)2 M0 . (1) 

This formula is a fit to the Population II calculations of 
Stothers and Simon (1970). Here, Ya is the fraction of baryons 
in helium. If primordial helium has a mass fraction Xa = 0.25, 
then Mp is predicted to be 80 M0. Higher metallicities give 
higher pulsational masses; e.g., for a solar Population I 
composition, Mp = 91 M0. Ziebarth (1970) presents a fitting 
formula for his Population I results which gives Mp = 88 M0 
for solar composition, in good agreement with Stothers and 
Simon. These values are higher than the often quoted 60 M0 

limit of Schwarzschild and Härm (1959), which incorporated 
only the electron scattering opacity. Boury (1963) has 
estimated Mp ~ 260 M0 for pure hydrogen stars. 

Linear instability analysis predicts that the amplitude of the 
fundamental radial oscillation mode which is fed by the 
nuclear energy input grows exponentially, with e-folding 
times of the order of 1000 years, since the envelope cannot 
successfully radiate the excess energy. As the hydrogen is 
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consumed, the abundance gradient would act to increase the 
e-folding time. However, if M > Mp, there are so many 
e-folding times that the surface velocities would quickly exceed 
the escape velocity, with mass loss so large that M would 
fall below Mp on time scales small compared with the hydrogen 
burning time, as Schwarzschild and Härm detailed in their 
classic 1959 paper. Since stars apparently exist with masses 
in excess of their Mp, they suggested that the inclusion of 
nonlinear terms would aid in damping the fundamental mode, 
resulting in a finite amplitude of oscillation. 

The nonlinear hydrodynamical equations describing the 
limiting of the pulsational amplitude in zero-age main 
sequence VMOs were solved by a number of workers in 
the early 1970s (Appenzeller 1970; Talbot 1971; Zeibarth 
1970; Papaloizou 1973), each with varying degrees of 
approximation, since the e-folding times for linear growth 
were so much greater than the pulsational periods day). 
They all found that the mode steepens to create shocks in 
the envelope, which propagate to the surface, driving mass 
loss at a large but finite rate. The amplitude does indeed 
self-limit itself. Talbot (1971) found the fractional variation in 
the radius in the center of the star reaches a maximum 
value of about one-tenth. As an abundance gradient forms, 
this amplitude presumably goes down, finally reaching 
stability before complete hydrogen exhaustion. The actual 
mass loss rate associated with these radial pulsations is 
difficult to calculate, since it requires very detailed zoning 
in the outer layers to see radial zones lifted to beyond the 
escape velocity. None of the estimates given can be regarded 
as reliable. 

b) The Eddington Standard Model for VMOs 

The dimensionless entropy per baryon in photons and 
in gas, pure numbers, provides useful characterizations 
of the thermodynamic structure of VMOs. In convective 
cores, mixing is rapid relative to evolutionary time scales, 
and the abundance distribution is homogeneous. A homo- 
geneous core is convectively unstable if the specific entropy 
decreases outward. Convection then acts to make the core 
isentropic, and the value of the entropy per baryon character- 
izes the temperature-density relation. For VMOs on the main 
sequence, electrons are nondegenerate (n.d.) and non- 
relativistic (n.r.), so their entropy is given by the usual 
Sackur-Tetrode expression, 

Se=YS-lle/T)\ (2) 

where Ye is the number of electrons per baryon, the inverse 
of the electron molecular weight often used, ge is the electron 
chemical potential (with the rest mass subtracted out), and 
T is the temperature in energy units (Boltzmann constant = 1 ). 
The entropy of each species of nucleus, is similarly 

ng Yj [27t(ftc)2]3/2 1 
Qj [Aj mN T]3/2 ! ’ (3) 

where Yj is the number per baryon, nB is the baryon density, 
mN is the nucleon mass, and gj is the statistical weight of 
nucleus j (the partition function at high temperature). The 
nuclear entropy, %, is then the sum of all the s/s. For 
example, if we have pure hydrogen and helium, 

sn — 
(T312 

18.80 + ln I — (4) 

where T is measured in keV, p is measured in g cm-3, and 
Y¡ = Yp + Ya is the inverse of the usual ionic weight pj. A 
similar expression holds for se. The number of nuclei plus 
electrons per baryon is Yr = Yj -f Ye, the inverse of the total 
molecular weight. Notice that YT = 2(1 - 5Xa/8), which is 
the reason this curious combination entered equation (1) 
for Mp. The electron plus ion pressure is just pg = TTnBT. 
The photon entropy, 

4 n2 T3 

Sy~3\5(fcÿVB-
OA9^ (5) 

is a very useful parameter for stellar interior work, since it is 
related to ß, the ratio of gas pressure to total pressure, by 

<j = s,J(4YT)=(ß-l-l). (6) 

For a pure H-He star with Yp = 0.78, Xa = 0.22 (where 
generally Xj = Aj Yj gives the fraction of baryons in species 
j), we have Ye = 0.89 and YT = 1.73, so radiation pressure 
accounts for half of the total when sy = 4Yr ~ 7. The total 
entropy is 

S = Se + SN + Sy = Sg + Sy . (7) 

In the center of the Sun, the gas entropy, sg, is now ~19; 
the photon entropy is only ~ 0.003. In VMOs, depends 
only weakly upon the stellar mass; it is ~35. The photon 
entropy rises with the mass, ranging from 5 to 100 as we now 
show. 

For radiation-dominated stars, convective equilibrium will 
yield sy ^ constant. This is the equation of state (EOS) for 
a n = 3 polytrope, provided the abundances are spatially 
homogeneous, suggesting such models may do quite well 
for zero-age main sequence VMOs. The polytropic mass is 
related to sy by 

M3(sy) = 0.6(me3/mN
2)sy

2(p/py)
312 (8a) 

= 1.15/(1 +4Yr/sy)
3/2 M© (n.d., n.r. electrons), (8b) 

which holds provided the right-hand side is constant through- 
out the star. Here, mP is the Planck mass, 1.22 x 1022 MeV. 
This is Eddington’s famous quartic equation expressed in 
slightly different language from that usually seen. We denote 
by Sy the solution of M = M3(sy); <r can be read off Figure 1. 
Radiation dominance is predicted to occur for M > M3(7) ^ 
155 M0. 

VMOs radiate at a considerable fraction of the Eddington 
limit appropriate for Thomson scattering, LED. Our Eddington 
model prediction is 

L/Led = (4YT/sy + 1) 1, (9a) 

Led = M(3mN 2/2mP
3){me/cc2mN)(me/m? ~1)Ye~

1 

= 1.2 x 1038 Ye~
1 M/Mq ergs s_ 1 . (9b) 

The adiabatic indices 

Fi = =i+\(i+4a)(l + ^^ + 8,t)" 1 ’ (10) 

r^i+à=l+l(2(T+ir' 

determine whether the star is dynamically unstable (the 
pressure average of T1 being less than 4/3) or unbound 

© American Astronomical Society Provided by the NASA Astrophysics Data System 



19
84

A
pJ

. 
. .

28
0.

 .
82

5B
 

BOND, ARNETT, AND CARR Vol. 280 828 
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Fig. 1.—Point source model modification factors for the mass, luminosity, 
and radius are given as a function of the central photon entropy 
paramenter, oc, or equivalently of the star mass. The initial convective 
core mass fraction,/cc(0), for zero-age main sequence VMO models is also 
shown. The closed circles are Henrich’s (1943) points, and the open 
circles are those of Schwarzschild and Härm (1958); the 500 M0 point 
is for the star of Fig. 2. The M3 curve can be used to get ¿r, and the 
M curve to get oc. 

(the pressure average of F4 being less than 4/3). Here, e is 
the internal energy per baryon. For the 80 M0 polytrope, 
T1 = 1.46 and F4 = 1.49. Even for a 1000 M0 polytrope, 
sy = 25, T1 = 1.37, and F4 = 1.37. These numbers are 
sufficiently far from F = 4/3 that a more realistic model 
is required: the point source model of § lie. 

The central temperature can be expressed in terms of the 
entropy and the metallicity by equating the nuclear energy 
generated to the luminosity—which is known from equations 
(8) and (9). We derive this expression in Appendix A, 
following the method of Fowler and Hoyle (1964). Accurate 
approximations over the VMO range are: 

Tr = 3.8 <T2 \0-054/*Cn\ 
1 + cr/ \0.0l) 

0.054 
keV, 

Population I and II ; (Ha) 

0.079 
keV, 

Population III. (Hb) 

The weakness of the mass dependences, ~M0-03 and ~M0-04, 
respectively, shows that all YMOs have nearly the same 
central temperature. The metallicity dependence is also weak. 
However, the very large difference between CNO abundances 
of stars with Population I or II abundances and those of 
Population III—which initially have no CNO nuclei, and 
must generate them through the 3a reaction—translates 
into a significantly higher central temperature required for 
Population III stars to support the given luminosity. Here, 
a should be evaluated at the center, and is generally not 
equal to ä. 

The radius is sensitive to the outer structure of the star: 
in the n = 3 polytrope approximation, 

R3((t) = 6.9[pc/(nGpc
2)]u2 

= 30.4 YT<r1/2(i + <7)1/2Tc((t)- 
1 R0 , (12) 

where Tc is in keV. The radii so predicted are ~20%-30% 
too high. Given L3(<j) from equation (9), we can determine 
the surface temperature: 

Te3((j) = 2.44rc(ij)
1/2ye-

1/4(l + ö-1)-1/8eV . (13) 

Similar formulae have been given by Fowler and Hoyle 
(1964) for massive stars and by Wagoner (1969) for SMOs. 
Notice that the surface temperature is almost mass-inde- 
pendent: Te ~ 105 K a0 04 for Population III, and ~6 x 104K 
cr0 03 for Population I and II. 

The ~1(T9 CNO abundance generated in Population III 
stars can be simply understood. We sketch the general idea 
here; the details are given in Appendix B. The star undergoes 
Kelvin-Helmholtz contraction while very slowly generating 
CNO nuclei via the triple-alpha reaction. This defines a 
curve in Tc-XCN space. XCN is monotonically increasing in 
time, and can be used as a measure of the passage of time. 
Contraction ceases once the combined energy generation of 
hydrogen and helium burning can support the star. This 
thermal equilibrium defines another curve in Tc-XCN space. 
The CNO abundance at the intersection of these two curves is 

XCN ^2 x 10-10<t°-7(1 +<t)-°-5 

The true trajectory followed in Tc-XCN space will pass 
smoothly from the first curve to the second, settling on the 
second at a CNO abundance in excess of equation (14). 
Thus, equation (14) represents a definite lower bound. In 
Table 1, we show that this bound is not very different 
from the zero-age main sequence values of El Eld, Fricke, 
and Ober (1983). As nuclear burning proceeds, the low 3a 
rate will continually create some CNO nuclei; the star then 
evolves along the thermal equilibrium line toward increasing 
XCN. The explicit time dependence is given by equation (B12). 

c) The Point Source Model and the Convective Core 

YMOs in the hydrogen burning phase have large isentropic 
chemically homogeneous cores upon which are smoothly 
joined radiative envelopes in which photon transport is 
dominated by Thomson scattering. These point source models 
(Cox and Giulli 1968) were first constructed by Henrich 
(1943) for chemically homogeneous stars. Using his models, 
the properties of zero-age main-sequence YMOs can be given 
in terms of the single parameter oc. The operational procedure 
is as follows: (1) Given the initial abundances, determine 
Yt. (2) Given M, find oc using Figure 1. The relations 
M(<7c) and Fm(<jc) = M(oc)/M3((jc) can be determined analyti- 
cally as we demonstrate in Appendix C. The approximation 

(jc(M)x024YT-
1(M/Mo)1/2-0.61, M > 102 M0 , (15) 

is accurate over the VMO range. (3) Use ctc in equation (11) 
to obtain Tc, and equation (5) to obtain pc. (4) The radius 
is then found from R = FR(crc)R3((7c), the luminosity from 
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TABLE 1 
Hydrogen Burning Phase Predictions 

829 No. 2, 1984 

M; Pop Xai;Xc Pc L/Le R/Rc /cc(0) MJMi th 

T102 

I 

T103 

I 

T104 

I 

KS103 

III 

EFO80 
III 

EFOIOO 
III 

EFO150 
III 

EF0200 
III 

EF0300 
III 

EF0500 
III 

2000 
I 

0.27 
0.01 

0.27 
0.01 

0.27 
0.1 

0.0 
8(-ll) 

0.26 
8(-10) 

0.26 
5(-10) 

0.26 
7(-10) 

0.26 
l.l(-9) 

0.26 
1.4(-9) 

0.26 
1.3( —9) 

0.25 
0.01 

0.90 
0.88 

4.06 
4.03 

14.2 
14.0 

3.33 
3.17 

0.72 
0.74 

0.86 
0.86 

1.15 
1.16 

1.42 
1.43 

1.87 
1.90 

2.56 
2.58 

5.82 

3.82 
3.83 

4.40 
4.26 

4.81 
4.60 

15.0 
15.4 

10.4 
10.6 

11.1 
11.1 

11.3 
11.2 

11.2 
11.1 

11.4 
11.3 

11.9 
11.8 

4.15 

1.79 
1.86 

0.61 
0.56 

0.23 
0.20 

24 
27 

44.7 
45.2 

45.0 
44.8 

35.7 
34.6 

28.2 
27.3 

22.5 
21.5 

18.7 
17.8 

5.89 
5.73 

26.5 
26.3 

92.7 
91.4 

26.6 
25.3 

4.82 
4.95 

5.78 
5.76 

7.70 
7.77 

9.51 
9.57 

12.5 
12.7 

17.1 
17.3 

0.35 38.6 

34.8 
34.7 

36.9 
36.9 

38.7 
38.8 

41.2 
41.0 

32.8 
32.8 

32.9 
32.9 

33.3 
33.4 

33.7 
33.7 

34.1 
34.2 

34.6 
34.6 

38.2 

0.32 
0.32 

0.74 
0.78 

0.91 
0.92 

0.81 
0.76 

0.31 
0.27 

0.36 
0.31 

0.46 
0.41 

0.53 
0.48 

0.62 
0.56 

0.72 
0.65 

0.85 

12.1 
12.6 

42.9 
43.3 

142 
148 

14.7 
14.1 

3.79 
3.72 

4.10 
4.01 

5.21 
5.09 

6.32 
6.23 

8.04 
8.09 

10.5 
10.5 

76.5 

4.72 
4.63 

5.46 
5.51 

5.62 
5.52 

9.22 
9.25 

7.84 
7.67 

8.29 
8.09 

8.66 
8.53 

8.74 
8.59 

8.92 
8.68 

9.24 
9.02 

0.79 

3.90 

13.9 

3.1 

0.62 

0.76 

1.06 

1.32 

1.76 

2.46 

5.05 5.68 

0.84 

0.98 

0.998 

0.92 
0.98 

0.80 
0.79 

0.84 
0.84 

0.89 
0.89 

0.91 
0.92 

0.94 
0.95 

0.97 
0.97 

0.99 

0.49 

0.57 

0.57 

0.5 
0.49 

0.35 
0.46 

0.40 
0.48 

0.46 
0.51 

0.49 
0.53 

0.52 
0.54 

0.55 
0.56 

0.57 

3.0 

2.0 

1.7 

2.8 
3.3 

3.4 
3.5 

3.1 
3.3 

2.7 
2.9 

2.4 
2.7 

2.2 
2.5 

2.0 
2.3 

2.0 

Note.—M is in M0, T in keV, pc in g cm-3, Te in eV, and th in 106 yr. Our predictions are on the second line of each entry. 
The initials of the numerical models refer to: T = Talbot (1971); KS = Kovetz and Shaviv (1971); EFO = El Eid, Fricke, and Ober (1983). 
The CNO abundances on the second line come from the models. MJMt is calculated from eq. (21) which is applicable only 
if the mass loss never exceeds the critical rate. In the EFO runs, the mass loss rate sometimes exceeds critical, hence the discrepancies. 
/cc(0) and th are calculated using a. 

L = FL((jc)L3hc), and the surface temperature from the 
Te ~ L1/4R-1/^ relation. Here, the correction factors which 
we infer from the Heinrich results, FL and FR, are plotted 
in Figure 1. The expression 

FR((j) = min {1, 0.64 + 0.06er} 

is a good approximation for the latter. In Table 1, we 
compare the values we predict for stars of various masses 
and compositions with the numerical models of Talbot (1971), 
Kovetz and Shaviv (1971), and the recent work of El Eid, 
Fricke, and Ober (1983). The agreement is excellent. 

The magnitude of the deviation of the point source model 
from the n = 3 polytrope can be made explicit by considering 
the variation in the photon entropy. Within the convective 
core, sg + sy is constant; hence 

P/Pc = (sy/syc) exp [8(7(5,,/syc - 1)] . (16a) 

An approximate solution to this transcendental equation, 
which is accurate for large cr as long as p/pc > exp ( —Scr), is 

syisyc = (P/Pc)1/<1 + 8<T)- (16b) 

The luminosity is given exactly by a modified version of 
equation (9) (provided electron scattering dominates the 
opacity): 

L= 1.2 x lO^YerM1 + gs~ 1 )~1 M/M0 ergs s-1 , (17) 

where os and Yes are surface values. Unfortunately, we have 
found no analytic way to estimate gs, and hence Fl(gc). 

The major trends in the evolution of the mass fraction 
of the convective core at time i, /cc(i), can be understood by 
exploiting the constancy of the luminosity over the radiative 
envelope. In particular, at the boundary between the convective 
core and the radiative envelope, the entropy gradient vanishes 
(Vs = 0); if we neglect abundance gradients, the radiative 
luminosity can then be written as 

L = 1.2 X 1038(jj^jl«c-1(l + ^cc-1) 

1 - 
3 

8(1 + <7CC)(1 + 4(JC1 
ergs s (18) 

For syc = 10, sy(r) falls to 9.4, 8.2, and 6.4 for p/pc — 0.5, where (Tcc and Yecc are evaluated at the edge of the convective 
0.1, and 0.01, respectively. core. Here, Mcc is the convective core mass. 
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Equating this expression with equation (17) yields 

/cc(i)= 
Mjt) 

M 
l yecc\ (h (5/8 + 5<tcc + 4ffcc

2) 
\ ^es / 1 + 0’s ffcc(l + 4<JCC) 

YecJYes as (js, (7CC -»■ oo . 

(19a) 

(19b) 

Consider first the zero-age main sequence behavior: YQCC = Yes. 
We clearly get the trend of the convective core mass fraction 
increasing with mass toward its asymptote of unity. We can 
do no better without a detailed numerical model to get as and 
(Tcc. Henrich’s values of/cc(0) are plotted in Figure 1; for ä in 
the VMO range, it is fitted by the formula 

Since ¿7 = 0.7 corresponds to the pulsational boundary mass 
Mp = 84 M0, the convective core size for these initial models 
should lie between 0.8 and 1, as all numerical models verify. 
(See Table 1.) Our 500 M0 star with <7 = 2.53 has/cc(0) = 0.97, 
in agreement with the prediction. 

For large mass cores, the convective core size obeys 
equation (19b), which corresponds to L = LED in each mass 
zone between the core boundary and the surface. Even 
though <7C begins only at 2.53, and acc is lower, this simple 
equation provides a remarkable fit to our 500 M0 convective 
core evolution as we display in Figure 2. The evolved stars 
of Schwarzschild and Härm (1958) and Kovetz and Shaviv 
(1971) also follow this law. As hydrogen is depleted, Ye goes 
down, and the core size must diminish in step in order to 
ensure Eddington-limited radiative output throughout the 
envelope. The final convective core mass fraction for large 
Population III VMOs is predicted to be 0.5/0.89 = 0.56. 
When the initial convective core size is not nearly unity, a 
better estimate of the evolution of Mcc in M-Ye space in 
the absence of mass loss is: 

MCC(YC)/M = (Yc/Yes)/cc(0). (20) 

Fig. 2.—The evolution of the hydrogen abundance with time is plotted 
against mass fraction for our 500 M0 Population I star. The core 
hydrogen burning phase lasted th = 1.84 x 106 yr. The heavy line shows 
the simple prediction of § lie for the convective core mass fraction. 

This implies an Ma(Mi) relation, where i refers to initial values: 

Ma/M1.= (2Yei)-
1/cc(0). (21) 

The time it takes the star to exhaust its hydrogen is 
obtained by integrating the energy balance equation, 
0.007Mccc

2dYp/dt + L = 0, between the initial H abundance 
and its final value of zero. The lifetime computation assumes 
equation (9) for L and equation (20) for Mcc; we obtain 

th = 1.7 x 106(1 + + y,f/2)/cc(0) yr, (22) 

where Ypi is the initial hydrogen abundance. Schwarzschild 
and Härm (1958) evolved 121 and 218 M0 Population I stars; 
their nuclear lifetimes, 3.8 and 2.8 million years, respectively, 
agree with the predictions of equation (22). More comparisons 
are given in Table 1. 

d) Mass Loss and Helium Ejection 

Talbot and Arnett (1971) suggested that stellar layers 
which have processed helium mixed in with their primordial 
allotment could be lost in a nuclear-pulsation-driven wind, 
thereby enriching the primordial gas with helium. The mass 
fraction (relative to the star’s initial mass) of newly synthesized 
helium ejected, <AAa>, is related to the mass loss history, 
M(i), by 

<AY,> = Q 2[Yej - Yes(i)] ^ , (23) 

where M; and Mf are the initial and final star masses. 
The surface helium abundance can be expressed in terms of 
the surface electron abundance by X^t) = 2[1 — ^s(i)l; 
Yd = Tes(0) is an initial value. We need only know Yes(M) 
to compute this integral. 

There are two basic types of behavior this function can 
have, and these can best be understood in Te-M space, 
or equivalently in the Yp-M space of Figure 2. If the mass 
loss rate is slower than the nuclear burning rate, the 
convective core will recede from the stellar surface: YQS(M) 
will be a straight line beginning at Yei and following the 
convective core profile, Ye = YeiM/Mh down to the final mass. 
Mf must necessarily be greater than the Mcc(th) = 0.5Mi/Yei 
computed in § lie in order for the profile Yes(M) = YeiM/Mi 
to be valid. Equation (23) then gives 

<A3Q = Yei(l - Mf/Mt)
2 . (24) 

If the mass loss rate exceeds the nuclear burning rate, 
the I^s(M)-curve again begins at Yei, but always lies above 
the convective core curve determined for no mass loss: 
Yes(M)>YeiM/Mi. More generally, Yes{M - dM) > Yes(M) 
(1 — dM/M), which translates into the critical instantaneous 
mass loss rate 

(~M/M)cr = L/(0.007Mc2)(2Yes)~1 

= (L/LED)Yes-
2(6.65 x 106 yr)-1, (25a) 

(-M)cr = 1.5 x 10_5(M/100 M0)(L/LeD)Yes~
2 M0 yr"1. 

(25b) 

The associated time scale is near the nuclear burning time. 
As long as — M remains under — Mcr, equation (20) for the 
convective core evolution and equation (21) for the Mj-M, 
relation should remain valid. This explains why Ma is 
insensitive to mass loss provided it is not too large. The 
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El Eid, Fricke, and Ober (1983) loss rates are at times in 
excess of critical; this accounts for the discrepancies between 
our predictions and their results. 

The convective core in the large M case maintains a mass 
fraction near unity throughout the mass loss period for 
large VMOs. If we also assume that the VMO radiates at 
nearly the Eddington luminosity, then the surface abundance 
can be obtained by solving the energy balance equation, 
Led = —0.001 Mc22dYJdt. The simple relation 

TesWW = 1 - (í/Tho)[1 - (4Fei2)“1] 

follows, where tHo is the hydrogen burning lifetime given 
by equation (22) in the limit sy -► oo. The helium loss is then 

To obtain the time at which the mass is M, r(M), a model 
is needed for M. The simple limit given in equation (26) 
holds when the time scale tl = —M/M is sufficiently short 
that one can expand in the small í/tHo- It is not surprising 
that very large mass loss rates lead to small helium yields. 

The maximum possible yield occurs when the mass loss 
rate is just that needed for the Ye(M) profile to follow the 
YeiM/Mi curve down to the final convective core mass. 
Equation (24) can then be used to obtain the maximum 

<AYa>max = Fei[l - (2Fei)“
1]2 , (27) 

which is 0.17 if we take X^ — 0.22 and hence = 0.89; 
this is the same as the maximum value estimated by Talbot 
and Arnett. If Xai = 0, <AVa)max = 0.25. We now argue that 
a loss of this magnitude may be realized in large VMOs, 
not because of the pulsational instability, but because of a 
dynamical instability which can leave the helium core as 
remnant while the remaining helium-rich envelope is lifted off. 

e) Hydrogen Shell Burning and Envelope Ejection 

We have evolved a 500 M0 Population I star (assuming 
no mass loss) from initial contraction onto the zero-age 
main sequence to the onset of core helium burning by 
using an implicit-hydrodynamical stellar evolution code 
described in Arnett (1972) and Arnett (1977). Convection 
is treated as time-dependent and can occur only on time 
scales associated with the buoyancy forces exerted on eddies. 
Effects of hydrogen depletion can be seen in Figure 2: 
the size of the convective core gradually decreases, as described 
above, until it reaches a final value of Ma = 0.56 M¿. At core 
hydrogen exhaustion, the luminosity is constant and almost 
Eddington from the helium core to the surface. As the 
helium core contracts, hydrogen ignites in a shell surrounding 
the core. At the shell temperature, Ts = 4.9 keV, energy is 
generated at the rate 4cn = 2 x 106 ergs g_1 s-1. At this 
point, the central temperature is 7^ = 10 keV, which is 
approximately given by the simple n = 3 polytrope expression 
TJ9, where 0 & 0.5 is the Lane-Emden function at the shell. 
Hydrogen shell ignition occurs well before helium ignition 
in this Population I star: not until Tc = 20.7 keV does the 
helium generation rate reach q3(X = 3x 106 ergs g_1 s_1. 
(After helium ignition, the core eventually becomes convective 
out to 0.56, covering almost the entire helium core; 

the energy loss is still regulated by radiative diffusion 
through the small outer layer of the helium core.) 

The energy input into the hydrogen shell drives it toward 
high luminosity. However, the envelope already has the 
maximum radiative luminosity that can be transported by 
the outer layers. If we neglect local cr-gradients, this is given 
by equation (17), except that M, Ye, and a (or ß) are interior 
rather than surface values. In the hydrogen burning shell, 
\—ß increases from 0.83 to 0.91, and o from 4.9 to 10.1; 
to maintain local stability would limit the radiative luminosity 
to a 10% increase. The actual jump in luminosity is 29%. 
Consequently, the burning shell becomes convective. The 
change in radiation entropy (3.8) is much less than the 
change in gas entropy over the envelope; the outer boundary 
of the convective zone is limited to m(r)/M = 0.71. About 
2.5 M0 of hydrogen are consumed on a local thermal time 
scale, releasing 3.5 x 1052 ergs; this compares with a total 
gravitational binding energy of only 0.5 x 1052 ergs. By the 
time the envelope expands to recombination conditions, the 
expansion velocity is supersonic; this “stellar wind” is 
expected to continue until most of the envelope is stripped off. 

This calculation has two flaws: the hydrodynamics was 
heavily damped, which is a limitation of all implicit codes 
(Arnett 1977), and the recombination wave was not examined 
in detail. However, since the energy liberated explosively 
is so large, 3 x 1052 ergs ~ 3 x 10"5 Me2, we do not expect the 
latter to be of much importance. It is clear that the low 
binding energy and large luminosity do make such objects 
prime candidates for violent mass loss. 

The discussion would be different for Population III objects. 
Since our Population I star has a CNO catalyst abundance 
~0.01, the hydrogen in the shell ignites before the helium core. 
If we naively scale the CNO rate by the abundance factor 
ofl0_9/10_2 = 10-7, then we would predict that the hydrogen 
shell ignites after the core in Population III VMOs; though 
in error due to the differing temperature dependences of 
H and He burning rates, this illustrates that the actual 
abundance of CNO catalysts in the hydrogen shell may 
determine qualitative features of the evolution. Woosley and 
Weaver (1982) evolved a 500 M0 Population III star using 
an implicit-hydrodynamical code similar to the one employed 
here except that they chose a different scheme to treat 
time-dependent convection. They find that, though their 
envelope is driven to very low density, it does not become 
unbound. If convective dredge-up can occur during the 
early phases of core He burning, the abundance of catalysts 
will rise in the surrounding hydrogen, thereby making H shell 
burning vigorous; the star would then be more like Population 
I than Population III as far as its shell source is concerned. 
Woosley and Weaver do find that the abundance of nitrogen 
does rise in their low-density envelope. (As we discuss in 
CBA, the release of heavy elements in a wind after dredge-up 
in stars that undergo complete collapse can be used to 
severely constrain the number of black holes that can be 
generated by such stars.) We do not yet know the extent 
to which the differences between the Woosley and Weaver 
results and ours are due to the treatment of time-dependent 
convection or to the differences between Population I and 
Population III evolution. Both calculations agree that a super- 
Eddington phenomenon does exist, with associated dynamical 
consequences. The final state of our 500 M0 Population I 
star consists of an unbound expanding shell surrounding a 
remnant helium star. 
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/) The Helium Core Phase 
Bare helium cores are also pulsationally unstable upon 

ignition of the 3a process provided their mass is in excess of 

Map x (13 + 120Z)(7r/0.75)2 M0 . (28) 

This is a fit to the numerical results of Stothers and Simon 
(1970), which holds for metallicity Z in the Population I 
as well as in the Population III range (for which Map = 13 M0, 
since yr = 0.75). In massive stars, the pulsational instability 
is usually assumed to be eifectively damped by the large 
extended red giant envelopes surrounding the cores, so no 
evidence would be seen of the instability. This may also be 
true in VMOs if they could retain the supergiant envelopes 
which they formed after core hydrogen burning. However, 
since the coupling between core and envelope may be small 
for a very low density envelope of the sort found by 
Woosley and Weaver (1982), damping of core oscillations 
may be only partial. An oscillating helium core would 
undoubtedly result in mass loss, sending pure helium into 
the external medium in a wind. Convective cores tend to 
be quite large in these helium stars, over 90 % by mass, so a 
large amount of loss in this phase will result in the escape of 
synthesized oxygen. Thus, if, say, more than 10% of the helium 
core’s mass (~5% of the initial star’s mass) escapes by 
this mechanism, it will be oxygen enriched, and this could 
be used to constrain the helium ejection during this phase by 
the metallicity arguments of the sort we discuss in CBA. 
However, since no work has been done on this phase, no 
reliable estimate can be given at this time of wind-ejected 
metallicity. 

A VMO helium core can be modeled by an n = 3 
polytrope. The polytropic mass is given by 

M^a) = 9.9(j1/2(l + a)312 M0 , (29) 

where YT = 0.75 has been used. The helium pulsational 
boundary mass has a = 0.50 for Z = 0; the hydrogen boundary 
value has ä = 0.32 for Population II metallicity. The photon 
entropy of the helium core must be related to its initial 
main-sequence value; for large VMOs, Of/Oi = (4Yri/3) 
(2I%)-1/2 ~ 1.7 in order to have Ma = Mi/(2Yei). 

The luminosity of the core is again nearly Eddington: 
L ^ 2.4 x 1038(1 + ergs s_1. From arguments 
similar to those in § lie, we can infer that /cc(0) is nearly 
one. Since Ye remains fixed throughout helium burning, 
the size of the convective core does not have to shrink to 
maintain the radiative output, and it remains near unity. 
Both aspects of convective core evolution during helium 
burning were discussed by Deinzer and Salpeter (1964). 

The central temperature at which helium ignites can be 
determined by again equating the energy generation to the 
luminosity (Appendix B): 

For the Ma = 32 M0 and 64 M0 helium cores of Arnett 
(1973), we predict ä = 1.11 and Tac = 18.0 keV, and d = 1.84 
and 7%= 18.8 keV, respectively. He gets 17.9 and 18.9 keV. 
The El Eid, Fricke, and Ober (1983) Ma = 100 M0 core is 
predicted to have d = 2.46 and 7^c = 19.3 keV, which 
compares with their 19.2 keV. 

g) The Mass Boundaries of VMOs 

A quick and reasonably accurate estimate of the upper 
mass limit for VMOs can be obtained using the general 
relativistic polytropes explored by Tooper (1964) and 
Bludman (1973). The equation of state is assumed to be of 
form p ~ pr\ where p is the total mass-energy density and 
Fj is constant. If, in addition, pc/pcc

2 is small, Bludman 
shows that such a polytrope configuration is unstable if 

Fi - f < L13pc/pcc
2 . 

For VMOs, the ratio of radiation energy density to the 
baryon density—3sy T/(4mN) ~ 10_2(M/106 M0)1/2 for main 
sequence VMOs—can be neglected; thus pc/pcc

2 = YT(l + a) 
Tc/mN. If we now use equation (10a) in the large o limit, we 
obtain an expression for the critical value of cr and of mass in 
terms of the central temperature: 

(r\ - f)cr = (60-1 = 1.73 Yrcrcr Tc/mN , 

MCr(Tc)~ 17.6 Yr
2(jcr

2M0 = 1.6 x 106YT(1 keV/7^)M0 . (31) 

The critical mass in the hydrogen-burning phase above 
which instability must occur can be estimated by substituting 
the equilibrium temperatures, equations (11a) and (11b), 
into this formula: 

Mcr = 5.5 x 105(Yr/1.7)103(VCN/10_2)0 052 M0, 

Population I and II; (32a) 

Mcr = 1.7 x 105(Yt/1.7)104(Vcn/10“9)0 073 Mo, 

Population III. (32b) 

If we choose XCN ~ 10“4 as characteristic of Population II, 
we obtain 4.4 x 105 M0. Our simple estimates agree reason- 
ably well with the results of Fricke (1973), who got 4 x 105 M0 
for Population I abundances, and KY M0 for Population III. 
His inclusion of the kinetic energy gained during the prior 
collapse, which drives the star somewhat beyond stable 
equilibrium, results in his somewhat smaller values. Popula- 
tion HI SMOs all collapse to black holes, even if they are 
slowly rotating (Fricke 1974). Fricke (1973, 1974) finds that 
Population I and II SMOs in a narrow mass range above 
Mcr can explode, but that large SMOs always form black 
holes. The thermonuclear behavior of rapidly rotating SMOs 
has not been explored sufficiently to determine their fate. 
Zel’dovich and Novikov (1971) estimated that if no nuclear 
burning were to intervene, a hydrogen star would suffer the 
general relativistic instability before the pair instability as long 
as M > 6.4 x 104 M0. Our boundaries are well above this 
mass. 

The corresponding critical mass for the helium-burning 
phase is obtained using equation (30) for the helium ignition 
temperature: 

Ma,cr = 4.7x 104Mo . (33) 

Fricke (1973) gets 3.4 x 104 M0 for this mass. More massive 
cores will already be collapsing when they enter their 
oxygen core phase, and will end up as black holes. Their 
thermodynamic evolution is so similar to those stars which 
form stable oxygen cores and then go pair-unstable that we 
have included this range in the VMO definition. 
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For the lower mass boundary, we suppose that for oxygen 
core masses below 30 M0, the star never goes pair-unstable. 
This is discussed more fully in the next section. The 
corresponding helium core mass is ~35 M0. Using the 
point source models and Figure 1, we then obtain oc = 0.68 
and M ~ 81 M0. Weaver and Woosley (1980) have estimated 
that this lower boundary is significantly higher, ~125 M0. 
We attribute this discrepancy to the modifications which can 
occur in the quasi-static carbon burning portion of the 
evolution. We adopt 102 M0 for the lower boundary 
(Mo*40Mo). 

III. VMO EVOLUTION IN THE OXYGEN CORE PHASE 

In this section, we use simplified models to follow the 
oxygen core through to either collapse or explosion. In § Wla 
an overview of the thermodynamic evolution is given. In § III¿> 
we set up a marginally stable model of an oxygen core, 
assuming its density structure is that of an n = 3 polytrope. 
In § IIIc we utilize a global effective potential, basically 
the core’s binding energy, to study the evolution of a sequence 
of polytropic models of the collapsing core. The use of both 
polytropes and binding energy arguments in studies of the 
fates of massive objects is fairly common. In particular, 
Fowler and Hoyle (1964) used n = 3 polytropes to discuss 
the pair-instability supernova, which they introduced in their 
paper. Fowler (1966) studied the stability of Supermassive 
Objects via the binding energy approach. This method was 
extended by Zel’dovich and Novikov (1971), who calculated 
the mass boundary between those stars which first go pair- 
unstable and those that first encounter the general relativistic 
instability. (See § Ilia for a discussion.) Our extension allows 
nuclear burning to be included in the same sort of formalism. 
In § Hid, the instantaneous nature of oxygen burning is 
expressed in terms of entropy jumps in the regions of the 
core which exceed an ignition temperature. In § Hie, the 
breakup of heavy nuclei into a-particles is discussed. Our 
models are thus idealized to have three distinct phases: 
(1) onset of the pair instability; (2) oxygen burning; (3) alpha- 
quenching. The degree to which phase (3) occurs determines 
whether a black hole forms or not. In § III/, we estimate 
the critical core mass above which a black hole forms. 
The effects of slow rotation on this estimate are also 
discussed. In § III# we use entropie arguments to present 
the sequence of events which occur in the final stages of 
collapse to a black hole. In § lllh we estimate the explosive 
energy released, and the fraction of oxygen burned in those 
VMOs which disrupt. 

Here, we give a brief review of the older numerical 
calculations of oxygen core collapse. These experiments have 
concentrated on the low mass range, since one may expect 
that a few of these will be exploding in the present epoch. 
Fraley (1968) evolved 45, 52, and 60 M0 cores. He found 
that the first did not explode, but oscillated, slowly consuming 
oxygen, while expelling only 1-2 M0; the implication is that 
a massive black hole would be the final state. The other 
two stars exploded, perhaps resulting in complete disruption 
with no remnant left. Barkat, Rakavy, and Sack (1967) 
evolved 30 and 40 M0 oxygen cores. The former entered 
into a relaxation oscillation phase fed by burning; it did not 
explode. The 40 M0 core did explode. Arnett (1973) 
evolved 64 and 100 M0 helium cores, corresponding to 

58 and 93 M0 oxygen cores; both exploded. The former 
left a loosely bound 2.2 M0 silicon remnant whose fate was 
not determined. The 93 M0 core completely disrupted. 
Wheeler (1977) evolved 103 and 104 M0 oxygen cores, and 
in both cases found black holes were the final states, and 
no ejection of mass occurred. These numerical experiments 
agree on general trends: low masses oscillate without 
shedding much, if any, mass ; intermediate masses completely 
disrupt, creating very energetic supernova explosions; high 
masses form black holes without ejection. The experiments 
obviously disagree on the detailed evolution of stars of the 
same mass. 

a) Trajectory in Thermodynamic Phase Space 

Rakavy and Shaviv (1968) recognized the utility of using the 
dimensionless entropy per baryon to characterize the collapse 
trajectory. We note that these authors do not properly zero 
their entropy, and the values we obtain differ from theirs 
by a constant 1.56. The entropy per baryon of the electron- 
positron plasma is now given not by the Sackur-Tetrode 
formula, but by the more general expression 

Se= (f-e + Pe/nB - fle Ye)/T , (34) 

where ee and pe are the e+e~ internal energy per baryon 
and pressure, pe is the electron chemical potential, Ye is the 
number of ionization electrons per baryon, nB is the baryon 
density, and T is the temperature in energy units. The 
various terms in equation (34) must be evaluated numerically 
in the regime of concern to us, where the electrons and 
positrons are semirelativistic. To this is added the photon 
entropy, equation (6), and the nuclear entropy for an oxygen 
plasma, 

sN = Yj In (T3/2/p) + 1.61 , (35) 

where Yj = 1/16. Adiabats for pure oxygen plasmas in the 
p-T plane were computed numerically and are displayed in 
Figure 3, along with the pair instability region where the 
adiabatic index T1 < 4/3. The lines for which the lifetime of 
an oxygen nucleus to react with another one is 104 s and 1 s 
are also shown. The rate was taken from Fowler, Caughlin, 
and Zimmerman (1975) (FCZ II). The trajectory of a mass 
element in thermodynamic phase space lies along an adiabat; 
burning on the 1 s time scale does not occur until after 
the element passes out of the instability region. However, 
it will overshoot this line as a result of the kinetic energy 
it gained while unstable. In this figure, we also show where 
the cores of stars of mass below the VMO boundary will 
lie at various burning stages. Presupernova II stars are 
presumably just those that skirt the e+e~ instability region with 
s < 8. Oxygen and silicon can then be burned on relatively 
long time scales by stable stars, giving time for neutrinos to 
transport away not only energy but also entropy; as these 
stars evolve, the fusion of lower mass nuclei to higher mass 
ones results in a more ordered core in which the entropy 
progressively goes down. By the time an iron peak core 
forms, s has dropped to values in the center ranging from 
~0.8 for M ~ 25 M0 up to ~2.2 for M ~ 100 M0; s has 
a positive gradient in the core due to differential energy 
losses via neutrinos. 

We assume that each mass element of an oxygen core 
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Fig. 3.—Isentropic lines for a plasma of oxygen nuclei and pairs are plotted in thermodynamic phase space, along with the various instability 
regions through which they pass. Lines of constant alpha abundance, X^, through the nuclear phase transitions, lines where the oxygen burning 
lifetime, t0, is 1 s and 104 s, and points corresponding to Arnett’s (1972) helium core calculations and Weaver, Zimmerman, and Woosley’s (19787 
25 M0 star calculations are also shown. The critical region for pair instability supernovae is s ~ 8-13. 

with M0 > 30 M0 is approximately isentropic in time prior 
to the generation of entropy in the oxygen burning nuclear 
transmutations or its significant transport from the core by 
neutrinos. (The e+e~ ^vv reaction rate becomes of the 
order of the dynamical collapse rate only much later in the 
evolution toward a black hole, as we shall show below.) 
During the “4a” process, the core is convective, and thus 
adiabatic. The oxygen core is thus spatially as well as 
temporally isentropic. 

It is instructive to explicitly calculate the entropy required 
to make pairs when they are nonrelativistic (T < me/3.15). 
The number of nonrelativistic positrons per baryon is given by 

_ 3452 sy
2 

“2V7 Ye 

^ 1.0 X 10“V(77100keV)7-2 near 

(36) 

T ~ 100 keV. 

The power law is accurate only in the neighborhood of 
T= 100 keV. Generally, Y+((r, T) = Y+(a, To)(T/T0)'>, where 

vpr(T) = 2me/T — 3 . (37) 

The entropy in electrons and pairs is se = se
(0) + spr, where 

the pair entropy is given by 

spr = T+(vpr + 8.5) . (38) 

For example, at 100 keV, the entropy required to make an 
e+e~ pair is 16. This entropy is primarily transferred from 
the photons, which directly robs the pressure. 

We can again relate o to the mass through the poly tropic 
mass equation; for pure oxygen cores (YT = 0.56), 

M0 = 5.6c71/2(l + o)3/2 Mq . (39) 

Prior to pair production, the range of sy is thus ~4 to 

100 for masses from ~30 to 104 M0. We can also apply 
the formula for the critical mass above which the star is 
unstable due to general-relativistic effects, equation (31), 
to oxygen cores. If we take 100 keV as a typical central 
temperature above which the pair instability will be important 
for the entire core, then this gives a critical mass of 8000 M 0. 
A careful calculation of the mass boundary below which a 
core goes pair unstable first would have to include, for 
example, the mass dependence of the pair-unstable tempera- 
tire. Zel’dovich and Novikov (1971) obtained the value of 
8000 Mq for a core composed of iron. The value their 
method would give for oxygen cores should be only slightly 
higher. 

Though the core mainly consists of oxygen, some carbon 
also exists. Prior to oxygen burning, carbon can ignite, 
producing neon and magnesium. Neon can then bum via 
an (a, y) reaction. Both nuclear processes result in local 
entropy changes. If they occur quasi-statically, vv losses can 
be significant and lower the entropy. The result would be 
an entropy distribution which is a step function if the 
burning stages are convectively unstable, and a continuous 
distribution if the nuclear luminosity can be transported 
radiatively. Arnett (1973) finds the latter holds true for his 
Ma = 64 M0 core. In either case, the entropy will be smaller 
in the central regions of the core than at the boundaries. 
Arnett’s Ma = 100 M0 core actually begins to collapse prior 
to carbon burning. In this case, the nuclear transmutations 
will add extra entropy to the central regions which burn 
first. We neglect the complications arising from these 
deviations from spatial adiabaticity, though we recognize 
they result in quantitative changes to the numbers we derive. 

As we shall demonstrate, the evolution of the initially 
isentropic core in the thermodynamic phase space of Figure 3 
proceeds as follows: All of the mass zones evolve along the 
same adiabatic track; they move slowly until the central 
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zone first reaches the 7y->e+e_ instability boundary. The 
core rapidly speeds up as it drops deeper and deeper into 
a self-generated effective potential well until the leading 
central zone crosses into the stable region. While still 
accelerating, these central zones encounter the oxygen ignition 
line (T ~ 280 keV), where they are transmuted to silicon 
and change tracks to a higher adiabat before the other 
zones can respond. The high-pressure inner zones would 
drive the core outward to low densities. However, the middle 
zones are still in the instability region and want to maintain 
their downward plunge. The core as a whole experiences a 
global deceleration, but is still moving to higher density due 
to the residual of the velocity it acquired upon infall while 
globally pair-unstable. The central zones may cross the 
silicon-to-nickel transmutation line (T ~ 350 keV), and even 
enter the nickel-into-alpha phase transition region to the 
alpha-quenching line (T ~ 480 keV) where all decelerating 
effects of the nuclear burnings are nullified. The initial entropy 
of the core determines whether the effective potential will 
rise to positive values and drive the entire core back out 
through lower densities, with the central zones traveling upon 
the higher adiabat tracks and the outer zones upon the 
original. 

b) The Poly tropic Structure Approximation 

A spatially isentropic, chemically homogeneous structure 
which is in hydrostatic equilibrium may be calculated by the 
numerical solution of a second order ordinary differential 
equation (Poisson’s equation), since the pressure depends 
only upon the density. Rakavy and Shaviv (1968) have 
utilized these structures in their study of oxygen cores. 
However, here we must explicitly consider dynamics of the 
core; during collapse, it passes through a series of shapes 
defined by the radius, r(m, t), and density, p(m, i), at time t 
as a function of the Lagrangian interior mass (i.e., baryon 
number) coordinate m, found by simultaneously solving the 
equations of motion and baryon conservation. As long as 
the central density, pc(t\ is monotonically increasing, we can 
use it as our time variable. To get dimensionless equations, 
we define the following dimensionless quantities : m* = ra/M, 
with M the total mass; p* = p(m*, pc)/Pc; r* = r/L, with L 
given by AnÜß = 54.18M/pc. Isentropic core collapse is then 
defined by a smooth functional evolution in p^-space. The 
simplest a priori assumption for this is that of homologous 
contraction in which the radius of the mass element labeled 
m satisfies r(m, t) = a(t)r(m, t0)la{t0\ where a(t) is a scale 
factor independent of m. In this case, the baryon density 
scales as a-3, and p* and r* are i-independent. Generally, 
this assumption is valid only for n = 3 polytropic structures, 
although if the motion is sufficiently slow, arbitrary spatial 
structures can be treated. We approximate the functional 
evolution by pc) = 63(m*), where 6 is the n = 3 
Lane-Emden function; we expect the true solution to lie 
nearby in function space. Fowler (Go6) and Zel’dovich 
and Novikov (1971) have repeatedly used this assumption 
in deriving relations for SMOs; we follow their lead to treat 
VMOs. 

Near the global core instability point, defined by (Fi ) = 4/3, 
where 

<r, > = J Fip/pdm /J p/pdm 

is pressure-averaged, our n = 3 polytrope assumption will 
presumably be the closest to validity. Clearly, the zones 
within the pair instability region will be more tightly packed 
together than those outside; however, for both inside and 
outside zones, the deviations from the polytrope can be 
treated as perturbations. We define the mass at this point. 

The polytropic mass (equation [8a]), M3(s,pc) ^ (pc/Pc4/3)3/2> 
depends upon the degree of central instability, 

d\n M: 

d In pc -íM). 

and thus varies during collapse. This equation explicitly 
shows the deviation of the equation of state from a Fi = 4/3 
law, and was used in Figure 3 to plot the pair instability 
boundary curve. In the regions where M3 falls with increasing 
pc, the center will be dynamically unstable, but the rest 
of the core with its spread of densities may not be: the 
poly tropic mass depends not only upon time, but also upon 
the spatial Lagrangian point. Since the core mass is fixed, 
and the polytropic mass is not, we must present a prescription 
for the choice of mass: we fix M by requiring that the core 
be marginally stable when (Tß = 4/3. 

The global forces acting on the core are expressed by the 
mass-averaged first radial moment of the equation of motion, 
the virial equation for a sphere of mass Ms : 

fMs 
rrdm = W ; 

‘'o 

w{Pc) = 3(p - ps)v + nG 

(40) 

(41) 

is the ^virial potential” evaluated for an n = 3 polytrope, 
where Pv is the pressure volume-averaged over the sphere 
of volume v, Ps = P(MS\ and 

=-i 

Ms Gm , 
 dm 

o r 

is the gravitational potential energy within the sphere. 
Since W obeys 

dw/nG = / ^ 4 
: dpc \ 1 3 

3Pv 
qg 

- (rls - 
Sir, ' 

if the surface term is negligible, our criterion for finding the 
core mass is to make IF = 0 at the first extremum of 
W/Q.g. At this point, the deviation in the value of W for 
the polytrope from its value for the true isentropic structure 
is essentially of second order (O^Fi - 4/3)<5r]); we may 
therefore expect M so obtained to be a reasonable estimate 
of the true value. In practice, we include the surface terms 
in order to treat various inner core sizes; later we extend 
this to deal with shells. Our global core calculations actually 
refer to the inner 97% by mass (r* is only 0.61), and the 
mass definition naturally includes the small surface term since 
it contributes to the global instability. The fit 

M0(s) = 56(s/10)2-5 Mq (42) 

is very accurate over the 8 < s < 15 range of primary interest 
to us. In Figure 4, we plot (—W/QG) for given s. This 
quantity, which is initially zero, goes negative as the pair 
instability region is entered, and maintains negative values 
even after this region is traversed (in the absence of nuclear 
burning), which reflects the fact that the creation of the pair 
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Fig. 4.—The ratio of the virial potential to the gravitational potential 
energy is plotted against central density for oxygen cores with the initial 
entropies s¡ = 8 and 12.5. The former is just marginally unstable to the 
pair instability ; the latter is violently unstable. The dashed line would give 
the evolution if there were no nuclear burning. 

degrees of freedom from the photons results in a net loss of 
pressure, even though the Ti>4/3 state is regained; the 
small amount of ionic pressure still present is responsible 
for the increase in ( — W/QG). In the asymptotic limit, the 
pairs become extremely relativistic, se->7sy/4, and the 
polytropic mass approaches Mer = 0.66(ser)

2(l + 47//ser)
3/2 

M0, where ser — sesy very slowly approaches s—1.61; 
here we have used equations (8a) and (35). This mass is 
substantially below the mass we compute according to the 
W = 0 prescription, which reflects the relative pressure loss 
due to pair creation. 

If the core were homologously infalling, it would do so on 
the dynamical time scale 

Tdyn=(QG/W01/2Tff; (43) 

tff = (2|QG|//)-
1'2«2.6(106/pc)

1/2s 

is the free-fall time, where I is the spherical moment of 
inertia. Thus, for the s = 13 core, the dynamical time at 
106 g cm-3 is predicted to be 10 s, elongated by a factor 
of ~4 from free fall. It is thus only ~10% out of pressure 
balance and never gets appreciably more than this: the pair 
instability is not a violent one, unlike the nuclear phase 
transitions we meet later. 

c) The Effective Potential 

The virial potential tells only of the accelerating and 
decelerating forces acting on the core; the kinetic energy is 
related to the integral of W with respect to the logarithm 
of the central density for homologous collapse. More 
generally, the kinetic energy of the sphere changes according 
to the global energy conservation equation: d(K + V)/dt+ 
Psdv/dt + L = 0. Here, L is the luminosity due to vv pairs 
which we can neglect, and 

r Ms 
V(pc) = (fT + ee + ¿/ + £„uc - Gm/r)dm (44) J 0 

is the sum of the internal, nuclear, and gravitational energies 
stored within the core of radius Ms. If we know the time 
history of the surface pressure, then we can form an effective 
potential energy 

ve(pc) = V(pc) - V(pc0)- Ps(Ms, Pc)/p(m, pMpJPc 
(45a) 

= ifP£ W(pc)dpc/pc. (45b) 
J PcO 

In collapses without energy loss, K + Ve is constant; if at 
the point of global instability we assume K = 0, then K = -Ve, 
where the conserved total energy has been arbitrarily 
normalized to zero. Equation (45b) holds exactly for 
homologous collapse, even if nuclear burning occurs. As 
evolution proceeds further into the instability region, Ve 

becomes progressively more negative. Without nuclear 
burning, Vel£lG constant, since the internal energy scales 
the same way as the gravitational energy as ^ 4/3. 
The inclusion of nuclear burning causes Ve to become less 
negative; if it goes to zero again, then we can infer the core 
collapse halts, and the flow becomes outward directed. 
Figures 5 and 6 show how the inclusion of nuclear burning 
(according to the prescription of the next section) and 
alpha-quenching (as described in § lile) changes the effective 
potential. We extend the potentials into the positive regime, 
although this region is predicted to be inaccessible to the 
core. We shall see that, if turnaround can occur, then 
explosive disruption will almost certainly follow : since the 
explosion trajectory of the central zones is on a higher 
adiabat, there is more pressure than was there during infall, 
which was itself marginally stable. 

d) The Instantaneous Burn Approximation 

The lifetime for an oxygen nucleus to undergo a nuclear 
transmutation with another oxygen nucleus in the plasma, 
To, is given by FCZ II; their expression was used to 
construct the t0 = 104 and 1 s lines of Figure 3. If we 
define the index v(T) as (d In t0/ô In T)p, which is thus density 
independent, we find v(280 keV) = 24.8; in the neighborhood 
of this temperature, t0 ~ 0.1p5~1(280/T)24 8 s. Even at this 
relatively high temperature, the burning rate is extremely 
temperature sensitive; thus, the 1 s burn line has almost 
no density sensitivity. Since a typical dynamical time for the 
core is 10 s at 106 g cm-3, the concept of an ignition 
temperature, Tign, is appropriate: When the temperature is 
below Tign, the burn time is much greater than the dynamical 
time; when above it, much smaller. We take Tign for oxygen 
burning to be 280 keV, assuming it to be independent of 
density over the region of interest. 

The immediate products of oxygen burning are silicon and 
sulfur. At a higher temperature, silicon burning occurs and 
these products themselves transmute via the usual breakdown- 
buildup process to iron peak elements. We suppose for 
simplicity that burning occurs in two phases: 0-»Si-*Ni, 
which releases 471.5 keV in the first stage and 195 keV in 
the second stage; we assume the latter occurs at its own 
Tign = 350 keV, chosen on the basis of the 24Mg(y, a) and 
28Si(y, a) lifetimes given in FCZ II. Silicon burning should, 
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Fig. 5.—The effective potential (per baryon) is plotted for a sequence 
of n = 3 poly tropic density structures, labeled by the central density pc. 
Its value should be compared with the gravitational potential per baryon, 

= — 1500 (Mo/100MG)2/3(pc/106gcm_3)1/3 keV. The three regimes of pair 
instability, oxygen burning, and alpha-quenching are apparent. The s, = 12 
core explodes; the rest collapse to black holes. The long dashed curves 
are evolutions with no oxygen burning. The short dashed curve for 
s¡ = 13 has oxygen transmuted to nickel directly rather than through an 
intermediate silicon phase. The dash-dot curve shows the effective potential 
for just the outer one-third of the s, = 13 core. 

pc (g cm'3) 

Fig. 6.—Same as Fig. 5, but for those oxygen cores which explode. 
Once the effective potential reaches zero, implosion stops and the core 
expands following a steeply dropping effective potential drawn explicitly for 
the s,-= 12, M0 ~ 90 M0 case. 

of course, be treated with a large network since the passage 
to Ni is achieved through a series of quasi-equilibrium 
clusters in the (N, Z)-plane of nuclei (Bodansky, Clayton, 
and Fowler 1968; Woosley, Arnett, and Clayton 1973). We 
are unable with our crude approximation to make any 
statement about relative abundances of detailed nuclei. 
However, our results should reflect the relative abundances 
of oxygen and silicon burning products compared with 
oxygen in a VMO explosion. 

Since the number of ionization electrons, Ye, is 0.5, Ni 
might be expected to be the preferred nucleus in a nuclear 
statistical equilibrium (NSE) mix. Oxygen burning occurs so 
quickly that there is no time for electron captures and ^-decays 
to change the neutron excess to any appreciable extent; 
this contrasts with the case of massive stars, where oxygen is 
burned over much longer time scales and a sizeable neutron 
excess can be built up by the time NSE is achieved (Weaver 
and Woosley 1980). Under the high entropy conditions 
operative in VMOs, other iron peak nuclei could dominate 
the NSE mix. The energetics of the explosion are somewhat 
dependent upon our choice of reaction pathway, which we 
have varied to demonstrate the sensitivity to the nuclear 
burning approximations. For example, we have considered the 
two phases to be 0->S->Ni, with sulfur rather than silicon 
as the intermediate phase, and obtained similar results. 
We have also studied how the results change if burning occurs 
in one stage, O -► Ni, at 280 keV ; in this case, the black hole 
formation boundary only changes from initial entropy 
12.4 to 13. 

Consider a mass element which has passed through the 
instability region of Figure 3 and therefore gained kinetic 
energy. It approaches the ignition temperature along an 
isentropic trajectory, and reaches it at an ignition density 
Pign = p(7ïgn>5)- We now make the instantaneous burn 
approximation: before p changes significantly, either because 
of continued compression (governed by the dynamical time) 
or because of significant PdV expansion (governed by the 
sound crossing time ts), the nuclear transformation is 
essentially complete: t0 < min (Tdyn, ts). If so, the transition 
occurs at constant density and hence at constant energy 
(thermal plus nuclear) since there is then no PdV work. 
The entropy does change, by an amount As(s; O -► Si) given by 

(ee + ey + £j)(s + As, pign) = (ee + £y + £/)(s, pign) + 471.5 keV , 

(46) 

where the ionic thermal energy per baryon, é7 = (3/2)1} T, 
has 1} = 1/16 on the right-hand side and Y/ = 1/28 on the left. 
The pair energy ee contains the rest-mass energy. This As is 
precisely the value which would be obtained from the more 
direct calculation: 

A-5 = J qnuJTdt — j (po Ÿo/T + psi %JT)dt , 

where qnuc is the rate of nuclear energy release, lb is the 
number of oxygen nuclei per baryon at time i, and po is the 
chemical potential (excluding the nuclear rest mass term which 
has been absorbed into 4nuc)- The nuclear entropy change, 
Asjv, is actually negative, since although there is a higher 
temperature, the,freezing out of nuclear degrees of freedom 
due to the buildup of more complex nuclei from lighter ones 
overcomes this : As^ ~ —0.5 (cf. s0 ~ 1.3). This is compensated 
by the entropy change in photons and pairs: A(se + sy) ^ 1.7 
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(cf. [se + s j » 9.7). For this s = 11 example, the temperature 
jumps 15 keV in the transmutation. We find the following 
fit to the solution to equation (46) to be adequate: 

As(s; 0-»Si) = 1.187, s > 15 , 

= 1.185 + 00015(s - 12) - 2.78 x 10"4(s - 12)2, 

8.5 < s < 15 , 

= 1.165 + 7.33 x 10_3(s — 7), 6.5 < s < 8.5 . 

(47) 

We calculate the further change in entropy due to the Si->Ni 
transition by using equation (46), with the starting entropy 
now s + As(0->Si): 

As[5 + As(s, 0->Si); Si^Ni] = 0.25 + 5 x 10“4(s- 20), s > 14, 

= 0.247, s< 14 . (48) 

Thus the s = 14 trajectory first changes by 1.19 in oxygen 
burning, then by 0.25 in silicon burning to make the total 
change 1.44; if sulfur is the intermediate nucleus, the changes 
are 1.26 + 0.20 = 1.46; if oxygen is immediately transmuted 
to nickel at 280 keV, the change is still only 1.51. 

e) Alpha-Quenching 

As the temperature rises, we assume NSE sets in with 
nickel being the most abundant nucleus. This is consistent 
with our simplified a-particle nuclei picture of burning 
which we suppose is maintained in the nickel-into-alpha 
phase transition. This is not quite true, since other nuclei 
become abundant before this transition is met (Bodansky, 
Clayton, and Fowler 1968). The Ni->a transition conserves 
entropy since it occurs in equilibrium among the nuclear 
species. The balancing of chemical potentials and binding 
energies leads to a polynomial of order 14, expressing baryon 
number conservation, which determines the alpha abundance. 
2fa is found to change gradually from 0.1 to 0.9 over a 
temperature range of 70 keV for the entropies of interest. 

The nuclear potential energy gained due to oxygen and 
silicon burning is lost at the alpha-quenching boundary, 
defined by enuc(Ni + a) = rnuc(

160), which occurs when 
Xu = 0.425. The passage from nickel to alpha costs 1589 keV 
per baryon, which is much larger than the 667 keV per 
baryon gained in nuclear burning. The alpha-quenching 
boundary is only indicative of the point at which the 
explosive effects of nuclear burning will be undone. Entropy 
is transferred from the photons and pairs to dissociate the 
a-particles from the heavy nuclei: nuclear degrees of freedom 
are liberated at the expense of relativistic thermal pressure 
[ = nB(sy + se)T/4]. The devastating effect on the entropy 
generation is illustrated in Figure 7 for an initial s= 13: 
sN is initially 1.45, drops to even lower values after burning, 
then rises to 3.5 due to alpha-quenching; sy + se suffers a 
corresponding drop. As more and more central zones cross 
the quenching boundary, the effective potential is driven down 
to more negative values (Fig. 5). If Ve is negative when 
alpha-quenching sets in, collapse will continue. 

The next boundary to be crossed is the oc^>2n + 2p phase 
transition, which does not occur until the temperatures are 
in the MeV range : the transition region is displayed in 
Figure 3 for very high entropies. This transition costs 

Fig. 7.—The entropy evolution at the center of the s,- = 13, M0 =110 M0 
oxygen core demonstrates the entropy input due to nuclear burning, and 
the entropy redistribution due to the pair instability and alpha-quenching. 

7070 keV per baryon of nuclear potential energy and results 
in an even more substantial shift of entropy from relativistic 
particles to nuclear particles than in the Ni->a transition. 
The effective potential thus plunges toward its free-fall value, 
the gravitational potential energy. 

/) The Critical Mass for Black Hole Formation 

In our simple model, the global effective potential remains 
negative if s > sc& 12.4 and becomes positive if s < sc, as 
can be seen in Figures 5 and 6. The critical oxygen core 
mass is Moc = Mo(sc)~ 102 M0. The core is predicted to 
become globally unstable at pco ~ 4 x 104 g cm-3, as is 
demonstrated by the plot of IT/|QG| in Figure 3. The mass 
is determined at this point by setting W = 0. When the 
center of the core reaches pc~ 106 g cm-3, the oxygen is 
predicted to ignite. An immediate effect can be seen in the 
virial potential, but the response of the effective potential is 
slower. Beyond pc ~ 2.5 x 106 g cm-3, the core is globally 
decelerated due to the extra pressure generated by the 
nuclear energy input. In particular, this added pressure will 
cause a restructuring of the density profile: the center will 
have a lower density than that predicted by the polytrope 
approximation, and thus a lower temperature. This results 
in two important phenomena which limit the accuracy of 
our results: (1) Silicon ignition is delayed until later than the 
time it is predicted to occur in our models. This means 
that explosions will have fewer silicon-burning products than 
we predict. (2) Alpha-quenching is also delayed until later 
than predicted. By forcing the central density to be given 
by a polytrope, the devastating effects of the photodissociation 
of iron peak nuclei in the central regions drive the effective 
potential down before the full explosive effects of nuclear 
burning in the outer regions can be realized. This effect can be 
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seen in the drop in the virial potential (Fig. 4) beyond 
pc ~ 5 x 106 g cm-3; by 107 g cm-3, global inward 
acceleration once again resumes. The effective potential 
(Fig. 5) thus turns over at pc ~ 107 g cm-3. Our values of sc 

and M0c are therefore underestimates. 
If we supposed the one-stage burning transformation O -> Ni 

to be operative, then the s = 12.4 core would be predicted 
to turn around. As can be seen in Figure 5, the increase in 
the s = 13 effective potential due to one-stage burning raises 
it to only the s = 12.5 two-stage burning peak which is 
negative and hence collapse is predicted. Uncertainties in the 
reaction pathway could therefore lead to errors of ~10 M0 

in M0c. 
It may be argued that the regions which undergo quenching 

will collapse and those that do not will explode, resulting in 
black hole formation accompanied by metal ejection even 
if M0 > M0c. We can answer this objection by considering 
the energetics of a shell rather than of the entire core. The 
effective potential for a shell of interior mass Wi and exterior 
mass m2, is simply the difference between the 
effective potentials of the larger and smaller spherical cores 
with the boundary terms appropriately included: Ve(m2,m1) = 

Fe(mi,0). In Figure 5, the effective potential for 
the outer one-third (m*! = 0.678, m*2 — 0.968) of the poly- 
tropic core for s = 13 is plotted. The onset of the pair 
instability and that of nuclear burning clearly occur in the 
shell when the central density is higher than for the entire 
core. Hence, though the shape of the effective potential is 
similar, the features are shifted. The outer core is predicted 
to collapse (marginally) and to follow the inner core toward 
its singular final state. Smaller entropy outer shells would 
be predicted to explode and larger ones to collapse. 

The shell calculation has one advantage over the global 
calculation: it is not as sensitive to the deviations of the 
central structure from the n = 3 polytrope. The behavior of 
the outer shell is determined by the inner surface pressure, 
which drives explosion, as well as by the shell-averaged 
pressure forces, which also drive explosion, and the outer 
surface pressure and the gravitational potential of the shell, 
which drive collapse. Alpha-quenching in the inner core lowers 
this inner surface pressure, thereby ensuring outer core collapse 
in spite of the nuclear energy release there. (We cannot take 
the shell to be too small or else the differences between the 
true hydrodynamical and assumed profiles will not be 
smoothed over and the inner and outer pressures will be 
inaccurate.) We can conclude from these outer shell calcula- 
tions that our global value for sc is an underestimate (sc ~ 13 is 
favored, which gives M0c ~ 110 M0), but it is not wildly in 
error. 

We can also investigate the sensitivity of our results to 
the addition of slow rotation, following the method used by 
Fowler (1966) and Fricke (1974). The rotational kinetic 
energy, KR, adds an extra term to our effective potential: 
VeR = Ve + Kr. For uniform rotation, KR = /co2/3, where / is 
the spherical moment of inertia and co(i) is the uniform 
angular frequency. If the angular momentum, J = 2Iœ/3, 
is assumed to be conserved during collapse, then 

Kr = K~ ieRo^G(Pc/pco)113 > 

where 

eR = 2KR/\nG\=%J2(\nG\I)-1 

measures the contribution of rotational energy to the 
pressure balance (WR = W - eRQG); eR0 is its value at the 
onset of instability at pc0. For slow rotation, eR has the same 
density dependence as the pressure contribution of a y = 5/3 
gas and thus becomes progressively more important as collapse 
proceeds. 

Small rotation will increase the core mass we get for a 
given entropy due to the added rotational stability; at pc0(s, J), 
where [pc d(WR/Q,G)/dpc] = 0, we obtain the mass from WR = 0: 
M(s, J) = M(s, 0)[1 + 3/2(J/J0)

2] for small J/J0. We have 
defined the breakup angular momentum, by eR0 = 1; 
for the s = 12.5 core its value is J0/M &1019 cm2 s-1. 
The specific angular momentum of a typical 05 star is at 
most ~1018 cm2 s_1; eR0 = (J/J0)

2 would likely be less 
than a percent. In order for rotation to cause the s = 13 
effective potential to rise to zero in Figure 4, we need 
Kr = 30 keV per baryon at pc ~ 107 g cm-3 which requires 
J/J0 ä 0.2. The modification of the critical entropy and 
mass is (for small J/J0)' 

sc(J) = sc(0)[l + as(J/J0)
2], as * 1.4; (49a) 

M0c(J) = MOc(0)[l + aM(J/J0)2], aM * 3.5 . (49b) 

Notice that as £z 0AaM follows from our approximate M0(s) 
relation. 

The critical mass is apparently not too sensitive to the 
amount of rotation according to equation (49). This is 
misleading for a number of reasons. First, if J is large 
enough that ~ 0.1 during nuclear burning, then the 
rotational support can increase Tdyn sufficiently to make 
burning appreciable in regions with T < Tign, thus making 
explosion more likely. The clean separation of global collapse 
from explosion could also cease to hold with rotation: the 
Fowler and Hoyle (1964) picture of mantle explosion driven 
by a combination of rotational braking and oxygen burning 
may result. Even if a core continues collapsing after oxygen 
burning, rotation will play an increasingly important role 
as collapse proceeds since eR rises and large deviations from 
sphericity occur. If J/J0 = 0.2, the core would be predicted 
to reach breakup speed by the time its radius has contracted 
by a factor of 25 from its value at the onset of instability. 
This would happen before the Schwarzschild radius is reached. 
When eR = 0.14, the core goes secularly unstable and breaks 
its axial symmetry by populating azimuthally asymmetric 
modes according to the analysis of rigidly rotating n = 3 
polytropes given by Bodenheimer and Ostriker (1973). If 
we naively force our core to follow a Newtonian polytrope 
profile, we would predict that a trapped surface would first 
form around r* ~ 0.4 when the central density is 
pcb~ 1013(Mo/100 Mq)-2 g cm-3. To avoid breakup, we 
would require J/J0(M) < 0.04(M0/100 M0)1/3. This crude 
argument illustrates that, if a VMO starts with a specific 
angular momentum similar to that of a main-sequence 05 
star, and if it does not lose a significant fraction of it during 
its evolution, then, though thermonuclear explosion may be 
avoided, rotational effects could allow metal ejection during 
the catastrophic final collapse. A large emission of gravita- 
tional radiation could accompany such an asymmetric collapse. 
Clearly, large angular momentum collapses require further 
investigation. 

• Provided by the NASA Astrophysics Data System © American Astronomical Society 
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g) Collapse to a Black Hole: Neutrino and 
Gravitational Wave Losses 

Oxygen and silicon burning cannot turn implosion into 
explosion if M0 > M0c, and since all subsequent transmuta- 
tions are endothermic, complete gravitational collapse to the 
black hole state will follow, at least if the spin of the core 
is not too large. By the time alpha-quenching onsets, the 
positrons and electrons are extremely relativistic and their 
entropy is given exactly by 

se = lsy[l + 15f/2(77i2)_1] ; (50) 

rj + rj3/n2 = (47r2/l 5 )7e/sy 

relates the degeneracy parameter r¡ = pie/T to the photon 
entropy and Ye=Ye- — Ye+. These expressions give the 
extremely degenerate electron gas result se = [(157r2/4)Te

25y]
1/3 

as well as the high temperature limit when sy is large: 

se = ¿5y[l + (47t2/ 105)(2Ye)2/sy
2] . 

As long as sy > < 0.68), the error in assuming se ^ (7/4)sy 
is less than 10%; hence ser ^ (H/4)sy gives the entropy in 
relativistic particles. The nuclear entropy for a pure alpha 
gas is then 

sa = 2.8+1 In (ser/pio), 

where p10 = p/(1010 g cm-3); by 107 g cm-3 the phase 
transition to alphas is complete for the conditions of Figure 7 
(s ~ 14.5), hence the nuclear entropy agrees with equation (51). 

At this point neutrino losses can no longer be ignored. 
As long as neutrinos can freely stream from the core, the 
reactions e+e~ -> veve, vT vT lower the entropy at a rate 
(assuming the Weinberg-Salam model of electroweak inter- 
actions with sin2 0W = 0.2) 

(52) 

which holds as long as r¡ is small. In a homologous collapse, 
the density evolution follows 

P/P = 3[(-2Fe//)]
1/2 = 3(xTff)

_1 

where the free-fall time is given by equation (43) and 
1 = {VJÇîq)- 1/2 measures the elongation of the dynamical 
collapse time over the free-fall time due to the pressure 
forces. Adopting this law, we obtain 

^s(Pc) 
d\n s 
d In pc 

x0.55xpclo
1/6 (53) 

Thus entropy depends only weakly upon the density until 
the density is high. If we assume that ds ^ dser, which is 
reasonable since sN depends only logarithmically on ser and p 
provided nuclear transmutation is not taking place, then we 
can relate the relativistic entropy ser' at density pc' to its 
value, ser, at the central density pc assuming x is approximately 
constant over this range: 

It is clear that, if pc~ 10b g cm-3, ns ~ 10-5# is very 
tiny for / ~ 5, its value at the onset of oxygen burning 
for the s = 13 collapse. Therefore, over the range 104-108 g 
cm-3 when the VMO fate is decided, vv losses can be 
ignored, a result we have already invoked. If carbon burns 
prior to the onset of instability, evolution is quasi-static and 
X can be very large, hence our initial collapse configuration 
may be not quite spatially isentropic. 

It is not until pl0 ~ 1, and therefore T = 5.8(ploser/10)1/3 

MeV, that ns ~ 1 and vv losses significantly rob the core 
of entropy. Though x(Pc~ 108 g cm-3) is still 4.6 for the 
s, = 13 collapse, which is rather far from free fall in the 
by now alpha-dominated core, once vv losses occur and ser 

drops, the core becomes closer to free fall since x2 — 1 ~ ser
4/3. 

The a-^ n,p transition, which does not occur until T > 5 MeV 
and p10 ~ 1 for ser ~ 10, ultimately accelerates /s approach 
to one. 

The nuclear entropy of the free nucleon gas obeys 

s„p = 8.7 + 0.5 In (ser) - 0.5 In (pio), (55) 

which is of order 10. If s = 15, which is near the critical 
entropy cut, the relativistic particles have less entropy 
than the free nucleons. The emission is correspondingly cut 
down, but e+e~ ^ vv is now augmented by the Urea reactions 
e+n-^vep, e~p-+ven: these dominate the entropy loss for 
all but the most massive collapsing VMOs since 

( ^)lJrca (^^Aer)( ^)pair (^) 

for T 1.3 MeV. 
The neutrino emission predicted by equations (52) and (56) 

is enormous before a trapped surface forms when pc ~ 
1013(Mo/100 Mq)-2 g cm-3. However, before this, neutrinos 
become optically thick due to the reactions vep^e+n, 
ven^> e~p, \e± -► ve±, and later to vv -> e+e~, vv and vv -► vv. 
Muon and tau neutrinos do not participate in the inverse 
Urea reactions, but do participate in the others: their flow 
from the core is also impeded. An equilibrium mixture of 
neutrinos of all types, each with approximately zero chemical 
potential, forms in the core; thus “blackbody” radiation 
occurs from a neutrino photosphere, with volume emissivity 
occurring outside it. We term such a configuration a neutrino 
fireball. 

The development of the fireball proceeds as follows. Just as 
in iron core collapse in massive stars, some neutrinos 
become trapped by their interactions with the imploding 
core and cannot escape. At late times, our VMO core then 
consists of neutrinos trapped and imploding in the center, 
surrounded by a shell of neutrinos diffusively outflowing, 
radiating as a fermionic blackbody from the neutrino 
photosphere with luminosity 

L = (3 x 2 x ^)4nR2(7t2T*/60) 

= 105%p
2(T/5 MeV)4(Mo/100M0)2/3pclo"

2/3 ergs s-1 . 

(57) 

Ser'Aer = [1 + 10/7(s'ns7ser' - sns/ser)] 3/5 . (54) 

This formula is not accurate unless pairs are relativistic; 
however, since it gives an overestimate of the role of pair 
neutrino losses in the semirelativistic regime, we can use it 
for the purposes of discussion. 

This is 21/8 times the usual photon luminosity expression: 
the factor of 3 comes from assuming three flavors of neutrinos, 
the 2 counts neutrinos and antineutrinos, and 7/16 is a factor 
arising from the difference between Fermi and Bose statistics. 
Equation (57) assumes that the vM and vT photospheres coincide 
with the position of the ve photosphere. In fact, since the 
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electron neutrinos have the shortest mean free path, their 
photosphere will be somewhat farther out with a lower 
temperature than that of the other types. In equation (57) 
r*p is the radius of the photosphere normalized to the core 
radius. (In a homologous collapse, r* is a comoving radius.) 
The initial value of r*p is zero; it increases monotonically 
as the temperature rises in the interior. In a purely leptonic 
fireball, when interactions with nucleons can be neglected, 
the photosphere of the neutrinos resides at the point where 
T ä 5 MeV. If the temperature is less, the production rate 
of neutrino pairs is too small to fill the allowed phase 
space before they can propagate away, and the interaction 
rate for the e+e~ pairs present to slow down the escape 
by scattering reactions is also too small. The scattering 
rate has a steep temperature dependence for these leptonic 
reactions (~T5). Above T ~ 5 MeV, interactions are rapid 
relative to the transport time and equilibration occurs. 
Absorption rates due to Urea reactions (~T5/ser) can 
dominate over leptonic processes, which complicates ve 
transport. 

A crude estimate for the energy loss over a dynamical 
time scale in this fireball phase is1 

Lrff - 1056(T/5 MeV)4(Mo/100 M0)2/3Pcio~7/6 ergs . (58a) 

This compares with an entire rest mass energy 1.8 x 
1056Mo/100 Mq ergs. We conclude that a large percentage 
of the gravitational binding energy may be liberated as a 
neutrino pulse in the last tens of milliseconds of the VMO’s 
life before a trapped surface forms and the rest of the core 
accretes onto the inner black hole. The neutrino transport 
is clearly complicated by general relativistic effects, which 
tend to focus neutrino radiation upon the hole by light cone 
distortions and redshift the energy of the neutrinos as they 
leave the star. 

The dynamical effects of the emitted neutrinos due to 
energy or momentum deposition could be significant. That 
the outer core material is approximately in free fall and is 
dominated by photons and pairs makes ejection by such 
mechanisms unlikely however. For the neutrino energy 
deposition scenario originally proposed by Colgate and White 
(1966) for Type II supernovae to work in these cores would 
require a rapid pressure increase near the core boundary 
followed by shock generation. The shock could be created 
in tightly bound regions and propagate to loosely bound 
ones which might then be blown off. We ignore this aspect 
of the scenario in the following estimate of the impact of 
ve± scattering on the regions outside of the photosphere. 
For the pressure increase, Ap, to turn free infall, characterized 
by the ram pressure pv2, into unbound outflow, the ratio 
Ap/pv2 must exceed ~2. The rapid pressure gain is related 
to the entropy gain due to heating by Ap & nBT(As)ve/3. 
The rate of entropy increase at radius r* due to electron and 
positron scattering of e, p and t neutrinos and antineutrinos 
radiated from the photosphere is approximately 

A relaxation approximation to ve scattering has been used 
to arrive at this expression, which can overestimate heating 

1 See note added in proof. 

effects by up to a factor of 2, and vv reactions have been 
ignored. The neutrinos are assumed to have a distribution 
function which is blackbody at the photosphere, and is 
modified only by geometrical dimunition beyond. Cooling 
by pair emission, equation (52), will usually be smaller than 
this heating. To estimate the entropy gain, we take 
(As)ve ~ sve Tff, where the free-fall time scale at radius r* and 
mass fraction m* is 

Tff » 0.1r,2/2m,r1/2Pcio-1/2 s . 

If we assume the matter is freely infalling, which is reasonable 
after all the phase transitions and earlier neutrino losses, then 

Ap ~ T(As)ve 

pv2 ~ 3mN i>ff
2('-*) 

Here, Mo2 is the core mass in 100 M0 units. The maximum 
possible pressure increase would result if the medium were 
heated to Tp, for at higher temperatures the region would 
be thick with a new photosphere established farther out in 
the star. This yields 

^^Pclo“2/3Mn--2/3 

M* P 
*02 

The density and extremely relativistic entropy evaluated at the 
photosphere are labeled by p. For typical parameters, both 
ratios are sufficiently far below 2 that the pressure increase 
should not result in expulsion unless hydrodynamical transport 
of the energy via shocks created near the photosphere is 
possible; this seems unlikely. However, the pressure ratio is 
close enough to unity in some circumstances to warrant 
further study. 

Since extremely relativistic particles dominate over nuclei 
in the outer regions, momentum deposition would also occur 
primarily via ve scattering. If so, the momentum change is 
related to the pressure change by Apv æ (3/2)Ap, so A(pv)/pv 
is down by 

~ iv/c ~ 0.3m!|1
1/2''*_ 1/2pclo

1/6Mo21/3 

from the estimates of Ap/pv2, making a momentum deposition 
supernova highly unlikely. 

The collapse of rotating VMOs to black holes may 
provide a significant source of gravitational radiation. The 
luminosity can be estimated from the quadrupole formula 

Lqw 

where Lmax = (2G)_1c5 ~ 1059 ergs s'1 is the maximum 
possible luminosity, the relativity parameter is GM/Rc2 = 
0.2Mo22/Vci31/3, which is nearly unity when a trapped surface 
forms at pcb, and the quadrupole ratio is 

Q/MR2 - cq2R3/GM - (Jc/GM2)2(GM/Rc2) 

so long as this is small. The fractional energy release over 
a free-fall time is then 

e(R) - Lew %(Mc2)-1 - (Jc/GM2)4(GM/Rc2)11/2 . 

One expects rotational effects to stop (or at least slow) the 
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collapse before a trapped surface forms provided J > GM2/c. 
This will happen at R ~ J2/GM3, when the quadrupole 
ratio becomes of order unity. Thereafter collapse can only 
proceed on the time scale with which angular momentum 
is lost. If the loss is entirely due to gravitational wave 
emission, we have e(R) ~ GM/Rc2 ; thus e can rise to a 
large value before a black hole forms. In the extreme case, 
the VMO may fission into a binary system, in which case 
the final burst will be generated when the components 
coalesce at R ^ 6GM/c2 ; this corresponds to an efficiency 
parameter e ^ 0.04 (Clark and Eardley 1977). This contrasts 
with a peak efficiency (Jc/GM 2 )4 for collapses with J < GM2/c, 
which occur on a free-fall time scale. However, if VMOs have 
an initial angular momentum characteristic of O stars, then 
Jc/GM2 ~ 200 Mq/M0. Thus, if little angular momentum 
is lost during evolution, collapsing VMOs could be quite 
efficient generators of gravitational radiation. 

The neutrino and gravitational wave pulses are the only 
signatures of core collapse, unless rotation can result in 
matter ejection either in the nuclear burning phase or later 
in the hole formation event itself. If metals are ejected for 
M0 > M0c, then a strong constraint can be placed upon 
the density of pregalactic black holes (CBA). 

h) Explosion and Burn Fractions 

If M0 < M0c, the imploding core reverses itself before 
significant alpha-quenching occurs. In Figure 6, l^’s for 
various initial entropies below the critical one are plotted. 
As an example, let us follow the s, = 12 case: turnaround 
is predicted at pc~7 x 106 g cm-3, when about 60% of 
the core has burned. If we assume no further burning occurs, 
the effective potential can be calculated for a sequence of 
outflowing polytropes with the burn fractions frozen in at the 
turnaround value. For the outgoing sequences, Ve is steeply 
falling as the central density drops : the core is predicted to 
continue exploding, driven by the nuclear energy liberated 
upon infall. If the central regions have undergone some 
alpha-quenching as in the Sf = 12 case, then, as the core 
expands, a-particles are restructured into iron peak nuclei 
which liberates further nuclear potential energy to aid in the 
lowering of Ve. Therefore, once global outward flow begins 
for masses just smaller than M0c, it will continue: the mass 
boundary is sharply defined. Similar effective potentials allow 
us to predict explosion for st >8. 

The Si ^ 8 adiabat just grazes the pair instability boundary. 
The departures from equilibrium are slight as is evidenced 
by the st = 8 effective potential in Figure 6. A small amount 
of oxygen burning is enough to turn the core around. So 
little oxygen is consumed that the outgoing effective potential 
can turn positive, which would allow for relaxation oscillations 
of the sort seen by Barkat, Rakavy, and Sack (1967). To 
treat such slight departures from hydrostatic equilibrium, 
detailed stellar models are required. Our n = 3 polytropes 
can only give a suggestion of the complex behavior expected 
near the lower VMO boundary, M0m ^ 30 M0. 

We approximate the fractions of oxygen and silicon burned 
by their values when the effective potential reaches zero at 
maximum contraction. These are plotted in Figure 3 of Bond, 
Arnett, and Carr (1982). The oxygen-burning fraction for 
VMOs is crudely fitted by 

fB(>0) - fo Mo/\00 MQ)b ; /0 ~ 0.7, b ~ 1.8 . (60) 

Our results agree reasonably well with those of Barkat, 
Rakavy, and Sack (1967) and Fraley (1968), and with the 
58 Mq result of Arnett (1973). In the latter case, the silicon 
and sulfur burning products are less abundant than we 
would predict. As we have already noted, this is due to 
the structural changes which occur in the center due to 
oxygen burning. At the high M0 end, our results are almost 
a factor of 2 higher than the detailed nucleosynthetic and 
evolutionary calculations of Arnett (1973) and Woosley and 
Weaver (1982); this is compensated by our higher central 
densities as far as the question of global evolution is concerned. 

The explosive energy generated by burning oxygen into 
silicon is the difference between the initial and final nuclear 
potential energies, 

(AF)„ = 0.9 x 1053/ßMo/100 M0 ergs . (61) 

To get the asymptotic kinetic energy of the explosion, the 
binding energy of the core at the onset of instability must 
be subtracted from this. Since virial equilibrium holds at that 
point, Uy0 -b 2Ug0 + Dgo = 0. The binding energy (not includ- 
ing the nuclear potential) is then Uy0 + Ug0 + QG0 = 
— Ug0. If we assume sy is approximately spatially independent 
initially, which is not unreasonable, then 

Ug0 = 0.5((7o + ly'iUyo + 2Ug0) = -0.5iW(<70 + 1), 

where (t0 = sy/4YT is approximately related to the oxygen core 
mass through equation (39). Since the gravitational potential 
of the core is 

Qgo ^ - 1.3 x 1053(Mo/100Mo)5/3(pc0/105 g cm-3)1/3 ergs , 

(62) 

we obtain the following approximate expression for the net 
explosive energy : 

Kf = (AV)n-Ug0 

^ 6.3 x 1052[(Mo/100Mo)2-8 - (Mo/100Mg)5/3 

x (1 + Ö-q)“1] ergs . (63) 

Over the explosion mass range 30 TOO M0, öo varies from 
1.7 up to 3.5, and pc0 from 3 x 105 down to 0.4 x 105 g cm-3. 
Equation (63) requires M0 > 40 M0 in order to avoid negative 
values, but is useful as a first order estimate in the higher 
mass range. For Arnett’s (1973) 58 M0 oxygen core, we 
predict Kf = 6 x 1051 ergs; he gets 4.5 x 1051 ergs. For his 
93 Mq core, our Ry = 3.8 x 1052 ergs agrees with the value 
he got. Woosley and Weaver (1982) have followed an explosion 
of a 200 M0 Population III star whose oxygen core mass is 
~102 M0, and find Kf = 2.6 x 1052 ergs. We would predict 
our maximum possible energy output, Ry = 4.8 x 1052 ergs 
for this explosion. We are off because our burn fraction is 
greater than their value. 

IV. DISCUSSION 

The simple models of the various evolutionary stages given 
here, in conjunction with the detailed numerical calculations 
by Arnett (1973) and more recently by Woosley and Weaver 
(1982), Ober, El Eid, and Fricke (1982, 1983), and El Eid, 
Fricke, and Ober (1983), present a reasonably complete 
picture of nonrotating VMO evolution. The structure of 
VMOs can be predicted via the point source model of 
§ lie. To do so requires the CNO abundance, which is 
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fixed for Population I and II and generated for Population 
III. The estimate XCN ~ 10~9 of § lib for metal-free stars 
with helium can be refined by a simple integration of the 
ordinary differential equation (B6) along with equation (B2). 
For pure hydrogen stars, the pp reactions must be added to 
generate the helium so it can in turn produce the CNO 
catalyst by the 3a reaction. Since XCN ~ Xa

0-8 in equation (14), 
lowering Xa from the given 0.25 of primordial nucleosynthesis 
to the generated value of a pure hydrogen star will lower 
XCN, but not by much more than an order of magnitude. 
Pure hydrogen stars are, accordingly, only slightly hotter and 
smaller than pure hydrogen-helium stars, and both are 
substantially hotter and smaller than their Population I and II 
counterparts of the same mass. They are all equally bright. 

A critical mass loss rate has been identified (equation [25]) 
above which the star remains completely convective and 
below which the convective core shrinks at a rate which 
ensures constant luminosity (equation [20]), leaving a helium 
core of mass Ma = M¿/(2 — Xai). The helium loss in winds 
can then be analytically determined (equations [24]). In 
CBA and Bond, Carr, and Arnett (1983), we consider the 
conditions under which all of the primordial helium could be 
generated by an early population of VMOs. A catastrophic 
mass loss mechanism, driven by a super-Eddington luminosity 
generated in a hydrogen-burning shell, was identified. Explora- 
tion of the mass range over which this phenomenon occurs 
and the sensitivity of the outcome to the stellar population 
and the choice of the time-dependent convection criterion 
remains to be done. Will we find, for example, that a large 
fraction of heavy elements, especially nitrogen, will be lost 
along with the envelope in Population III VMOs (Woosley 
and Weaver 1982)? Envelope dynamics and the light curve, 
both of which will be sensitive to prior mass loss, need to be 
computed. The old issue of how pulsations influence mass 
loss, both in the hydrogen-burning phase and in the helium 
core phase if the envelope is largely stripped off, is still 
unresolved. 

The fate of nonrotating VMOs is reasonably well established. 
We obtain M0c ~ 100 M0 within about a 10 M0 uncertainty. 
Ober, El Eid, and Fricke (1983) find that their 90 M0 O core 
explodes (their stellar mass at this point is 112 M0 after 
mass loss), but the next one in their sequence, ~110 M0, 
does not. Woosley and Weaver (1982) have a 90 M0 core 
which explodes, and a 105 M0 core which just explodes. 
Identification of M0 in the latter case is difficult, since 
helium burning during the dynamical phase generated some 
extra carbon above what would normally be identified with 
the O core. Arnett’s (1973) M0 = 93 M0 (^« = 100 M0) 
core explodes. We emphasize that our semianalytic result, 
first reported in Bond, Arnett, and Carr (1982), was obtained 
before we knew of the Ober et al and Woosley and Weaver 
results. 

Rotation drives M0c up. Unfortunately, we do not know 
how much angular momentum loss to expect. Typical 
specific angular momenta for main-sequence O stars result in 
triaxial instability prior to black hole formation, and could 
lead to complications in the simple binary collapse/explode 
picture of nonrotating evolution in the nuclear phase. 
O stars do apparently lose a substantial amount of angular 
momentum in their main-sequence phase, if the distribution 
of pulsar rotation periods can be used as a guide. Slow 
rotation leads to a low gravitational wave emission, but the 
efficiency could be large with a reasonable set of VMO core 

parameters. Waves from VMOs collapsing early in the 
universe would have redshifted to yield a small energy 
density now. However, by analogy with O stars, VMOs 
and hence their holes might often form in close binaries 
which could generate a large gravitational wave signal due 
to coalescences long after formation (Bond and Carr 1983). 
The enormous neutrino pulse expected at black hole birth 
would be currently observable in Davis’s detector only for 
collapses within our own Galaxy. 

Cosmological consequences of VMOs rely upon their black 
hole formation, their helium and perhaps nitrogen emission, 
and the large oxygen and calcium group abundances relative 
to iron generated by exploding VMOs. In addition, their 
luminous output during their nuclear and accreting hole 
phases, and the kinetic energy liberation via the pair 
supernova or super-Eddington phenomenon, can have a large 
impact upon the pregalactic environment (CBA). VMOs in 
dense star clusters could generate black holes to power 
active galactic nuclei. Accretion energy would presumably 
dominate the earlier nuclear output by a large margin. 

There is some evidence that VMOs exist in less exotic 
sites than these, however. For example, rj Car could be a 
VMO. It underwent an outburst in the optical in 1845. 
Infrared emission, due to dust reradiation in its mass loss 
atmosphere, now accounts for 95% of its total luminosity, 
which is nearly that at outburst and corresponds to the 
Eddington luminosity of a 220 M0 star if its distance is 
2.8 kpc (Walborn 1973; Sutton, Becklin, and Neugebauer 
1974). Andriesse, Donn, and Viotti (1978) infer the enormous 
mass loss rate of 0.08 M0 yr "1 since 1845. Davidson, Walborn, 
and Gull (1982) find that it is nitrogen-rich, suggestive of 
CNO processing: rj Car is unlikely to be a protostar. 
Zwicky classified rj Car as a Type V supernova. The only 
other example of Type V is SN 1961 in NGC 1058. Branch 
and Greenstein (1971) find that the ejected material is helium 
rich with metal abundances consistent with solar. The 
presupernova star was estimated to have a luminosity which 
would be Eddington for a 500 M0 object (Chevalier 1981), 
at least from 1937 until 1961. It is classed as a slow 
supernova, with line widths only ~2000 km s_1. The super- 
Eddington envelope ejection of § He would give the observed 
abundance characteristics. More study is required to determine 
whether the velocity and light curve characteristics can be 
reproduced. 

Pair supernovae could be much brighter than ordinary 
supernovae if they retain most of their envelope, though 
if they are substantially stripped, as Wolf-Ray et stars 
apparently are, they may not be very luminous optically 
(Woosley and Weaver 1982). We may look forward to rare 
events such as pair and super-Eddington supernovae showing 
up in supernova searches. The influence of the ~ 1052 ergs 
of shock energy on the interstellar medium will presumably 
mimic an explosion of ~ 10 normal supernovae whose 
shocks have summed together. The Heiles (1979) supershells 
have ~ 1053 ergs; it is tempting to suggest that a few VMO 
explosions could aid in getting these enormous energies. 

Hoyle, Solomon, and Woolf (1973) argue that the wind 
of a VMO will layer itself like an electron scattering 
atmosphere, falling off in density as radius squared. At a 
mass loss rate ~3 x 10"5 yr“1 all ionizing UV photons 
could be soaked up; the mass loss atmosphere would thus 
contain the entire H n region. At even higher rates, 
~6xl0"4 Mq yr“1, grain condensation in the outer 
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part of the atmosphere will result in a compact IR object 
similar to rj Car. In addition, VMOs may have difficulty 
breaking out of their protostellar cocoons in their short 
nuclear lifetimes. However, the most luminous galactic IR 
sources are apparently not in the VMO range (Wynn- 
Williams 1982). 

The central source, R136a, of the giant H n region 
30 Doradus in the LMC is a candidate for a VMO of 
~2000 Mq (Feitzinger et al. 1980; Cassinelli, Mathis, and 
Savage 1981; Meaburn et al. 1982). The properties of a 
Population I VMO of this mass are listed in Table 1. 
On the other hand, the central region could represent a 
young globular cluster core in which many O stars and 
Wolf-Rayet stars reside (Melnick 1983). Massey and Hutchings 
(1983) find that many other giant H n regions have R136a 

type objects, suggesting the phenomenon may be widespread. 
Whatever the resolution to the R136a puzzle is, it will be of 
interest to VMO research, for Larson (1982) has found that 
the maximum star mass in a star-forming region rises with 
the cloud mass. It has already been established that there 
are some ~ 100 M0 stars in the LMC. 

We thank Willy Fowler, Lee Lindblom, Wolfgang Ober, 
Bob Wagoner, and Stan Woosley for useful discussions. 
In particular, Stan Woosley often emphasized the many ways 
rotation could transform simplicity into complexity. This 
research was supported by grants NSF AST-80-22876 at 
Chicago, NSF AST 79-23243 at Berkeley, and NSF PHY 81- 
19387 at Stanford, and by the SERC at Cambridge. 

APPENDIX A 

CENTRAL TEMPERATURE DURING HYDROGEN BURNING 

Once the CNO abundance has been generated, the specific nuclear emissivity due to the CNO cycle, qCN, is determined 
by the rate-limiting step 14N(p, y)lsO and is given by 

Qcn = P^p^nE(T) , 

E(T)= Q(1 — v)/<cri;)miV _1/14 

æ 10~2T-2/3 exp [67.3(1 — T-1/3)] ergs g-1 s_1. 

E(T) is related to the reaction rate (or), the energy release in the CNO cycle, Q = 26.73 MeV, the fraction of energy 
carried off by neutrinos, v = 0.06, and the screening factor /, which is unity in this regime of extremely weak screening. 
If CNO nuclei have their equilibrium abundances, then the 14N abundance is approximately given by XN = Xcno. 
It is instructive to make a power law fit to £(T) in the neighborhood of the central temperature Tc: 

qCN*0.04SYT-
1XpXCNE(Tc)Tc

3<T-1(T/Tc)'’-, 

vP(Tc) = 22.42 1/3 +1- 

ranges from 18 for Population I VMOs down to 12 for Population III VMOs. This dependence is steep enough to ensure 
that energy transport from the central regions must take place convectively. The mean energy generation rate is related 
to its central value by 

<4)/^ = j {Sy/Sycf^ 1)(p/pcy
pl3dm/M . 

Since most of the generation occurs in the central regions, we can follow Fowler and Hoyle (1964) and use the result 
for polytropes of index n that 

p/pc ~ exp ( — nÇ2/6) (Al) 
near the center. For an n = 3 polytrope, £ = 6.9r R and dm/M = (/;7>l.)ç

2c/c 2.()1824. As long as vp
2/(72syc) is small, and the 

integrand is highly peaked in the center, so we can extend the range of integration from 0 to oo, we obtain 

<4>/4r = 7r1/2[4(2.01824)]~1[l + (vp - 3)/6(l + e)]“3/2 , 
e=(2syC/YN + l)-1. (A2) 

The correction term e arises from the variation in sy expressed by equation (16). It is small for large-mass stars, and 
results in only a slight deviation from the expression given by Fowler and Hoyle (1964) for n = 3 polytropes. If we now 
use equation (9) for <g> = L/M, we obtain an expression for E(TC)TC

3 in terms of sy, which reduces to the transcendental 
equation: 

Tc = 2.67 keV (1 - 0.021 In A - 0.021 ln YNc“
1 + 0.053 In Tc)~

3 ; 

A = s7c[l + (vp - 3)(1 + e)/6]3'2[ypc Yec(l + a'1)]-1 . (A3) 
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An approximate expression for T follows by exploiting the smallness of the In .1 term, and using 1 + r In A = for small e: 

Tc = (2.67)M3l*(l + 0.021 In VN)-3'’ keV, 

/c = 0.021/(1 +0.021 In VN), 

p= (1+0.021 In XN)/(1.159 +0.021 In VN). (A4) 

A simple expression follows if the In A\ term is also small: 

Tc = 2.33(T/XN)1/18'4keV , (A5a) 

which is quite adequate for Population I and II abundances (low by a few percent), but gives a temperature too low by 25 % 
for the Population III value, VN = 10-9. However, if we treat In (VN/10-9) as a small term, we obtain the Population III 
temperature relation 

Tc = 8.2To'O871(2rN/10-9)-(O'O698 + ° 0025 ln'4)keV . (A5b) 

We have inserted typical zero-age main sequence values for the abundances to obtain equations (11a) and (lib). The rise 
in temperature as Yp and Ye drop in the center is predicted by the A dependence. 

APPENDIX B 

THE CNO ABUNDANCE IN POPULATION III STARS 

In order to calculate the CNO abundance generated in Population III stars, we need to evaluate the energy equation, 

d E L ... . .. 
7tM + M~<qM + qcN> 

which gives the central temperature evolution, in conjunction with 

d /v x _ <Æa>7% 
dt 03« 

which gives the production rate of 12C nuclei; we can assume 12C is immediately processed into 14N by the CNO 
reactions. Here, ß3ot = 606 keV is the energy liberated per baryon in He burning, and 

(Bl) 

(B2) 

Y 3 T3 

<i- = 5x1011 #7 

Y 3 

= 2.2 x 107 " 

exp 

U-V \20keV 

380.2\ 
ergs g 1 s 1 

ergs g 1 s 1 

The power of T is more generally 

_(d\nq3A _ 380. 
Va \ 3 ln T )s7 

2 keV 
+ 3 . 

(B3a) 

(B3b) 

(B3c) 

The average of the 3a energy generation can be related to its central value in the same way as for CNO burning 
(equation [A2]). The energy is evaluated by assuming that the virial theorem holds: 

E/M=-3YT<T}/(2mN)=-3YTFTTc/(2mN). (B4) 

The form factor for the mean temperature can be obtained by using the Gaussian approximation, equation (Al): 

Ft = 
j(<TATc)

1/3(p/Pc)4/3m 
I (p/pX2dí \4 + e 

3/2 
: 0.65 . (B5) 

The correction factor e = (8a +1) 1 is neglected in the last step. 
Equations (Bl) and (B2) can be combined to yield an expression for Tc in terms of the independent variable XCN 

which is a monotonically increasing function of time: 

3 Ft dTc _ 1 — M(q3a)/L - M(qCN)/L 
IQdadXç^ M(q3ay/L 

(B6) 

Since <4cN)0C^rcN5 this equation cannot be evaluated analytically. In the initial phases of evolution, the temperature rises 
due to Kelvin-Helmholtz contraction. The 3a reactions only slightly modify the evolution. The curve 

(B7) 
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describes this behavior. It is an approximate solution to equation (B6) with the CNO contribution neglected. Another 
limiting case occurs along the line in 7^-XCN space defined by thermal equilibrium, when nuclear energy generation can 
support the star : 

*cNeq(Tc) = (1 - Miq^/L^MUq^yX^-^/L)-1 . (B8) 

The right-hand side is a function of Tc only. When XCN is negligible, equation (B8) reduces to the equilibrium temperature 
for helium burning, 

9.641 v* + 3)11 - 0.0254 ln L - 3)3(v, + 3) \3/2 
YeX*{\+c) 

keV (B9) 

This expression is a relatively accurate solution to the transcendental equation for 7„,z. If we use va = 22, we have 

^183fe) (r^r) 
(BIO) 

For Xa = 1, the coefficient is 18.3 keV. This is the expression used in equation (30) for the ignition temperature of helium. 
If Aa = 0.24, the coefficient is 22.6 keV. This is substantially above the temperatures characteristic of equilibrium CNO 
burning for XCN ~ lO-9, and suggests ^ L/M. When we ignore this contribution, equation (B8) reduces to the Tc-XCN 
relations, equations (A5) and (11). 

The actual evolution will follow equation (B7) initially, deviating from it as XCN rises, and finally will match onto the 
curve given by equation (B8). Thus, an approximation to the true trajectory is to follow the contraction curve until it 
intersects the thermal equilibrium curve. The intersection point satisfies 

M 
XcN = -j~ <43a(7¡q,p(^CN))> 

3Ft Teq,p(XCN) 

2(va + 1) Q3 
(BU) 

We have used the smallness of the helium contribution to get this. Using equation (A5) for Tcq p(XCN), we finally obtain 
equation (14). 

Once the star has settled upon the equilibrium Tc-XCN line, there is slow evolution following equation (B2). We now 
expand the 3a generation rate about 15 keV since this is more characteristic of equilibrium hydrogen burning temperatures 
than 20 keV. After time i, the N abundance is 

XcnW * *cn(0){1 + (i/104 yr)(j2'94(l + a)-2-47^^)/^-9]3-24}0-31 . 

The abundance does not take very long to exceed 10 9 

(B12) 

APPENDIX C 

THE POLYTROPIC MASS CORRECTION FACTOR 

We can understand the form and magnitude of the function Fm(<j) by explicitly taking into account deviations of the 
photon entropy from its central value. The polytropic mass is obtained from the virial equation: 3Pv = (3/2)GM2/R. 
Two corrections enter due to deviations: one is the modification of the gravitational potential which we ignore; the other is 
the correction to Pv, 

F _ Isy4,3(1 +g~1)(p/pc)
1/3dm/M 

P .sic
4/3(l + (T^' jllp/PcY^dm/M ' 

Using the approximation equation (Al) and the relation FM ~ Fp
312, we obtain 

(l+a- ‘[[l + (1 + Su)-^{l + [4(1 + Sa)]-1}-1]3'2)3'2 

m[(T) [1 + (1 + 8(t)_1]3/4(1 + cr_1)3/2 

a remarkably accurate fit to Henrich’s numerical result. A very accurate approximation to the M-erc relation is 

M{oc) = 11.6Yt
2gc

1I2((tc + H)3/2 . (Cl) 

Equation (15) inverts this expression for M > 100 M0. 
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Note added in proof.—Consider instead the assumption that all regions which achieve a temperature in excess of 5 MeV have 
the neutrinos strongly trapped. In that case, the maximum possible energy which could be radiated is the thermal energy content 
per baryon at T = 5 MeV: (3ser/4 + 3Yr/2) 5 MeV. In the optimal case, this energy would be radiated before the nuclear phase 
transitions have lowered ser much below s. Relating ser to the core mass leads to the bound 

Ev < 1055(Mo/100 M0)3/2 ergs , (58b) 

which can be less than the estimate of equation (58a). 
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