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ABSTRACT 

The field equations for a viscous magnetohydrodynamic fluid satisfying an appropriate set of thermo- 
dynamic relations are investigated. It is shown that zero-curvature Friedmann-Robertson-Walker models can 
be exact solutions of this system of equations. Two types of solution are discussed: one in which the spacelike 
component of the tilting velocity vector is axially directed and the other in which the spacelike component is 
radially directed. The solutions presented satisfy all the necessary conditions for physical acceptability. 
Subject headings: cosmology — hydromagnetics — relativity 

I. INTRODUCTION 

In general relativity theory cosmological models, stellar 
models, and models of other astrophysical matter distributions 
are usually constructed under the assumption that the matter 
content is an idealized perfect fluid. While this assumption may 
be a good approximation to the actual matter content of the 
universe at the present epoch, effects such as viscosity, heat 
conduction, and magnetic fields may not be negligible at earlier 
epochs of the universe. Such effects should also be considered 
in any realistic stellar model. Accordingly, we shall investigate 
the problem of obtaining exact solutions to field equations for 
a viscous magnetohydrodynamic (VMHD) fluid. 

The field equations for a VMHD fluid are 

+ (p + p - <?©)«„ mv + (p - 

- 2>/<7/JV + , (1.1) 

where p is the density, p is the thermodynamic pressure, © is 
the expansion of the fluid velocity congruence uß, aßV is the 
shear tensor, is the heat conduction vector, £ is the bulk 
viscosity coefficient, rj is the shear viscosity coefficient, and EßV 
is the electromagnetic stress-energy tensor given by 

, (1.2) 

where FßV is the Maxwell tensor. In order to be a physically 
acceptable VMHD model, a solution of the field equations (1.1) 
must satisfy a required energy condition, such as the dominant 
energy condition (Hawking and Ellis 1973), the physical quan- 
tities occurring in the equations (1.1) must behave in a satisfac- 
tory manner, i.e., p > 0, p > 0, rj >0, £ > 0, and an 
appropriate set of thermodynamic relations must be satisfied. 
Furthermore, the Maxwell equations 

F[hv,<t] — 0 , F^;v = J\ (1.3) 

must be satisfied and the 4-current, calculated from these 
equations must be consistent with the generalized Ohm’s law 
expression (Dunn and Tupper 1980), namely 

(J* - £0(1 + i2£2) = ÄEß + X^E^B» + , (1.4) 

in which Jß is expressed as the sum of a convection current and 
a conduction current. In this expression and Sß are, 
respectively, the electric field, the magnetic field, and the 
Poynting vector as measured by a comoving observer and are 
defined by 

Eß = Fuv , Bß = , S, = . 

The quantities 6, A, and AC are, respectively, the charge density, 
the conductivity, and the transverse conductivity, each of 
which must be nonnegative. 

An appropriate set of thermodynamic relations to be satis- 
fied by the VMHD fluid are those proposed by Eckart (1940), 
namely : 

Baryon conservation equation: 

A^ = 0 (1.5) 

where = nu^ is the particle flux and n is the particle density ; 

Gibbs’s relation: 

Td(S/n) = d(p/n) + pd(l/n) , (1.6) 

where T is the temperature and S is the entropy density; 

Entropy production : 

> 0 , (1.7) 

where is the entropy flux defined by 

S" = - JV" + T-y ; (1.8) 
n 

Temperature gradient law: 

q*1 = —Kh^iT y + Tav) , k > 0 , (1.9) 

where = gßV + uV is the projection tensor, av = wv;aMa is 
the acceleration vector, and k is the thermal conductivity. Note 
that the condition (1.7) is automatically satisfied if the condi- 
tion (1.9) holds, so we need consider only the latter condition. 
The relations (1.8) and (1.9) are not the most general expres- 
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IMPERFECT FLUID COSMOLOGIES 27 

sions for Sß and (see, for example, Israel and Stewart 1979), 
but are sufficient for the purposes of this article. 

In seeking exact solutions of the field equations (1.1) we shall 
make use of the fact that the stress-energy tensors of some quite 
different matter distributions may have precisely the same 
components (Tupper 1981, 1983a, b). In particular, the stress- 
energy tensor of a perfect fluid, namely 

^v = (p + pKfv + râMv. (i-io) 
may be identical to the stress-energy tensor, MßV, of a VMHD 
fluid. This equality between H^v and MßV implies that the 
spacetime geometry corresponding to a known exact solution 
of the field equations for a perfect fluid is also the spacetime 
geometry corresponding to an exact solution of the field equa- 
tions (1.1). Furthermore, the examples given in one of the 
above-mentioned articles (Tupper 1983h) show that there may 
be an infinite class of exact VMHD solutions sharing the same 
spacetime geometry, since the components of the 4-velocity uß 

are not always uniquely determined by the field equations. 
Note that different observers moving relative to each other 
will, in general, give different interpretations to the material 
content of the universe. For example, a perfect fluid solution 
with respect to a comoving observer will become an imperfect 
fluid solution with respect to a “tilting” observer. However, 
the coordinate transformation from the comoving observer to 
the tilting observer will result in a change in the form of the 
metric, and the difference in the physical interpretations is due 
entirely to the different coordinate systems of the two obser- 
vers. It should be clearly understood that this is not the situ- 
ation that we are discussing here. In our work the 
interpretation of the material content as a VMHD fluid is 
given not by another observer but by the same set of hyper- 
surface orthogonal preferred observers who may also interpret 
the material content as a perfect fluid, so that the spacetime 
metric is expressed in the same coordinate form for the VMHD 
interpretation as for the perfect fluid interpretation. 

Probably the most simple of the known perfect fluid models 
are the zero-curvature Friedmann-Robertson-Walker (FRW) 
models. We have shown (Coley and Tupper 1983a) that these 
models can be exact solutions of the field equations (1.1). The 
resulting VMHD solution, which we term a radial solution 
since it has a radially directed spacelike velocity component, 
satisfies all necessary physical conditions, but, apart from the 
relation (1.9), the thermodynamic conditions were not con- 
sidered. The physical quantities in this solution depend on the 
radial coordinate r as well as on t. We have since shown (Coley 
and Tupper 1983h) that the Einstein-de Sitter universe can be 
the spacetime geometry of a viscous fluid solution which 
satisfies all the thermodynamic relations (1.5)-(1.9) as well as 
the other necessary physical conditions, and in which all quan- 
tities depend on t alone. We term this solution an axial solution 
since the spacelike velocity component is in the axial z- 
direction of cylindrical polar coordinates. 

In this article we shall generalize the axial solution by con- 
sidering a general zero-curvature FRW metric and by includ- 
ing a magnetic field. We shall also find radial solutions which 
satisfy all the thermodynamic relations (1.5H1.9). All the solu- 
tions presented here are exact solutions of the field equations 
(1.1) and are physically acceptable in the sense that all the 
necessary physical requirements are satisfied. We believe that 
these are the first exact VMHD solutions to be found which 
satisfy all of the conditions ( 1.2)-( 1.9). 

II. THE AXIAL SOLUTION 

The zero-curvature FRW model satisfying the perfect fluid 
field equations with equation of state p = yp has, in cylindrical 
polar coordinates, a metric of the form 

ds2 — —dt2 + t2a(dr2 + r2d62 + dz2) , (2.1) 

where 

a = Ki + y)~1 > (2.2) 

so that, since 0 < y < 1, the parameter a satisfies f > a > ^. In 
order to show that the metric (2.1) satisfies the field equations 
(1.1), we choose a “tilting” velocity with spacelike component 
in the z-direction, i.e. 

aM = (-a,0,0,^), (2.3) 

where a2 — /?2 = 1, a > 1, and a, ß are assumed to be functions 
of t only. We also assume that the electromagnetic field con- 
sists of a magnetic field in the z-direction, i.e., the only nonzero 
component of the Maxwell tensor is F12. The assumption that 
the magnetic field vector, Bß, depends only on f, together with 
equations (1.3) and (1.4), leads to = 0 and 

F.i^Aor, (2.4) 

where A0 is a constant. Since q^u^ = 0, we also assume that qß 
is of the form 

4, = ß(/?, 0, 0, -af), (2.5) 

where Q2 = q^q*1. For simplicity we shall equate the bulk vis- 
cosity to zero. 

With these assumptions, and using the metric (2.1), the non- 
trivial components of the field equations are 

3a2r 2 = ^A2 r4a + pa2 + pß2 - ^rjß2a - 2Qaß , 

a(2 - 3a)í"2 = -Í4¿r4a + pß2 

+ paz îrja2à 2Qaß, (2.6) 

a(2 — 3a)t 2 = ^A% t 4a + p + fpà , 

0 = p + p rja Q(«2 + ß2) 
aß 

where the dot denotes differentiation with respect to t. Solving 
these equations yields 

p = a(2ß2 + 3a)t~2 — jAlt~*a , (2.7) 

p = ±a{2ß2 + 6 - 9a)r 2 - ^A2 t~4a , (2.8) 

Q = 2aaßt~2 , (2.9) 

rjà = —aß2t~2 — \Alt~4a . (2.10) 

Note that the last equation implies that à < 0. 
Before proceeding, we shall expand on some of the com- 

ments made in § I. The only observers considered in this article 
are not observers moving with the viscous fluid, but are the 
family of observers whose world lines are orthogonal to the 
t = const, hypersurfaces of the metric (2.1). These observers can 
interpret the gravitational field, i.e., the metric (2.1), as being 
due to any member of a one-parameter family of energy- 
momentum tensors of the form (1.1) with matter 4-velocity 
given by equation (2.3), where the parameter is the function a. 
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28 COLEY AND TUPFER Vol. 280 

The standard perfect fluid solution is obtained by considering 
that member of the family of energy-momentum tensors which 
corresponds to a — 1 ; we are interested in the case a ^ 1. 

Integrating equation (1.5), we find that 

n — n0t~3aoc~1 , (2.11) 

where n0 is a constant. Equation (1.6) together with equations 
(2.7), (2.8), and (2.11) implies that T — T(t) and the temperature 
gradient law (1.9) reduces to the single scalar equation 

2a = /corner +T(tfr1 + ^“1)] . (2.12) 

In order to satisfy this condition we assume that T is of the 
form 

T = T0 + T1r
ma/ , (2.13) 

where T0 and Ti are positive constants and m and / numerical 
parameters with m > 0. Equation (2.12) then becomes 

Condition 2. a->oo as i->0. 

This condition implies that the fluid velocity becomes large as 
t —> 0, in keeping with the behavior of the other physical quan- 
tities as i—>0. Note that this condition is meaningful only 
when A0 = 0, but we shall assume that the resulting form for a 
applies even when A ^ 0. 

From equations (2.7) and (2.8), a consequence of condition 2 
is that p/p—as i->0. Thus the material content changes 
from an initial radiation state to a final perfect fluid state with 
P/p~*y as oo. Accordingly, we also impose the condition 
that as £—>0 the density and temperature are related by the 
Stefan-Boltzmann law, i.e., 

Conditions. T4p ~1—► constant as i—>0. 

From equations (2.7) and (2.13) this condition implies that 

t2 ~ 4ma4i ” 2 —* constant as i->0. (2.22) 

2a = koc 1t2T0(at 1 + ßß ^ 

+ - m)r1 + ßß-1 + /àa“1] (2.14) 

and the condition k >0 will be satisfied for all i if 

ar1 + ßß-1 >0 , (2.15) 

(a — m)£-1 +/1/U1 +/àa“1 > 0 . (2.16) 

We shall discard the obvious solution m = l = ^ since it implies 
that T4p -1 = constant always. 

When t = t0, equations (2.7) and (2.21) show that p — 
a(a2 + ß2)t0~

2 > 0, but p is not necessarily positive. The desir- 
able condition p > 0 when t — t0 imposes a further restriction 
which, from equations (2.8) and (2.21), is 

a2(t0) > 6a - 5/2 . (2.23) 
Since m > 0 and à < 0, the condition (2.16) will imply condi- 
tion (2.15) if / > 0. 

We now impose the requirement that the electromagnetic 
and viscous fluid parts of Mmv each, independently, satisfy the 
dominant energy condition (Hawking and Ellis 1973). It is 
easily seen that the electromagnetic part, does satisfy this 
condition; the field equations (2.6) show that the viscous fluid 
part will satisfy this condition if the following conditions hold : 

6a2r2-A2r4û>0, (2.17) 

2a(3a-l)r2-A¿r4ú>0, (2.18) 
2at~2 — Al t“4a > 0 , (2.19) 

and the allowable interval of values of the parameter a shows 
that the most stringent of these requirements is (2.18), i.e., 

i4a“2 > [2a(3a-l)]“1^ . (2.20) 

We now attempt to satisfy these conditions for a physically 
acceptable solution by choosing a specific functional form for a 
and /?, namely 

a = (1 + ht~b){\ + 2/ii“b)“1/2 , 
, w, (2.24) ß = hrb{\ + 2ht-h)-112, v 

where h and b are positive constant parameters. This choice 
ensures that à < 0 and conditions 1 and 2 are satisfied. Condi- 
tion 3, i.e., equation (2.22), will be satisfied if 

4m - 2 + b(2l - 1) = 0 ; (2.25) 

and, by picking out powers of we find that the conditions 
(2.15) and (2.16) are satisfied if 

a — b >0 , 2a — b >0 , (2.26) 

a — m — b > 0 , 3a — 3m — 2b > 0 , 
Assuming that the model is valid as f—► oo, the requirement 
(2.20) implies that a >j. Hence, the model starts at time t = t0, 
where t0 is given by 

io4û~2 = [2a(3«-l)]~M2, (2.21) 

2a — 2m — (/ + l)b > 0 . ‘ ' 

The first of the inequalities (2.27) is sufficient to ensure the 
second and also both of the inequalities (2.26). From equation 
(2.25) the third of the inequalities (2.27) yields 

and t0 will be small when the magnetic field is small. When the 
material content is a viscous fluid only, the initial time is 
t0 ~ 0. 

Since all the physical quantities in the solution, i.e., p, p, Q, rj, 
n, S, T, and tc, are functions of the velocity component a, it 
follows that to complete the solution we need to specify a 
subject to the conditions (2.15), (2.16) and à < 0, corresponding 
to the conditions k > 0, rç > 0. To simplify the choice of a we 
impose the following conditions which may be regarded as 
“ boundary conditions ” on a : 

Condition 1. a—> 1 as t-> oo . 

This condition implies that as i—> oo, the model approaches 
the standard perfect fluid solution. 

b < f(2a — 1), (2.28) 

which, since b > 0, implies that a> j, so that the only zero- 
curvature FRW models satisfying the conditions imposed here 
are those for which the standard perfect fluid model has equa- 
tion of state 0 < p/p < j, i.e., f > a > j, in keeping with the 
condition (2.20). 

There remains the condition (2.23) for p > 0 when t = i0, i.e., 

(1 + ht0-
b)2(l + 2ht0-

b)~1 >6a- 5/2 . 

Rewriting this in the form 

h2t0~2b + (7 - 12a)ht0-
b + ¿(7 - 12a) > 0 , 

we see that this is always satisfied, irrespective of h and A0, if 
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a < 7/12 (i.e., y > 1/7). However, if a > 7/12, the condition is 
satisfied if 

ht0~b > 6a — j + (36a2 — 36a + ^f)1/2 . (2.29) 

By combining this condition with equation (2.21) we obtain a 
relation between h and A0 which, if satisfied, ensures that p > 0 
at the initial time t0. In fact this relation can be adjusted to 
yield any desired value in the interval 0 < p/p < ^ for the ratio 
p/p at t = t0. 

The magnetic field vector, Bß, is of the form 

~ A0r
2a(ß, 0, 0, — octa) . (2.30) 

However, our set of preferred observers with comoving velo- 
city i/ = (1, 0, 0, 0) orthogonal to the spacelike hypersurfaces 
see a magnetic field of the form 

B^ a(0, 0, 0, 1) . (2.31) 

We have thus shown that the zero-curvature FRW model 
with metric (2.1) and ^ < a < | is an exact solution of the 
VMHD field equations (1.1) with an axially directed magnetic 
field, an axially directed velocity vector given by equations (2.3) 
and (2.24), density and pressure by equations (2.7) and (2.8), 
shear conductivity by equation (2.10), temperature by equation 
(2.13), and thermal conductivity by equation (2.15). The model 
starts at time t — t0 given by equation (2.21) and is a physically 
acceptable solution satisfying all energy conditions, thermo- 
dynamic conditions, and positivity requirements provided that 
the conditions (2.25), (2.27), (2.28), and (2.29) are satisfied. We 
shall show that these conditions can be satisfied by choosing a 
specific example of an FRW model. 

Consider the Einstein-de Sitter model for which a ~ f and 
y = 0. Equation (2.28) becomes b < f and we must satisfy equa- 
tion (2.25) and the first of the inequalities (2.27) which now 
reads m + h < f. These conditions can be satisfied, for 
example, by 

b = i, m = i, / = f. (2.32) 

With this choice for the values of the numerical parameters the 
various physical quantities are given by 

p = f(l + ht~1/6)2(l + 2hrll6yH~2 - %Alt~s/3 , (2.33) 

p = %h2r1/3(i a ihr116)-1 -±A2r813, (2.34) 

*7 == [4 + 3A2h-2r1/3(i + 2/ir1/6)](i + Ihr'^y^r1, 

(2.35) 

K = f[T0i(i + |/ir1/6)(i Ahr1'6)-^ A2hr1/6)-1/2 

+ ¿t; t2f3(2 a 8/ir1/6 A h2r1/3)(i + hr116)112 

X (1 + 2/ir1/6r7/4r1 , (2.36) 

from which we see that all quantities approach infinity as i—» 0 
and approach zero as oo. 

To ensure that p > 0 at i = i0, equation (2.29) leads to 

ht0~1/6>^l + V3), 

which, from equation (2.21), implies that 

h2 > 1.616 A0 . (2.37) 

However, in general, p is increasing when t — t0, reaches a 
maximum value, and then decreases forever. We can ensure 

that t0 coincides with the time of maximum p (or later) by 
choosing 

/i2> 2.187 T0, (2.38) 

in which case p is always decreasing from the initial time t0. Of 
course, when the magnetic field is absent, we have p > 0 and 
p < 0 for all t > 0 irrespective of the value of h. Note that when 
p has its maximum value, i.e., when h2 = 2.187 A0, the ratio 
p/p = 0.031, so that the presence of the magnetic field causes a 
considerable reduction in the initial value of p/p from the value 
^ at i — 0 when A0 ~ 0. 

Hence, there does exist one FRW model (in fact, there are 
many) which is an exact VMHD solution satisfying the 
required energy and thermodynamic conditions for a physi- 
cally acceptable solution. Note that the standard perfect fluid 
solution is a special case of the solution presented here corre- 
sponding to h — A0 = 0. 

Finally, we note that for a general a = oc(t) the velocity con- 
gruence uß has volume expansion and shear given by 

0 - a + 2aat~1 , (2.39) 

<r2 = iá2 (2.40) 

and the expansion components 0Z and Q1 along and perpen- 
dicular to the 2-direction, respectively, as measured by an 
observer moving with the VMHD fluid, are 

0z = à + aaU1, ®1 = aoU~1, (2.41) 

implying a directionally dependent Hubble constant. The cor- 
responding shear components are 

<r2 = foe, <r± = — . (2.42) 

The representative length /, defined by Z^/-1 = |0, is given 
by 

/ =- iaa1/3 ; (2.43) 
and the declaration parameter, q, is given by 

q = (2oc2t~2 — lOaáí-1 — 3aä — à2)(2ai-1 A à)~2 . (2.44) 

Some insight into the physical properties of our specific 
model (represented by eqs. [2.24] and [2.32]) can be obtained 
by investigating the behavior of these kinematical quantities. 
For example, if we fix h and A0 by assuming that 

h2 = 3A0, (2.45) 

so that the condition (2.38) is satisfied, we find that the ratio 
<70 ~1 is given by 

I—» 0.0251 as i->0, 

<70_1 j = 0.0163 when t ~ t0 > (2.46) 
I—>0 as i—► oo ; 

and the ratio of the directional expansion rates is given by 

1.143 as i^0, 

®±®z
-1 j ^ 1.068 when t= t0 , (2.47) 

1 —> 1 as i —► oo . 

The deceleration parameter is given by 

( ->0.696 as i—► 0 , 

q{ = 0.595 when t — t0 , (2.48) 

I —> 0.500 as t—► oo ; 
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and the density parameter, ^pH~2, where H = ^0 is the aver- 
aged Hubble constant, decreases monotonically from 0.544 at 
t = 0 and approaches 0.5 as i —» oo. 

III. THE RADIAL SOLUTION 

For simplicity, in this section we shall confine our attention 
to the case of a viscous fluid alone; i.e., we shall not include an 
electromagnetic field, and we shall consider only the Einstein- 
de Sitter model for which the form of the metric in spherical 
coordinates is 

ds2 = —dt2 + â^idr2 + r2d62 + r2 sin2 9d(j)2) . (3.1) 

At the cost of some algebraic complexity, we can generalize the 
work described in this section to other /c = 0 FRW models and 
also to include a magnetic field, as in the previous section. 

In this case we choose a “tilting” velocity with spacelike 
component in the radial direction, i.e., 

uß = ( — oc, ßt2/3, 0, 0) , (3.2) 

where oc2 — ß2 = l, and a and ß are assumed to be functions of 
t and r only. We choose to be of the form 

q, = Q(ß, -at2l\0,0) ; (3.3) 

and, again assuming that the bulk viscosity is zero, we find that 
the viscous fluid field equations have the following nontrivial 
components : 

ft“2 = poe2 + pß2 - fyxß2 - 2Qaß , 

0 = pß2 + pa2 — frçXa2 — 2Qaß , 

0 = (p + p) - IpX - Q(a2 + ß2Mirl , 

0 = p + ff/X , 
where 

X = öc + (ß' - ßr-^r213, 

(3.4) 

(3.5) 

and the dot and the prime denote partial differentiation with 
respect to t and r, respectively. Equations (3.4) lead to 

fort" p = ±ß2t 2 , Q =&ßt 2 , 

r¡X=-Wt-2 , 
(3.6) 

so that we must have Y < 0 in order that rj >0. 
The baryon conservation equation (1.5) becomes 

(ha + nà + 2nai_1) + t~2/3(n'ß + nß' + Inßr^1) = 0 . (3.7) 

We shall seek a solution of this equation by assuming that each 
of the bracketed quantities is zero, i.e., 

hoc + noc + Inal”1 = 0 , (3.8) 

n'ß + nß'+ 2ttßr_ 1 = 0 , (3.9) 

The solution of these two equations is 
a = [1 - H2(i)K2(r)]-1/2 , 

ß = H(t)K(r)ll - //2(t)K2(r)]-1/2 , 

n = n0K~l(r)li - i/2(t)X2(r)]1/2r-2r2 , 

(3.10) 

(3.11) 

where n0 is a constant and H(t) and K(r) are arbitrary functions 
of t and r, respectively. We shall specify these functions by 
choosing 

H(t) = constant x f , K(r) = constant x rfc , 

where b and c are constant parameters, so that equations (3.10) 
and (3.11) become 

a = (1 - h2t2cr2b)~1/2 , ß = htcrb(l - h2t2cr2by1/2 , (3.12) 

n =* n0t~2r~b~2oc~1 , (3.13) 

where 7i is an arbitrary constant parameter which may be posi- 
tive or negative but not zero. Note that, unlike the solution of 
§ II, this solution is valid only for certain values of the coordi- 
nates, namely the region for which 1 — h2t2ar2b > 0. 

By noting that the expressions (3.12) imply 

à = cocß2t~1 , ß = ca2ßi-1 , a' = bocß2r~1 , 

ß = ba2ßr~1 , 

we find that the Gibbs relation (1.6) becomes 

d(S/n) = ^no~1T~1at~1rb + 1{rß2(10ca2 + 2 — c)dt 

-h i[10ha4 + (8 - 7h)a2 - 2]i/r} , (3.14) 

and the integrability condition for this expression is 

{T~ V + 2aß2[10ca2 + 2 - 

= {T-1a[10ha4 + (8 - 7b)oc2 - 2]}>b + 1 . (3.15) 

In order to solve this equation for T we shall assume that T is 
of the form 

T = T0 t
mrnocs , (3.16) 

where m, n, and s are constants. Substituting this expression 
into equation (3.15) and simplifying, we obtain a polynomial 
equation in ß which must be satisfied at all points in the 
domain of validity of the solution. This leads to the following 
equations: 

Sen — Sbm — (2bc — b + 4c)s = —bc + 3b — 2c, (3.17) 

(2 + 9c)n — (8 4- \3b)m — 2c(b + 2)s 

= -2fcc + 6b-4c + 4, (3.18) 

(h + 2)m = 0 . (3.19) 

By introducing the simplifying notation x = htcrb, so that the 
domain of validity of the solution is x2 < 1, we find that equa- 
tions (3.3), (3.6), and (3.16) lead to the following expression for 
equation (1.8): 
/c{i-1/3rx2[(cs — m — f)x2 + (c + m + f)] 

+ (b + bs - n)x3 + nx} = fx2T0-
1i~m"4/3r1~na1"s, (3.20) 

and the condition k >0 becomes 

t~1/3rx2[{cs — m — f)x2 + (c + m + f)] 

+ (b bs — n)x3 + nx>0 . (3.21) 

From equations (3.5) and (3.6) the condition rj >0, i.e., X <0, 
takes the form 

x3 + cr1/3rx2+ (h-l)x<0. (3.22) 
In order to find solutions satisfying all the required physical 

conditions we need to find values of b, c, m, n, and s which 
satisfy equations (3.17), (3.18), and (3.19) and which are such 
that the conditions (3.21) and (3.22) are satisfied throughout 
the entire domain of validity x2 < 1. There are many such 
solutions, of which the following is a small selection. 
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Solution 1.—We choose 

b= - \ , c = i , (3.23) 

and equations (3.17)-(3.19) yield 

m = 0, rc=-¿, s = ^-. (3.24) 

In this case t~ 1/3r = hx~1, and equation (3.22) becomes 
x{xl + 3^ — 2) < 0 , 

which is satisfied everywhere in x2 < 1 if and only if x > 0 (i.e., 
ß > 0, h > 0), and 0 < h < 3. The condition (3.21) is found to 
be satisfied everywhere in x2 < 1 if and only if /i > 3. Hence all 
conditions are satisfied if and only if h = 3. Thus we have 
found the following solution which is valid in the spacetime 
region 9i2/3 <r2: 

a = (1 — 9t2/3r~2)~1,2 , 
(3.25) 

j5 = 3i1/3r-1(l-9i2/3r-2)-1/2, 

T = T0r-
1/6(1 - 9i2/3r-2)"11/12 , (3.26) 

* = - 9i2/3r-2r7/12 , (3.27) 

^7 = 2r1(l - 9i2/3r“2)~1/2 , (3.28) 

rc = rc0i“2r-1(l — 9i2/3r-2)1/2 , (3.29) 

with p, p, and Q given by equations (3.6) and (3.25). The model 
has no vorticity, but the expansion and shear are given by 

0 = 2r_1(l + 3i2/3r“2)(l - 9i2/3r-2)“1/2 , (3.30) 

a2 = 3t~2/3r~\l — 9i2/3r_2)_1 . (3.31) 

Note that © is always positive and all physical quantities are 
infinite on the bounding hypersurface 9t2/3 = r2 except for n, 
which is zero. Since ß > 0, the spacelike component of the 
4-velocity is in the outward radial direction. 

Solution 2.—For this solution we choose 

fc=l, c = , (3.32) 

so that, from equations (3.17)-(3.19), 

m = 0 , n = 12 , 5 = 8. (3.33) 

Now i- 1/3r = 6 - ^ so the condition (3.22) leads to 

x3(l-i/r1)^, 

and, since h and x have the same sign, we have that either 

h<0 or 0<h<^. 

However, the condition (3.21) is satisfied for all x2 < 1 if and 
only if 

h>^ 

These two conditions on h are satisfied if and only if 6 = ^, and 
the solution is then valid in the spacetime region 9t2/3 > r2, 
which is the complementary region to that of solution 1. The 
two solutions share a common singular bounding surface, and 
together they cover the entire spacetime region of the Einstein- 
de Sitter universe. Note that this value of h leads to = 0, so 
that the shear is zero everywhere and the shear viscosity coeffi- 
cient, rj, is infinite everywhere. This is analogous to the situ- 
ation in “ perfect ” magnetohydrodynamics (Lichnerowicz 

1967) in which the electric field is zero and the current nonzero, 
so that the conductivity is infinite. The solution in detail is 

a = (1 — ¿í~2/3r2)-1/2 , ß = ^t~1/3r(l — ^t~2,3r2)~1/2 , 
(3.34) 

T = ror
12(l — ir2/3r2)-4 , (3.35) 

K = fTo- 1i_5/3r_ 10(1 — ■gi~2/3r2)5/2(6 + fi-2/3r2)~1 , 

(3.36) 

rj infinite , (3.37) 

n = n0t~2r~3(l - ii"2/3r2)1/2 , (3.38) 

together with equations (3.6). This model has no vorticity or 
shear, but the expansion is given by 

© = 3i"1(l - ir2/3r2)-1/2 , (3.39) 

and is always positive. Note that k is zero on the singular 
boundary hypersurface (which is now an initial hypersurface) 
and not infinite, as in the previous solution. 

Solutions 1 and 2, which were based on the assumption that 
the factor i_1/3r in the conditions (3.21) and (3.22) is pro- 
portional to a power of x, are “critical solutions” in the sense 
that they satisfy the conditions only for a particular value of h. 
However, solutions exist for which h is arbitrary, an example of 
which is : 

Solution 3.—By choosing 

b= -2, c= - j, (3.40) 

we find that m is not defined by equation (3.19) and we have 
only the equations (3.17) and (3.18) to define m, n, and s. These 
can be satisfied by 

m = —f , n = 1f, 5 = — 1 . (3.41) 

which result in the conditions (3.21) and (3.22) being satisfied 
for all x2 < 1 provided that 6 > 0, so that again we have ß > 0. 
The complete solution is 

a = (1 — /i2t-4/9r-4)~1/2 , 

ß = ht~2/9r~2(l - h2r4l9r-4y1/2 , (3.42) 

T = T0 r
4/9r16/5(l - 62r4/9r~4)1/2 , (3.43) 

k = 1^/iT0"
1i_2r_21/5(l - h2r*l9r-4y2 , (3.44) 

r1 = Zht-14/9r-1(l-h2t-*/9r-*)1/2 

x (3 + f/zr5/9r-1 — /z2i_4/9r_4)_ 1 , (3.45) 

n = n0 r2{l - h2r*l9r-4)112 , (3.46) 

with p, p, and Q given by equations (3.6) and (3.42). The solu- 
tion is valid in the region t2/9r2 > h > 0, where h is arbitrary. 
The expansion and shear of the velocity congruence uß are 
given by 

0 = 2i_1(l - ^62r4/9r-4 - h3r1/3r-7) 

X (1 -/z2r 4/9r~4r3/2 , (3.47) 

cr2 = 2hb2t~26/9r-8(9h2t1/9r-3 - 2h - 27t5/9r)2 , (3.48) 

and the vorticity is zero. Note that 0 is negative on the initial 
bounding hypersurface /i2i-4/9r-4 = 1 and becomes positive 
as i—> oo. 
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Finally, we note that a radial solution exists in which a and ß 
are constants, namely : 

Solution 4.—In this case 

fr = c = 0 , (3.49) 
and equations (3.17H3.19) yield 

m = s = 0, n — 2 . (3.50) 

(In fact, s is arbitrary, but may be taken to be zero since a is a 
constant.) The conditions k > 0 and rj >0 become, respec- 
tively, 

fi-1/3rß2a“4 + 2ßoc~3 > 0 , 

— ßot~2 < 0 , 

and these conditions are satisfied everywhere by any ß > 0. 
The complete solution, which is valid at all points of the space- 
time, is 

a = constant, ß = constant , (3.51) 

T = T0r
2 , (3.52) 

K = 2T0~
1ct3ßt~4/3r~2(ßt~113 + 3ar“1)-1 , (3.53) 

r\ = ißr*l3r, (3.54) 

n — n0t~2r~2 , (3.55) 

and equations (3.6). The expansion and shear of the velocity 
congruence u* are given by 

0 = 2at-1 + 2ßr~lt~2'3 , (3.56) 

which is always positive, and 

er2 = ±ß2t~4'l3r~2 . (3.57) 

IV. CONCLUSION 

The solutions presented here are the first known solutions of 
the VMHD equations which also satisfy the thermodynamic 
relations (1.5) to (1.9). They are remarkable in that the space- 
time metrics corresponding to these solutions of a set of 
complex field equations are, in fact, the metrics of the simplest 
known perfect fluid solutions, namely the zero-curvature FRW 
models. As in previous articles (Coley and Tupper 1983a, b; 
Tupper 1983h), we see that the FRW models and, in particular, 
the Einstein-de Sitter model, each correspond to an infinite set 
of interpretations as VMHD fluid models with the standard 
perfect fluid interpretation being just the special case in which 
the fluid velocity is comoving with the preferred observer. 

We have taken a very conservative physical stance in seeking 
these solutions in that we have insisted that the temperature 
gradient law (1.9) should hold, that the viscous fluid and the 
electromagnetic field should, independently, satisfy the domin- 
ant energy condition, and that the pressure should be positive 
and decreasing. It may be possible to argue that some or all of 

the conditions could be relaxed; but, whatever conditions are 
substituted for these, there appears to be no reason for corre- 
sponding physically acceptable solutions not to exist. 

The axial solution of § II is the simplest generalization of the 
standard perfect fluid FRW models in that all physical quan- 
tities are functions of time only. These models have an axial 
velocity, an axial magnetic field, and a shear viscosity which 
combine in such a way that the total stress-energy, and thus the 
spacetime geometry, is homogeneous and isotropic. The solu- 
tions given by the expression (2.24) for positive values of b and 
h form an infinite set of solutions each of which differs only 
slightly from the standard perfect fluid models at a time corre- 
sponding to the present value of t, but differs considerably from 
the standard model as one extrapolates back to i —► 0. Thus 
small amounts of axial magnetic field, viscosity, etc., in the 
universe at present would suggest a history for the model 
which is quite different from, and perhaps more physically rea- 
listic than, that of the standard models. On the other hand, the 
radial solutions, with their radial velocity and natural bound- 
ary, are less easy to interpret as cosmological models, but may 
be suitable for interpretation in some astrophysical context. 

Our intention in this article is to show the existence of exact 
solutions of the field equations (1.1) which satisfy all the nor- 
mally required conditions for physical acceptability, and for 
which the spacetime metric is that of the zero-curvature FRW 
model. We have, in fact, found many such solutions; the solu- 
tions presented here are chosen because they illustrate the 
essential properties of the solutions that we have found. 
Having demonstrated the existence of these solutions, we 
believe that priority should be given not to the generation of 
more solutions but to a discussion of the physical conse- 
quences of this work and its possible significance to current 
cosmology. We note that the observed cell structure of the 
universe (Jôeveer and Einasto 1978), which is predicted by the 
adiabatic theory of galaxy formation (Zel’dovich 1979), 
requires dissipative processes, such as viscosity, in the early 
universe. Furthermore, the adiabatic theory is based on the 
introduction of small-scale inhomogeneities in standard perfect 
fluid FRW models (Doroshkevich, Sunyaev, and Zel’dovich 
1974) whereas it would be more natural to consider pertur- 
bations in a model with viscosity. Thus there do appear to be 
aspects of cosmology and astrophysics which which may 
benefit from an analysis of the models presented here. This 
analysis, together with a discussion of observations in these 
models, is in preparation and will be presented in due course. 

We wish to express our thanks to C. B. Collins, F. I. Coo- 
perstock, W. Israel, M. A. H. MacCallum, J. Wainwright, and 
P. S. Wesson for helpful comments and discussions. This 
research was supported by the Natural Sciences and Engi- 
neering Research Council of Canada through an operating 
grant to one of the authors (B. O. J. T.). 

REFERENCES 
Coley, A. A., and Tupper, B. O. J. 1983a, Ap. J., 271,1. 
 —. 19836, Phys. Letters, 95A, 357. 
Doroshkevich, A. G., Sunyaev, R. A., and Zel’dovich, Ya. B. 1974, in Confron- 

tation of Cosmological Theories with Observational Data, ed. M. S. Longair 
(Dordrecht: Reidel), p. 213. 

Dunn, K. A., and Tupper, B. O. J. 1980, Ap. J., 235,307. 
Eckart, C. 1940, Phys. Rev., 58,919. 

Hawking, S. W., and Ellis, G. F. R. 1973, The Large Scale Structure of Space- 
Time (Cambridge: Cambridge University Press). 

Israel, W., and Stewart, J. M. 1979, Ann. Phys., 118, 341. 
Jôeveer, M. and Einasto, J. 1978, in The Large Scale Structure of the Universe, 

ed. M. S. Longair and J. Einasto (Dordrecht: Reidel), p. 241. 
Lichnerowicz, A. 1967, Relativistic Hydrodynamics and Magnetohydro- 

dynamics (New York : Benjamin). 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



U UD CM 

¿ No. 1, 1984 IMPERFECT FLUID COSMOLOGIES 33 
00 CM 

! Tupper, B. O. J. 1981,./. MflíL P/iys., 22, 2666. Zel’dovich, Ya. B. 1979, in Physics of the Expanding Universe, ed. M. 
•  . 1983a, Gen. Rel Grav., 15,47. Demianski (Berlin: Springer-Verlag), p. 113. 
a  A9m,Gen. Rel. Grav., 15, $49. 

oo O'! 
^ A. A. Coley: Department of Mathematics, Statistics and Computing Science, Dalhousie University, Halifax, Nova Scotia, B3H 

3H8, Canada 

B. O. J. Tupfer: Department of Mathematics and Statistics, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, 
Canada 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 


	Record in ADS

