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ABSTRACT 
We examine the possible cosmological consequences of Population III stars. Their dark remnants could 

provide the “missing mass.” Their light could have produced either the entire 3 K background or observable 
distortions in its spectrum. Their heat or explosions could have reionized the universe and perhaps produced 
galaxies. Their helium yield could suffice to provide an alternative explanation for the observed “primordial” 
abundance, and their heavy-element yield could have produced a burst of pregalactic enrichment. We discuss 
which sort of stars could best fulfill these roles and conclude that the most plausible candidates would be 
“Very Massive Objects” in the mass range 102-105 M0. Even if Population III stars played none of these roles, 
consideration of the associated effects places strong constraints on their mass spectrum and formation epoch. 
Subject headings: cosmology — stars: interiors — stars: massive — stars: stellar statistics — stars: weak-line 

I. INTRODUCTION 

In this paper we will examine some of the cosmological consequences of Population III stars. The existence of such stars 
has been postulated for many different reasons : to explain the missing mass in clusters of galaxies and galactic halos (White and 
Rees 1978), to generate the 3 K background (Layzer and Hively 1973; Carr 1911b; Rees 1978) or the distortions in its spectrum 
(Rowan-Robinson, Negroponte, and Silk 1979; Puget and Heyvaerts 1980), to produce a burst of initial enrichment (Truran and 
Cameron 1971 ) or the cosmological helium abundance (Talbot and Arnett 1971), to reionize the universe (Doroshkevich, Zel’dovich, 
and Novikov 1967; Hartquist and Cameron 1977; Hogan 1979), or even to make galaxies themselves (Ostriker and Cowie 1981; 
Ikeuchi 1981; Hogan 1983; Carr and Rees 1983). In this paper we wish to put all these ideas together and examine how many 
of the cosmological roles envisaged for Population III stars are mutually compatible (cf. Tarbet and Rowan-Robinson 1982). 

A question of particular interest concerns the epoch of Population III star formation. Many people have suggested that they 
could be pregalactic in origin, i.e., forming in the period 106-109 yr after the big bang. Not all the roles assigned to Population III 
stars require this, but certainly some of them do. One reason for expecting pregalactic stars to form is that the existence of galaxies 
implies that the early universe must have contained density fluctuations. Providing the fluctuations were isothermal, the form 
of the fluctuations required on a galactic scale and above, if extrapolated to smaller scales, would be of order unity on a scale 
106-108 M0 (Peebles 1974; Fall 1979). Thus bound regions could form well before galaxies, and one would expect these regions 
to fragment into stars. Calculating the characteristic mass of the fragments is complicated but the initial absence of metals, the 
influence of the background radiation, and the lack of initial substructure would all tend to make the stars considerably more 
massive than those which form in the present epoch and possibly bigger than 102 M0 (Matsuda, Sato, and Takeda 1969; 
Yoneyama 1972; Silk 1977; Tohline 1980; Kashlinsky and Rees 1983; Silk 1983). If the initial density fluctuations were adiabatic, 
they would be erased by photon diffusion on subgalactic scales (Silk 1968) unless the mass of the universe were dominated by 
certain types of collisionless particles (Bond and Szalay 1983). Without such particles, one would get the usual “pancake” picture 
(Zel’dovich 1970). Even here, pregalactic stars could form in the initial pancake fragments, though in this case the stars would be 
forming at a relatively low redshift. 

The possibility that Population III stars could be as massive as 102 M0, independent of whether or not they are pregalactic, 
raises a problem in that the evolution of such stars is not well understood. Unlike stars smaller than 102 M0, which burn stably 
until they reach their iron/nickel core phase (Arnett 1973; Weaver, Zimmerman, and Woosley 1978) or undergo thermally unstable 
electron degenerate ignition (Arnett 1969; Sugimoto and Nomoto 1980), and stars larger than 105 M0, which go unstable to 
general relativistic instabilities even before igniting their nuclear fuel (Fowler 1966; Fricke 1973), stars in the intermediate-mass 
range go unstable to pair-production effects in their oxygen core phase (Fowler and Hoyle 1964). The study of such “Very Massive 
Objects,” or VMOs as we term them, has been somewhat neglected. This is partly because there has been no obvious observational 
evidence that they exist, except perhaps in 30 Doradus (Cassinelli, Mathis, and Savage 1981) or rj Carinae (Andriesse, Donn, and 
Viotti 1978), and partly because theoretical reasons have been voiced for why they could never form. However, in the pregalactic 
context at least, these reasons need no longer apply: the stars would have burnt out long ago (so that their present absence need 
cause no embarrassment), and various cosmological effects could inhibit fragmentation into smaller stars. 
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TABLE 1 
Properties of Different Types of Stars 

Name Mass Range Defining Characteristics Fate 

SMO .. >105 M0 relativistically unstable; never dynamically 
stable; fate decided at H ignition 

VMO .. 102-105 Mq pulsationally unstable during H burning; 
proceed to pair-unstable O core 

8-102 Mq stable burning until Fe core phase (12-102 

Mq) or Ni core phase (8-12 M0) 
4-8 Mq degenerate C ignition 

MO.. 

LMO 0.5-4 Mq planetary nebula formation at 2 shell phase 
0.08-0.5 Mq no instability; do not burn He 
<0.08 Mq no instability; never ignite H 

black holes for Pop. Ill stars; complete 
disruption is possible for lower masses and 
Pop. I metallicity 

M0 ä 30 M0: black hole?; 
M0 ~ 30-102 M0: complete disruption; 
M0 > 102 M0 : complete collapse 

neutron star or low-mass black hole; SN II? 

no remnant; SN I? 

carbon/oxygen white dwarf 
helium white dwarf 
hydrogen white dwarf or planet 

These considerations motivate us in another paper (Bond, Arnett, and Carr 1984, hereafter BAC) to examine the evolution of 
VMOs in some detail. One of the most important questions we address concerns the end-state of VMOs. Numerical studies 
(Barkat, Rakavy, and Sack 1967 ; Fralay 1968 ; Arnett 1973 ; Wheeler 1977) indicate a general consensus that sufficiently large VMOs 
collapse to black holes, while smaller ones explode. By treating the VMO oxygen core as an isentropic n = 3 polytrope, we are 
able to explain this behavior by simple energetic-entropic arguments. We calculate the critical oxygen core mass which divides 
collapse from disruption, Moc, to be about 100 M©, a value which accords well with numerical results (Woosley and Weaver 
1982; Ober, El Eid, and Fricke 1983). The critical mass associated with the initial hydrogen star, Mc, is very uncertain because 
VMOs are radiation dominated and therefore unstable to nuclear-energized pulsations (Schwarzschild and Harm 1959; Stothers 
and Simon 1970). While these pulsations are unlikely to be completely disruptive (Appenzeller 1970; Ziebarth 1970; Talbot 1971; 
Papaloizou 1973), they probably result in considerable mass loss during the hydrogen and helium burning phase, so Mc could be 
much larger than Moc : it would have to be at least 200 M0 even if there were no appreciable mass loss. 

We have summarized elsewhere (Arnett, Bond, and Carr 1982; Carr, Arnett, and Bond 1982) a number of arguments for 
believing that the first stars may have been VMOs, and our present considerations will place considerable emphasis on this 
possibility, exploiting the results of BAC. Nevertheless, we do not commit ourselves in advance to the hypothesis that Population III 
stars were VMOs. After all, Population III stars could span a wide range of masses, and which range is most important may 
depend upon which effect is under consideration. We may loosely classify stars into four categories: Supermassive Objects 
(SMOs), Very Massive Objects (VMOs), Massive Objects (MOs), and Low-Mass Objects (LMOs). The defining characteristics and 
fates of these objects are indicated in Table 1. The fates should be regarded as merely indicative, since many uncertainties arise in 
all mass ranges. Some of the boundary masses are also uncertain: in particular, the 4-8 M0 range may be much narrower. 

The most unpredictable factor in determining the possible cosmological effects of Population III stars is their mass spectrum. 
For simplicity, we will often assume that the number of stars in the mass range M to M + dM has the form 

n(M)dM ocM~adM (Mmin <M < Mmax), (1.1) 

where Mmin and Mmax prescribe the lower and upper cutoffs in the spectrum. This means that p^(M), the density of stars with 
mass around M, goes as M2_a, so most of the mass is in the largest or smallest stars according to whether a < 2 or a > 2. 
For present-epoch stars, a æ 2.3 (Salpeter 1955), at least in the solar neighborhood and over a limited mass range. However, 
there are observational and theoretical reasons (Silk 1977; Terlevich 1982) for believing that a may decrease and that Mmax may 
increase with decreasing metallicity ; a may even fall below 2 for Z < 10" 2 Z0 (Melnick, Terlevich, and Eggleton 1983). This suggests 
that the first stars (with zero metallicity) could be much more massive than the ones forming today. Of course, the assumption 
that the spectrum has the simple form given by equation (1.1) may be very misleading. Therefore, in many of our considerations, 
we will merely assume that the stars have a particular mass M, a density D* (in units of the critical density), and a formation 
redshift z. The appropriate value for M is then the value which dominates the cosmological effect under consideration, a value 
which would be implicitly determined by the spectrum. 

One of the most important cosmological questions is whether the black hole remnants of Population III stars could provide 
the “dark matter” inferred to exist in galactic halos and clusters of galaxies (Faber and Gallagher 1979). This is the issue which 
we consider in § II. The crucial point is that, if the dark matter in halos is contained in black holes, then the holes could not be 
larger than 106 M0 else they would have dynamical effects inconsistent with observation (Carr 1978). Although there may be some 
mass range in which MOs leave black hole remnants, we will find that it is difficult to put most of the universe in such holes without 
overproducing heavy elements. This suggests that halo holes would have to derive from stars in the mass range Mc to 106 M0, 
and we discuss some of the consequences of these holes, in particular, their generation of gravitational radiation. 

In § III we consider the generation of light by Population III stars. We will show that, if the precursors of the objects which 
make up the missing mass were stars larger than 0.1 M0, then they must have been pregalactic in order to avoid generating too 
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much background light, and they must have been larger than 30 M0 in order to burn out quickly enough. In this case, either 
pregalactic stars and their remnants generated a substantial part of the 3 K background (perhaps all of it) or there must be a large 
peak somewhere in the far-infrared background. This conclusion can be avoided only for SMOs larger than 106 M0 since such 
objects could collapse before nuclear ignition. Of course, not all the energy released in the nuclear burning of pregalactic stars will 
go into background radiation. Some of it will go into heating up the background matter and perhaps reionizing the universe. 
Also, if the stars explode, the shocks thereby generated could produce the kind of fluctuations required to make galaxies or trigger 
further star formation. We examine these sorts of consequences in § IV. 

Stars smaller than Mc should produce a lot of heavy elements, and one of the strongest constraints on the spectrum of 
Population III stars comes from the requirement that they do not generate an enrichment larger than that observed in Population 
I and II stars. One way to avoid overenrichment is to assume that all the stars collapse to black holes (i.e., Mmin > Mc), 
so that the heavy elements they produce are not returned to the background medium. However, from some points of view, an 
initial burst of enrichment would be desirable (Truran and Cameron 1971), and this motivates us in § V to consider various ways 
in which Population III stars could produce just a small amount of enrichment. In § VI we examine the more specific question of 
whether particular abundance problems (such as the oxygen and primary nitrogen anomalies) could be explained by Population III 
stars. We will also be interested in the circumstances under which such stars could generate the “primordial” helium abundance 
if the conventional cosmological nucleosynthesis scenario were to be discarded. We conclude that this could only be accomplished 
in a way which avoids overproduction of heavy elements if the stars responsible were VMOs larger than Mc. 

In the final section, we will put all the various cosmological limits on (Q*, M, z) together. This will enable us to place important 
constraints on the spectrum and formation epoch of Population III stars and to assess which combination of cosmological roles 
alluded to above they could reasonably be expected to fulfill. Note that all our considerations are conditional on the standard 
Friedmann cosmology applying in the period between decoupling (106 yr) and galaxy formation (109 yr). In particular, we will 
assume that throughout this period redshift and time are related by f ^ io^-1/2(l + z)_3/2> where i0 ~ 1010 yr is the age of the 
universe, and Q is the total matter density in units of the critical density. We leave open the question of whether the universe is 
hot or cold before decoupling. 

II. POPULATION III STARS AND THE MISSING MASS 

The considerations of BAG show that pregalactic VMOs with initial mass M exceeding Mc = Moc </>Â1 should leave black hole 
remnants of mass MB ^ M0 = M(j)B, where (¡)B is the fraction of the initial mass which remains after the nuclear-energized 
pulsations of the hydrogen- and helium-burning phase. The value of </>ß, as well as its dependence on M, is very uncertain: it 
probably lies between 0.1 and 0.9. An equivalent quantity (/)B can also be defined for other types of star. SMOs are expected to 
collapse directly to black holes if they have no initial metallicity (Fricke 1973), in which case (¡)B could be close to 1. On the other 
hand, (¡)B is probably very small for MOs. In this section we will examine the effects of the black hole remnants. We will be 
particularly interested in whether they could constitute the dark matter in galactic halos. 

a) Black Hole Remnants 
Let us assume that the stars have a mass spectrum of the form described by equation (1.1). We suppose that Mmax exceeds 

Mc, so that VMO or SMO holes do form, and for the moment we neglect the remnants from stars smaller than Mc. Then, if a 
fraction /* of the universe’s mass goes into pregalactic stars, the fraction of its mass destined to end up in black holes is 

/b= /*</>B[l-(Mc/Mmax)
2-“] (Mmin < Mc, a<2) (2.1) 

j/^Mc/M,™)2-“ (Mmin<Mc, a >2). 

We are here assuming that (j)B is independent of M. The value of /* is hard to predict a priori: it could be close to 1, although 
various feedback mechanisms might prevent this (Hartquist and Cameron 1977; Hogan 1979; § IV). If these black holes alone 
provide the missing mass, fB certainly has to exceed 0.9 (Faber and Gallagher 1979). On the other hand, since observations of the 
cosmological deceleration parameter indicate that the black hole density QB (in units of the critical density) cannot exceed around 
1 (Sandage 1972), and since the material outside holes must have a density Qc/_ß of at least 0.01, the fraction /ß = (1 + Qu_B/QB)~1 

cannot exceed 0.99. Thus the value of fB is constrained to lie between 0.9 and 0.99. It might seem unlikely that the value specified 
by equation (2.1) could be this large, for this would require that nearly all the universe go into the stars (/* ^ 1), that most of the 
stars be larger than Mc, and that they only lose a small fraction of their mass before collapsing (</>ß > 0.9). We therefore need to 
consider ways in which the value of fB can be increased above the value one would naively infer from equation (2.1). 

An obvious way to boost fB is to allow the holes to accrete. As discussed in earlier papers (Carr 1977a, 1981b), this is anyway 
necessary if one wants the holes to generate an appreciable part of the 3 K background radiation. If each hole of mass MB accretes 
a mass AM = pMB, then /ß-> /ß(l + p). However, the value of p may be constrained by background light limits. If accreted 
material generates radiation energy Erad with an efficiency ß = Erad/(AM)c2, the radiation density generated must be 

ii« = (rT7)ßß(1+z^"1 ’ (12) 

where zR is the redshift at which most of the accretion occurs, and Qß is the present (postaccretion) black hole density. If one 
believes that the holes cannot accrete faster than the Eddington limit, the accretion factor p can exceed 1 (as required) providing 
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tR, the age of the universe at zR, exceeds the Eddington “mass-doubling” time scale ~ 109 ß yr. However, in this case, equation (2.2) 
implies that QR would exceed the observed background radiation density (QR < 10“4 over all wave bands; see § III) unless 
ß<0.04QR

3/\ 
If one interprets /* in equation (2.1) as the fraction of the universe which goes into each generation of stars, then one can also 

increase fB considerably by allowing many generations to form. Thus, if n generations form, the fraction of the universe destined 
to end up in black holes will be close to 1 providing n> Since the nuclear-burning time of a massive star is of order 
106 yr for M > 102 M0, and since the time of galaxy formation is around 109 yr, n could be as large as 103 even in the 
pregalactic context. 

Boosting the value of fB may, of course, be achieved by a combination of accretion and multiple-generation effects. In determining 
which of the two effects is likely to be most important, one should bear in mind that the second effect may increase fB only at 
the expense of generating too many heavy elements or too much helium, whereas the first effect may do so only at the expense 
of generating too much radiation. It should also be stressed that the value of the combined factor n(l + ¡i) required depends 
sensitively on the spectral parameters of the stars. It would have to be much larger in the (Mmin < Mc, a > 2) situation or if 
the holes derived from MOs (for which (¡)B is much smaller). 

b) Constraints on the Spectrum of Black Hole Remnants 
The mass spectrum of the black hole descendants of Population III stars should just reflect the spectrum of the stars themselves, 

providing the factors (¡)B and p can be regarded as independent of M. On the assumption that the black holes do provide the 
missing mass in galactic halos, one can therefore specify how many of them there should be in each mass range. This is significant 
because we already have strong limits on the mass spectrum of any halo holes. 

These limits have been summarized by Carr (1978), who concludes that the strongest one derives from considering the tidal 
disruption of loose star clusters by holes which are passing through the galactic disk. He claims that the fraction FB of the 
halo’s mass in holes of mass MB is constrained to be less than (MB/105 M0)~1. However, a more careful calculation (J. P. Ostriker 
and M. Schmidt, private communication) shows that this limit is weakened for MB > 105 M0. Instead, the most interesting limit 
in this mass range seems to be provided by the requirement that the traversing holes do not heat up the disk stars so much that 
their velocity dispersion exceeds the locally observed value of around 25 km s-1. The associated limit has been calculated by 
Miller (1982), who gives the time scale for holes of mass Mß, number density nB, and velocity VB to heat the stars up to a velocity 
dispersion i; as 

i (23) heat 6nG2nBMl In (v2/n^3GMB) ' [ 1 

Lacey, Ostriker, and Schmidt (1983) have suggested that this effect could in fact be the mechanism which puffs up the 
disk, the relevant observation being that younger stars (for which the available iheat is reduced) seem to have smaller 
scale heights. In any case, equation (2.3) with iheat x t0 & 101U yr and i; < 25 km s“1 gives a limit FB < (MB/10b Mq)-1; this is 
somewhat weaker than the original tidal disruption limit but of the same form. Assuming that the dark matter in galactic halos 
has about a tenth of the critical density (Faber and Gallagher 1979), and assuming that all pregalactic holes have in fact clustered 
inside galactic halos, we can express this limit as QB(M) < (M/l(r M0)-1. Although limits associated with the holes’ accretion 
effects (Ipser and Price 1977; Carr 1979) or lensing effects (Cañizares 1982) could be more stringent, these are less definitive in 
that they depend on extra assumptions. 

The disk-heating limit immediately places an important constraint on the mass spectrum of any Population III VMOs and 
SMOs. For if their black hole remnants do provide the halo material, and if a < 2 (so that most of the mass is in the largest 
holes), M, certainly has to be less than 106 rj 1 M0, where rj = (/>B(1 + p). If a > 2, so that most of the halo is in holes of mass 

n, rjMc), one still requires 

a > 3 — jlog [106 max (Mmin, Mc)] 
I log [Mmax/max (Mmin, Mc)] 

(2.4) 

in order to ensure that the largest holes do not contravene the tidal limit; see Figure 1. This condition may be interpreted either 
as placing a lower limit on a for fixed Mmax and Mmin (e.g., for Mmin = 103 M0 > Mc, Mmax = 107 M0, and rç = 1, we get 
ocm¡n = 2.3) or as placing an upper limit on Mmax (Mmin) for fixed a and Mmin (Mmax). 

For M > 107 M0> die m0st stringent limit on FB comes from dynamical friction effects rather than disk heating. This is because 
any holes at 10 kpc radius would have drifted into the center of the galaxy by now as a result of imparting their energy to 
smaller objects if they were this large (Carr 1978). Thus the appropriate limit in this regime becomes Qß(M) < 10“4 (the 
density associated with galactic nuclei). This is indicated in Figure 1. 

We stress that these limits would not apply for holes which were not clustered inside halos: a uniform distribution of holes 
might even have QB= 1. However, it is at least clear that the hole mass which dominates the halo must lie in the range 
Afoc(l + ju)tol06Mo. SinceM0c Ä 102Mo, this corresponds to an initial star mass between 102</>ß 1M0 and 106(1 + p)-1^1 Mq, 
which is a good indication that the precursors must have been VMOs or low-mass SMOs. However, if a > 2, this would not 
preclude there also having been some large SMOs. Since it has been suggested that black holes which derive from large SMOs 
may themselves play an important cosmological role, such as acting as condensation nuclei for galaxies (Ryan 1972; Carr and 
Rees 1983) or generating the X-ray background (Carr 1980; Boldt and Leiter 1981), even if they do not provide the missing 
mass, this possibility should be borne in mind. 
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Fig. 1—This shows the strongest observational limits on the density Q.B of black holes with mass MB which presently reside in the galactic halo. Disk-heating 
arguments imply that only black holes smaller than 106 M0 could provide most of the halo mass, and they also limit the fraction of the halo in black holes larger 
than 106 M0. Dynamical friction precludes there being halo holes larger than 107 M0 if Qß > 10“4. These limits place a strong constraint on the mass spectrum 
of any Population III stars. For given values of Mmin and r\, defined in the text, the figure shows how the upper limit on Mmax depends on a. 

c) Gravitational Radiation from VMO Remnants 
If there do exist black hole remnants of Population HI stars, their formation would be accompanied by bursts of gravitational 

radiation. The gravitational wave energy released in each burst would be eaMBc
2, where the gravitational radiation efficiency, 

could be as high as 0.1. Most of the energy would probably be emitted in a short initial broad-band burst, generated by the 
imploding matter, with a wavelength of order 10 times the Schwarzschild radius associated with the hole (Thorne 1978). Thus the 
present frequency of the radiation should be 

/ 10GMl 

r 
(1 + Zß)'1 Hz^ 10: 

MM \ 100 Mq) 
(1 + zB) 1 Hz (2.5) 

where zB is the redshift at which the holes form. The duration of each burst, t0, should be of order v0 ^ and the ratio of the 
duration to the separation (At)0 between bursts should be (Bertotti and Carr 1980) 

102QßZßQ 2 (zB Q 1), (2.6) 

where Qß is the density of the holes before accretion, and Í2 is the total matter density. The black holes therefore generate an 
overlapping background of gravitational waves rather than discrete bursts providing Ç1'B > 10_2zß 

1Í12. 
The overlap condition, which is independent of MB and e^, is likely to be satisfied for all interesting values of /B, and it certainly 

is if the holes provide the missing mass. As shown in § III, the background light observations require Q^z“1 < 10-2, where z* 
is the redshift at which light is generated through nuclear burning. If we write Qß as fBil^ and put zB ^ z*, then the background 
light limit and equation (2.6) imply (t/At)0 > 104</>ß/

2. Thus the light condition guarantees the overlap condition for holes with 
stellar precursors providing /* > 10“ 2</>ß 

112. Having the bursts overlap is advantageous from the point of view of their detectability 
since the dimensionless amplitude associated with the gravitational wave background exceeds that of the individual burst by a factor 
(t/At)¿/2; the background amplitude is (Bertotti and Carr 1980) 

/ M \1/2 

K*l0~19(wif) ^ni + ^r. (i?) 

The density associated with the background (in units of the critical density) is 

^9 = C9 + Zß) 1 ~ Cg ZB 1 ’ (2-8) 

and this could be as high as 10“ 2 if the missing mass is contained in holes which formed at relatively low redshifts. 
Population III stars could produce gravitational waves in another way if a substantial fraction of them were formed in binary 

systems (Bond and Carr 1983). In this case, continuous gravitational radiation will be produced as the components spiral inward 
as a result of the energy loss. If both components are larger than Mc and become black holes, this process will continue until 
the components merge to form a single black hole. The burst of radiation generated by the final coalescence will be similar to 
that produced by the collapse of a single hole, except that the time of the burst is postponed from the formation epoch of the 
stars to the lifetime of the binary (Peters and Matthews 1963): 

t(a) = 
5c5a4 

256G3M/1 Mb(M^ +Mb)’ 
(2.9) 
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where a is the initial separation, and MA and are the masses of the components. The density associated with the coalescence 
background is thus larger than indicated by equation (2.8) in that zB is reduced, but smaller in that Q* is reduced by a factor p(a) 
related to the fraction of stars in binaries with initial separation a. The optimal case occurs if the initial separation is such that 
the time scale t corresponds to the present age of the universe. For MA = MB = M, this requires a = a0 & 114(M/102 M0)3/4 Rq, 
and, in this case, the effective value of zB in equations (2.5)-(2.8) is of order 1. In this situation, one could also hope to see the individual 
coalescence bursts: the amplitude and separation between coalescences in our halo, if dominated by holes, would typically be 

K : 4 X 10 .17/ M 
\102 Mg/ \ 60 kpCy 

10 
Iwhll 

Mh 

1012M, P(a0) 
1 yr (2.10) 

The background associated with the continuous radiation generated during the preceding orbital decay phase could also be 
interesting. If the range of binary separations encompasses the critical value a0 indicated above, then it can be shown that this 
continuous background will in general be dominated by the binaries with a0. In this case, the background energy density 
at period P can be shown to be 

I P \ ~213 I M \ 
for 

.1 M \5/8 

(2.11) 

The upper limit in the period range is associated with the orbital period of binaries with initial separation a0, most of the 
radiation being generated at a frequency of twice the orbital frequency (for circular orbits). Note that the nearest such binary 
would be expected to be at a distance of order 

/ M \1/3 

dm¡„*[nBp(a0)] llixlOp(a0) 
1/3 ^ J pc; (2.12) 

the amplitude of the associated monochromatic waves is 

hind ä 2 x 10”1811()2 M J p(a0)
113 , (2.13) 

although this is actually less than the amplitude of the background. These points are discussed in more detail by Bond and 
Carr (1983). 

It is obviously interesting to ask whether the backgrounds of gravitational waves generated by individual or binary black holes 
could be observable. Laser interferometry detectors are most sensitive at periods of about 10“2 s, and the single hole burst 
background will peak in this range if the product Mß(l + zB) is of order 102 M0 ; in this case, h0 & 10-19£1/2Q¿/2, which would 
be detectable (Weiss 1979). If MB(1 + zB) is somewhat larger than this, the best method to detect the burst background would be the 
Doppler tracking of interplanetary spacecraft. Given the present stability of the H-maser clocks which regulate the frequency of the 
tracking beam, this technique could be used to detect backgrounds with 102 s < P < 107 s; Bertotti and Carr (1980) argue that 
holes with Mb > 3000zß M0 could be detectable. The prospect of detecting the binary background is even better since it covers 
a larger period range. Bond and Carr (1983) argue that binaries with M < 400 M0 might be detected by laser interferometers, 
whereas those with M > 4 x 104 M0 might be detected by Doppler tracking. 

d) Limits on Low-Mass Remnants 
Since one cannot exclude the possibility that the missing mass may be in low-mass stars rather than black holes, we will also 

examine the consequences this would have for the Population III mass spectrum. The mass-to-light ratio of a star can only be 
as high as 100, as required for our own halo, if M < 0.1 M0. However, the largest contribution to the light and the mass may 
not come from the same stars. Since the main-sequence luminosity increases rapidly with mass, the largest stars may dominate 
the light even though the smallest ones dominate the mass. More specifically, for L oc Mß, where ^^4 for 0.1 Mö < M < 1M0 
(Iben 1967), we have 

(max [(Mmax/Lmax), 1] (oc < 2) 
<M/L> * (Mmin/Lmin)[rnin (Mmax, 1 M0)/Mmin]a-1 ^ (2 < oc < 1 + £), (2.14) 

|(^min/^min) (OC > 1 + /?) 

where Lmax = L(Mmax), Lmin = L(Mmin), and we assume stars larger than 1 M0 would have burnt out by now. Thus, for a < 2, 
we require Mmax <0.1 M0; for a > 1 + /?, we require Mmin <0.1 M0; and for 2 < oc < 1 + /?, we require Mmin < 0.1 M0 and 

Mmax < 0.1 (2.15) 

Equation (2.15) immediately places an upper limit on how many pregalactic stars can have burnt out by now (M > 1 M0) or 
contributed significantly to pregalactic nucleosynthesis (M > 4 M0). Note that infrared observations of the halos of other galaxies 
suggest that the halo material must have a value for <M/L) of at least 38 in the K band (Boughn, Saulson, and Seldner 1981); 
this corresponds to a mass M < 0.08 M0, which may exclude any main-sequence stars. 
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If the missing mass is in low-luminosity stars, it will be very difficult to detect them directly, except perhaps as high-velocity 
infrared sources (Staller and de Jong 1981). However, Gott (1981) has pointed out that it may be possible to infer their presence 
indirectly by looking for their gravitational lens effects on distant quasars. He shows that, if a galaxy is massive enough and 
suitably positioned to image-double a quasar, then there is also a high probability that the lensing by an individual halo star will 
produce appreciable fluctuations in the quasar intensity. This effect could be detected for halo star masses larger than 10-4 M0. 
However, the time scale of the intensity fluctuations, being of order 40(M/Mo)1/2 yr, would only be noticeable over a period of 
10 yr (say) if M < 0.1 M0. 

III. RADIATIVE EFFECTS OF POPULATION III STARS 
Any black hole remnants of Population III stars would tend to generate electromagnetic radiation, with consequent effects 

on the thermal history of the universe (Carr 1981a). However, the importance of this effect is very uncertain since it depends on the 
radiative efficiency of the accretion process as well as the wave band in which the radiation was emitted, both factors being 
model dependent. In this section we will consider the generation of radiation by the stars themselves; this effect is much less 
uncertain since the temperature of the radiation and the efficiency with which it is generated from nuclear burning can be predicted 
relatively unambiguously. We will find that the requirement that the stars not generate more background radiation than is 
observed enables one to place interesting limits on their formation redshift and mass spectrum. 

a) Integrated Background Light Limits 
Let us assume that a density Q*(M) = /^(MjQ of stars with mass M burn their nuclear fuel at a redshift z*, and that each 

star produces radiation energy e^Mc2. Since 7 MeV per baryon is released in the burning of hydrogen to helium, we may write 
£* as 0.001fb(M)X0, where fb(M) is the fraction of the star’s mass burnt to helium, and X0 is the primordial hydrogen abundance. 
We assume 1 > X0 > 0.75. The value of fb(M) is itself weakly dependent on X0, but we neglect this dependence and use the 
approximation fb(M) ä 0.8(M/102 M0)1/2 for 10 M0 < M < 102 M0- This expression is a fit to Figure 4 of Iben (1967); for the 
moment we neglect stars smaller than 10 M0. Stars above 102 M0 have fb(M) ~ (1 + X0/2)/(l + X0) ^ 0.8, independent of M 
(BAG), so fb is continuous at 102 M0. However, the value of fb is much less for stars larger than 105 M0 since such SMOs 
collapse before they can burn their nuclear fuel. Energetic arguments show that the effective value of £* for SMOs can never 
exceed (M/102 M0)_1, which is small. In the interesting mass range, 10 M0 < M < 105 M0, we may therefore write 

£Hc(M) ^ 0.006 min 
/ M \1/2 

\io2mJ ’ 
(3.1) 

(3.2) 

The present radiation density generated by the stars should be (cf. Eichler and Solinger 1976) 

Qr = £* /k(1 + z*) ? 

where fR is the fraction of the generated radiation which goes into the background light rather than into heating the matter 
content of the universe. One would expect fR to be close to 1, even though a lot of the radiation may be reprocessed near the 
stars or in the background universe, since the thermal capacity of the matter should be much lower than that of the radiation. 

If the observed background radiation density is Q.°R
S in units of the critical density, equations (3.1) and (3.2) imply 

ft*(l + z*) 1 < fR 
lr - lo°bs , 1.7 x 10 2 max 

\W2MQj 

-1/2 
1 

4 
at 
io- 

(3.3) 

this limit pertaining for 10 M0 < M < 105 M0. Since the radiation density over all wave bands (with the possible exception 
of the far-infrared band, which is presently unobservable) cannot exceed 10“4 times the critical density, one immediately infers 
a lower bound on the redshift z*. If the stars are VMOs, one requires z* > 60Q* Xo; thus if the stars had more than 0.2 of the 
critical density, they would certainly need to be pregalactic (the redshift of galaxy formation being assumed to be of order 10). 
If the stars were smaller than VMOs, the lower limit on z* would be reduced by a factor (M/102 M0)1/2. Of course, limit (3.3) 
would be much stronger if one knew that the radiation presently resided in a wave band where the background density was less 
than 10"4 times critical. 

Equation (3.3) allows one to infer a limit on the spectrum of the stars. Since the stars produce their radiation in the period 
between tf, their formation time, and tf + tMS, where iMS is their main-sequence time, we may take i* to be max (tf, tMS). 
Clearly, this is an approximation since radiation is being generated continuously between tf and tf + iMS. However, if tMS > tf, 
the fractional contribution to ilR from an epoch t intermediate between tf and tf + tMS is only (r/fMs)5/3 for z > Q-1; and, if 
tf > tMS, all the radiation comes from the redshift zf anyway. It is therefore appropriate to assume that nearly all the radiation 
is generated at z* = min (zMS, zf \ where zMS is the redshift when the age of the universe is iMS. Now the main-sequence time of 
stars in the mass range above 10 M0 (where electron scattering dominates the opacity) is given approximately as 

M 
3 x 10( (—I max 1, ( 

\ 0.006/ \ HO2 Mc 
yr , 

where e* is given by equation (3.1). The relationship t ^ t0Q 
1/2(1 + z) 3/2 therefore implies that 

zms ~ 300 \0.006 / 

2/3 
Q 1/3h 2/3 min 1, 

M 
102 Mg 

4/3 

(3.4) 

(3.5) 
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where /z = Ho/(50 km s 1 Mpc 1), and t0 ^ 1.9 x 1010 h 1 yr. Since z* cannot exceed zMS, equation (3.3) immediately implies 
an upper limit on Q*(M): 

n*(M)<5fñ Q-1/3h~2/3 . (3.6) 

If one substitutes for e*(M) using equation (3.1), this limit becomes 

D,(M) < 5 (f^xö^n-^h-^3), (3.7) 

where the last bracketed term lies between 0.6 and 3.5 for reasonable cosmological parameters (1 > 2i0 > 0.75, 1 > Q > 0.1, 
1 < h < 2, fR = 1). 

Equations (3.4)-(3.7) do not apply for stars smaller than 10 M0 since the opacity of such stars is no longer dominated by 
electron scattering, and also equation (3.1) fails. Assuming Kramers’ opacity law for such stars, we get a main-sequence time which 
scales as M-4, and this implies a steeper dependence on M than shown in equation (3.7). The limits on low-mass 
stars are therefore stronger than indicated above. When M becomes so small ( < 1 M0) that the stars do not complete their nuclear 
burning in the age of the universe, the form of the limits changes again. The L oc Mß law used in equation (2.14) now implies that 
the radiation density produced over the age of the universe is 

Qr * q* (ië) *14 x 10"3n*(M) (wj 1/r 1 ’ (3-8) 

and so we deduce a limit 
/Q“bs\ / M \1~p 

D,(M)<7x 10-2(T^4J^J /z (M < 1M0). (3.9) 

For 4, this implies that ft* could only be close to 1 if M < 0.4 M0. Peebles and Partridge (1967) have already used this 
sort of argument to exclude stars in the mass range 0.3-2.5 M0 having a critical density. Note that this is slightly weaker than 
the constraint M < 0.1 M0 of § lid, which was associated with light limits for our own galactic halo. 

Limits (3.7) and (3.9) are put together in Figure 2. This shows that ft* can exceed a specified value only if M is large enough 
or small enough ; and if ft* is too large, M has to be in the low-mass range. Values much less than 10“ 1(Q°R

S/10~*) are never excluded 
by the argument given above. However, even stronger limits would pertain if one knew that the stars were large enough to burn 
out on a time scale less than tf. In this case, one should put z* = zf in equation (3.3), and the dashed lines in Figure 2 indicate 
how this changes the form of the limits on ft*(M). There is no change for zf > 300 since all stars must burn at least until the epoch 
corresponding to this redshift. However, the maximum value of ft* permitted for large stars progressively decreases as zf 

decreases below 300. 

b) Discrete Frequency Background Light Limits 
The limits discussed above are rather simplistic in that the value for ft£bs is assumed to be fixed. However, ftjbs itself has an 

implicit dependence on M and z*, since the wave band in which the radiation presently resides depends on both the surface 

Fig. 2—This shows the upper limits on the density Q* of stars of mass M which form at a redshift zf, based on observations of the integrated background 
radiation density TV We assume QR = 10“4, although it may be much smaller in particular frequency bands, and = fR = h = Q = \. The redshift at which 
the stars produce their radiation is the smaller of zf and the redshift zMS when the age of the universe is their nuclear-burning time. For zf > 300, the nuclear- 
burning time necessarily exceeds tf, and one gets the solid line; otherwise rMS < tf for sufficiently large M, and one gets the broken lines. 
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temperature of the stars and their burning epoch. It may therefore be possible to improve the radiative limits by using a more 
detailed model for the stars’ light output. More detailed calculations have indeed been presented by Thorstensen and Partridge 
(1975). Their calculations neglect the effect of the background universe on the radiation and consider only the situation in which 
Q* = 1, but the following discussion resembles theirs in several aspects. 

Like Thorstensen and Partridge, we assume that the stars emit blackbody radiation at a temperature T* with either total or 
partial absorption below the Lyman limit. As shown in BAC, T* ~ 105 K independently of M for M > 102 M0; a fit to the results 
of Ezer and Cameron (1971) shows that it goes like M0 3 for 10 M0 < M < 102 MQ. Thus, as an approximation, we may write 

T* ^ 105 min K (M > 10 Mq) . (3.10) 

If £ms < tf, the spectrum of the starlight today should just have its original form but with a redshifted temperature 7^.(1 + z*) 1 

Thus the background intensity at present frequency v0 can be expressed (in ergs cm-2 s-1 Hz-1 sr-1) as 

¡'(vo) = 
. 4«tT£ 

(1 + z*)3B' (3.11) 

where B'(v, T) is the blackbody spectrum, modified for Lyman absorption, and the first term represents a volume diminution 
factor. If one defines an equivalent density parameter as 

ÍÍrK) = 47tv0i(v0)/pcritc
3 , (3.12) 

the predicted spectrum (uncorrected for absorption) is 

qr(v0)*9x lo-^i+z.pyy (3.13) 

where x = hv0(l + This quantity peaks at a present frequency vmax ^ 8 x 10loT^(l + z*) 1 Hz, when the last term has 
a value of 5; at frequencies v0 vmax, the value of ClR{v0) is smaller than ^(vmax) by a factor 13(v0/vmax)

3. 
We now consider the effects of Lyman absorption. If absorption were complete above the Lyman limit of 13.6 eV (frequency vt ), 

the present spectrum would be cut off above an energy 13.6(1 + z*) -1 eV. (This is below the energy at which the stellar spectrum 
peaks for M > 10 M0.) Thus observations of the background light at frequency v0 would permit no limits to be inferred on stars 
which produced radiation at redshifts exceeding (vf/v0 — 1). Nevertheless, if one assumes that one Lyman-a photon (of frequency va 
and energy 10 eV) is emitted for each UV photon absorbed, there will still be a contribution from these Lyman-a photons at 
frequency v0 providing the nuclear-burning period of the stars encompasses the redshift(va/v0 — 1); i.e., providing Zj > (va/v0 — 1) > 
z*. In this case the associated intensity can be shown to be (Thorstensen and Partridge 1975) 

*a(^o) ~ 2*9*(^max) 
j? v-^v, T*)dv 

Q-1/2 (3.14) 

the factor (vo/va)
3/2(i0AMs) deriving from the fraction of its lifetime during which a star is producing Lyman-a photons at the required 

redshift. The factor in square brackets is about 0.6, with a weak dependence on 7*. If the actual line width is (Av)a and the bandwidth 
of the observations is (Av)0, then (for reasons which will become clear later) we define an equivalent density parameter as 

47TVO ¿a(vo) (Av)a 

c3pcrh (Av)0 ' 
(3.15) 

Determining (Av)a is complicated since it depends upon (1) the period for which the stars are burning (Av/v ~ Az/z ~ 
(2) processes intrinsic to the star and its surrounding H n region, and (3) scattering processes which may occur in our own Galaxy. 
It should certainly exceed 10 Â. For most of the observational limits invoked later, (Av)0 is about 103 Â, so we assume the last 
factor in equation (3.15) is at least 10"2. There will also be a contribution to the background light from other recombination 
lines, but the Lyman-a component will generally be strongest. 

Thorstensen and Partridge also consider the case of partial absorption. This is because they are only interested in the absorption 
which occurs locally, within the photosphere of the star. For massive stars, which are sufficiently hot to be highly ionized in their 
outer parts, this effect may be slight: for example, the discontinuity Af = iv(v¡~)/iv(v?) is only 1.6 for M — 102 M0 and 3.9 for 
M = 10 Mq (Mihalas 1965). However, photons above the Lyman limit may be absorbed in the background universe even if they 
are not absorbed in the photosphere of the star itself, so it is not clear that the value of A; they use is relevant. A photon emitted 
at a redshift z will be absorbed within an expansion time if its energy lies between 13.6 eV and 

Ep * 1.0(1 + z)1/2(l - x)1/3Q,1/3Q“1/6/z1/3 keV (3.16) 

(Carr 1981a); the coefficient is increased slightly for Ep > 24.6 eV if there is a primordial helium abundance. In this equation, 
x is the background ionization, and Qg is the density of the background gas in units of the critical density. Since the spectrum of 
radiation from Population III stars cannot extend much beyond 30 eV, equation (3.16) implies that absorption is negligible if the 
universe is sufficiently highly ionized that 

(1-x)^ lO"^"^1/2/!"^! Fzj-3/2 . (3.17) 
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A (X) 

Fig. 3.—This shows the observational limits on the background radiation density at various frequencies and compares them with possible background spectra. 
The dotted curves apply if the dumpiness of the background gas is small enough that there is no cutoff beyond the Lyman limit. Otherwise, one expects a Lyman-a 
line. The height of this line is defined by eq. (3.15), where we assume (Av)a/(Av)0 = 10"2 ; it falls below the continuum for z P 10 under all circumstances. The spectra 
are labeled according to the density of the stars (Q*) and the redshift at which they burn most of their nuclear fuel (z*). We assume the nuclear-burning time, 
iMS, is less than the formation time, tf. Otherwise, z* is the redshift when the age of the universe is iMS, in which case the radiation is generated over a range of 
redshifts (zf>z> zMS), and the spectra are more extended. We assume the stars are VMOs so that they produce radiation at 105 K; for smaller stars, the curves 
move to the left. For smaller values of Q*, they move down. We also assume that z* is not large enough for the radiation to be absorbed at frequencies below 
the Lyman limit by grains. 

This condition is necessarily satisfied for z* < 3 (Gunn and Peterson 1965), and the ionization from the stars themselves could 
ensure it unless the dumpiness of the gas exceeds 

(3.18) 

where we have used equation (4.18). However, such a large dumpiness is not necessarily implausible: if most of the gas goes into 
clouds when the first objects bind at redshift zß, one would expect ô ~ (zß/z^f, and this could be as large as 106. Thus Thorstensen 
and Partridge may be unjustified in neglecting the effects of the background medium, and total absorption below the Lyman 
limit may be a better approximation in some circumstances. 

Let us first assume that there is indeed total absorption beyond the Lyman limit (<5 > <5crit). Then, using equations (3.13)-(3.15), 
we may write the present density of radiation at frequency v (or wavelength X) as 

Qr(v) * 5 x 10-iUl + zJ-Zo (¿)3 min 1 

t0\5300 Â/ 

+z*) 1 - 4 

+ 3 X lO-'n^h-'Q-^Xo min 
M 

102 Mc 
, 1 

(Avl5 

(Av)o va(l + z*) 1 ± 2 (Av)< (3.19) 

Here 0 is a function which is zero outside the specified range, and we have substituted for e*, iMS, and T* using equations (3.1), 
(3.4), and (3.10). If there is no absorption beyond the Lyman limit (<5 <5crit), the Lyman-a contribution in equation (3.19) is absent, 
but the continuum contribution extends to higher frequencies. In the intermediate situation, the spectrum beyond the Lyman limit 
is multiplied by a factor (1 — ô/ôCTit); the Lyman-a contribution is ô/ôcrii times the value given by equation (3.19), but it is spread 
out over a wider wave band since the recombinations occur on a long time scale. 

The background light limits at 4100 Â, 5300 Â, 8700 Â, and 20,000 Â used by Thorstensen and Partridge were iv = 1.5 x 10“20, 
6.2 x 10“20,1.1 x 10“17,and 1.5 x 10"17 ergs cm-2 s_1 sr_1 Hz-1, respectively. The associated values for Q^^)/!2 arel x 10-6, 
3 x 10~6,4 x 10-4, and 2 x 10“4, using a definition for ^(v) analogous to equation (3.12). More recent observations (Dube, 
Wicks, and Wilkinson 1979) have improved the 5300 Â limit: one now has iv = 4.3 x 10“20, or QR = 2 x 10“6, at 5300 A. One 
also now has a far-UV limit of iv = 1.4 x 10“2^ or QR = 3 x 10“7, àt 1400 Â (Paresce and Jacobsen 1980) and an IR limit of 
iv = 0.9 x 10“17, or = 1 x 10“4, at 24,000 Â (Hofmann and Lemke 1978). These limits are plotted and compared with the 
predicted spectra for various values of D* and z* in Figure 3. Note that the weakness of the IR limits is a result of instrument 
sensitivity; it does not arise from a positive detection of an IR background. 

Using the 5300 Â limit, equation (3.19) implies that one can impose no limit if z* > (vf/vo — 1) = 5. If z* is below this value, 
however, one gets a limit 

Q* < 1 x 10 1 min 
/ M \04 

\102 Mq) ’ 
(1 + z*) 2X0 

lh 2 (z* < 5) , (3.20) 
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will be a stronger limit in narrow bands of z* due to Lyman-a emission; these limits are not shown explicitly since they depend on astrophysical parameters 
which are very uncertain. If there is no Lyman cutoff, the region above the broken line is excluded. The limits assume h = X0 = 1. They would be even 
stronger for M < 102 M0. 

and this places a limit both on the spectrum of the stars and on their formation redshift. If z* happens to be close to (va/v0 - 1) = 3.4, 
the Lyman-a component permits an even stronger limit if <5 > <5crit : 

Q* < 7 x 10 6 max 
- 1.7 (Av)o 

(Av). 
x^n^h-1. (3.21) 

The constraints imposed by the background light limits at other wavelengths have the same form as equations (3.20) and (3.21), 
but the numerical coefficients and critical values of z* are different. For the observations at 1400 Â, 4100 Â, 8700 A, 20000 A, 
and 24000 A, the coefficient and limiting value of z* in equation (3.20) become (3 x 10-4, 0.5), (3 x 10-2, 3), (100, 9), (700, 21), 
and (800,25), respectively; the coefficient and value of z* in equation (3.21) become (3 x 10“8,0.2), (2 x 10“6, 2.4), (4 x 10“3,6.3), 
(2 x 10"2, 16), and (2 x 10"2, 19), respectively. 

These limits imply constraints on the functions U*(M), U*(z*), and M(zJ. The U*(z*) constraints for M > 102 M0 are shown 
in Figure 4, the region above the solid line being excluded. If there were no absorption above the Lyman limit (<5 < <5crit), the region 
above the broken line would be excluded. The constraints in this case are much more interesting (although the Lyman-a limit no 
longer applies): for example, one could exclude the stars having a critical density at all redshifts below about 50. The Lyman-a 
limit is not shown explicitly since it depends upon the parameters (Av)0/(Av)3 and (<5/<5crit), both of which are very uncertain. 
We note that the constraint on the mass spectrum Í2*(M) has a different form from the one shown in Figure 2 (which derived 
from integrated background light considerations); the discrete frequency constraint is usually stronger only for z* < 10 and is 
therefore less interesting for pregalactic stars. We do not show the constraint of M(z+) explicitly since it has already been 
derived by Thorstensen and Partridge (1975) for the Q* = 1 case. 

The above analysis clearly fails if the burning time of the stars exceeds the cosmological time at their formation epoch 
(íms > tf) or if the stars form over a range of redshifts rather than at a single redshift. In both cases, one expects the background 
light to have a considerably broader spectrum than indicated in Figure 3, and equations (3.19)-(3.21) must be modified. In 
particular, the Lyman-a line will no longer be narrow, and, if <5 > <5crit, it may well dominate the spectrum over most wave bands. 
These points are discussed in detail by McDowell (1983). 

c) Thermalized Background Light Limits 
The assumption that there is some wave band in which the directly emitted starlight still appears is crucial in deriving Figures 

3 and 4. However, this assumption would fail if there were enough grains in the universe to absorb and perhaps thermalize the 
starlight even below 13.6 eV. Since the absorptivity of grains only falls off at wavelengths above about 1 gm, one might in 
principle be able to thermalize radiation up to a present wavelength of 104(1 + z*) A. This raises the question of whether the 
combination of grains and pregalactic stars could produce interesting distortions in the spectrum of the microwave background. 
Indeed, Rowan-Robinson, Negroponte, and Silk (1979) and Puget and Heyvaerts (1980) have suggested models in which this effect 
is invoked to explain the distortions reported just shortward of the peak by Woody and Richards (1979, 1981). The Rowan- 
Robinson et al. model requires that the grains have a density Qd « 10-5, that Q* « 0.1, and that z* « 100; also, implicitly, the 
stars must have M > 30 M0 in view of equation (3.5). The Puget and Heyvaerts model requires similar parameters except that 
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z* 10. In these models some 25 %-30% of the energy density in the 3 K background has to be thermalized starlight. Rees (1978) 
has made the more radical suggestion that all of the 3 K background is grain-thermalized starlight. However, this scenario may 
be implausible since, besides the fact that it is not possible to explain the specific distortions reported by Woody and Richards, 
it is difficult to thermalize the starlight at long wavelengths unless one invokes a very exotic form of grain (Layzer and Hively 
1973, Wickramasinghe et al. 1975; Alfvén and Mendis 1977; Rana 1981). A compromise scenario has been suggested (Carr 198Ih) 
in which the initial 75 % of the 3 K background is generated by black hole accretion and thermalized by free-free processes. 
In this scenario, energetic and thermalization criteria require that the holes produce their light at z ^ 103. This corresponds to 
a time of about 106 yr, which is somewhat less than the lifetime of a VMO but comparable to the collapse time of an SMO 
with M ~ 106 M0. 

The best observational upper limit on the amount of dust grains in the universe at present is provided by quasar-reddening 
measurements (Wright 1982). These suggest that < 1.2 x 10_4/i_1, at least for dust which is uniformly distributed. Wright 
calculates that this would be sufficient to explain the Woody-Richards distortions, the best fit parameters being Q* = 0.3, 
z* = 240, and (implicitly) M > 80 M0, but that it would not suffice to thermalize 100% of the background. In any case, it is 
clearly possible that much of the original Population III starlight could now be part of the microwave background. In this case, 
the limits implicit in Figure 3 need no longer apply for large z. However, Figure 2, which depends only on the integrated 
background density being less than 10-4 times critical, would still apply; and limits (3.20) and (3.21) would still pertain since the 
optical depth of the universe to dust would be low for the small values of z involved. Of course, the upper limits on the distortion 
in the 3 K background could themselves impose constraints on (Q*, M, z*). However, calculating these limits is complicated 
since it depends on the type of grains and their thermal history. Since these features are very uncertain, we do not discuss the 
distortion limits here, although they are implicitly contained in Negroponte, Rowan-Robinson, and Silk (1981). 

One can anyway make the following qualitative conclusion : if pregalactic stars did exist with an appreciable density, then either 
there should exist an excess somewhere in the IR background or they must have contributed to the 3 K background. For example, 
if the remnants of the stars provide the dark matter, then equation (3.2) implies that QR must be in the range 10“5 to 10“3, 
and there is no other wave band where such a high density could reside. If the stars were SMOs with M > 106 M0, one might avoid 
this conclusion because such stars may not release much energy before undergoing collapse. However, we have seen that the dark 
matter cannot be in holes this large unless they can avoid clustering inside halos. We note that Matsumoto, Akiba, and Murakami 
(1983) have recently claimed to detect an IR background with Ç1R ~ 10-4 in the wave band 2-5 /am. Carr, McDowell, and 
Sato (1983) have argued that the form of the data could be explained by pregalactic stars forming at a redshift exceeding 40, 
in which case it would be less likely that pregalactic stars also generated the 3 K background. 

IV. THE EFFECTS OF POPULATION III STARS ON THE BACKGROUND MATTER 

In this section we will discuss the effects of the fraction of the radiative energy generated by Population III stars which goes 
into heating the background matter. By modifying the thermal history of the universe, this can have an important feedback effect 
on the formation of further Population III stars, especially if the universe is reionized. Most of the radiation energy will be 
released during the stars’ main-sequence phase, and, during this period, the steady input of heat into the universe allows its 
consequences to be calculated quite simply. For those stars which are in a mass range such that they end up exploding, energy 
will also be released in the explosive phase. This energy will generally be less than that emitted in the preceding phase. However, 
because of the impulsive nature of its release, it can generate shock waves and thus produce extra qualitative effects on the 
background universe. 

a) The Main-Sequence Phase 
During their main-sequence phase, VMOs will be associated with large H n regions. Our main purpose in this section is to 

determine the structure and evolution of these regions; in particular, we wish to determine when the H n regions overlap, since 
this will specify when the background universe is reionized. Much of what follows will also apply if the stars are SMOs, or if 
the sources of the H n regions are clusters of VMOs, because all these objects radiate at the Eddington limit. We will discuss 
at the end the modifications necessary if the stars are MOs. 

The H ii region surrounding a pregalactic VMO differs from the usual sort of H n region associated with present-epoch O stars 
in several respects. First, VMOs are hotter: their surface temperature is T* æ 105 K = 8.6 eV, so the photon number flux and 
energy flux peak at 1.6T* = 13.8 eV and 2.8T* = 24.1 eV, respectively. This implies that there is a high flux of both hydrogen- 
and helium-ionizing photons (the ionization energies being E0 = 13.6 eV and E1 = 24.6 eV, respectively). Second, we will find 
that VMOs do not live long enough for their H n regions to expand sufficiently to reach pressure equilibrium with the 
cosmological background. We can therefore assume that the particle density within the H n regions just reflects that of the cloud 
from which the stars formed. Third, various cosmological effects which do not pertain at low redshifts, such as the inverse 
Compton cooling of the 3 K background radiation, may have an important influence on the H n region. 

Since each star radiates as a blackbody of temperature T*, the photon flux at a distance R from the star can be expressed as 

F(E)dE = 
0.15L* 

47cR2/cT5je 

(E/kTj2e-^R) 

(eE'kT< - 1) 
(4.1) 
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where L* ^ LED = 1.2 x 1038(M/Mo) ergs s and the factor of 0.15 arises from normalizing the number flux to the luminosity. 
The factor t(£, R) is the optical depth at radius R for photons of energy E, given by 

r(£, R) = f %[yH(l - x)aH(E) + YUe cjHe{E)]dR , (4.2) 

where nB is the baryon density; YH and yHe are the number of hydrogen and helium atoms per baryon. The ionization, x, is 
here defined as the ratio of the number of protons to the total number of hydrogen atoms (ionized or neutral); we neglect the 
small number of electrons which arise from single helium ionizations (i.e., we assume Ye = xYll). The ionization within the 
H ii region is determined by 

dx 
r„^= -Y2

Hx
2nBoc + (l Ch 5 (4.3) 

where a = 2.6 x 10“ 13(T/104 K)-0,8 cm3 s_1 is the recombination rate in the appropriate temperature range (Kaplan and 
Pikel’ner 1970), recombinations to the ground state being neglected since these produce secondary ionizing photons. The quantity 
Ch is the ionization rate per hydrogen atom: 

r00 

Ch= (TH(E)F(E)dE . (4.4) 

Since Eo/kT* = 1.6 for VMOs, we may simplify the analysis by neglecting the (—1) term in the denominator of equation (4.1). 
At values of R sufficiently small that x(E) 1, equation (4.4) and <th(£) = a0(E0/E)3, with a0 % 7 x 10"18 cm2, then give 

Ch = 
0-6I* 

4nR2kT fê)îe‘fë) = 3xir‘fê)' 

M 
102 Mr 

where the exponential integral term e^Eo/kT*) equals 0.09 for 105 K sources. The recombination rate per proton is 

Lee1 = YnocxnB = (7 x 105 yr)“ 
T 

104 K 

-0.8 

w 
xrj , where rj 

■ifi) 
h2(l + 0)YU , 

and 1 + (5 specifies the ratio of the density in the H n region to the density in the background Friedmann universe. 
Providing the time scale irec is less than the lifetime of the star, which from equation (3.4) requires that z exceed 

-(i^i 
-1/3 

(4.5) 

(4.6) 

(4.7) 

the ionization in the H n region is determined by the balance of the two terms on the right-hand side of equation (4.3), 
and one gets a fully developed H n region with the usual Strömgren radius (Spitzer 1978): 

R* = 
N 

Anriß Y^ol 

1/3 
= 450T4 3M2/3z2 

2r] 2/3 pc , (4.8) 

where we have normalized T to 104 K, M to 102 M0, and z to 102; Ñ is the rate of production of ionizing photons. In terms 
of Rs, the ionization and optical depth are given simply by 

1 — x _ 135 /Ä\2 

nB YhCToRs Us/ 
= 4.5 

Eol 
(4.9) 

Within Rs, t remains small and x is close to 1; beyond Rs, t increases suddenly and x falls off exponentially in the usual way. 
There will also be an He 11 region within the H 11 region, where the structure will be modified. 

If z is less than the value zs specified by equation (4.7), the recombination time exceeds the lifetime of the star, and so the 
H ii region just expands to contain the number of hydrogen atoms which can be ionized by the total number of photons with 
E > E0 coming from the star, A = 1.5 x 1064. This gives a size 

*"Hí^r=75ozív‘'íM"v’ 
(4.10) 

which is less than Rs for z < zs and becomes equal to Rs at zs. After the star has burnt out, the H 11 region will survive 
for a time irec, so the average H 11 region will have a size somewhat smaller than Rmax. 

The universe will be fully ionized once the H 11 regions overlap. The distance between H 11 region centers, 

du = = 23z2-1MP 
i!n/p 
1)A 

-1/3 
pc , (4.11) 
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is related to their instantaneous number density, which we have multiplied by the star mass to make a density Í2n When 
Q,, has increased to the M-independent value 

,, |l.4 x 10-5Z2 T^°'8rj2h~2 

n¡^_ \2.9 x I0~6rih-2 
(z > Zs) 
(z < zs) 

(4.12) 

d„ will just equal min (Rs, Rmax). We take this to be the criterion for reionization, although the evolution of the background 
just prior to this may be complicated since it may be compressed into cool clouds (cf. Mészáros 1975). There are three possible 
cases, each having a particular interpretation of it, (1) for z > zMs, £î>(z) is the density of stars generated by redshift z, the O* of 
§ II; (2) for zs < z < zMS, it is the star density generated within a main-sequence lifetime of the epoch z; (3) for z < z?, it is the 
star density created within a recombination time, since the H n regions survive long after the stars have ceased shining. The 
last is essentially the Hartquist and Cameron (1977) case. 

Equation (4.12) only determines D, implicitly in the z > zs situation since it still remains to calculate the temperature in the 
H it region. In general this is determined by 

A 
dt 

^kT(l+x)-E0(l-x) + 3~ kT(l + x) = („(I - x)<E>inj - x2nBa<E>rec + qyH 1 ; (4.13) 

3kT(l + x)/2 and qY^1 are the internal energy and cooling rate per hydrogen atom. The ä/a term arises from adiabatic 
cooling and can be neglected so long as the other rates exceed the rate with which the H n region expands; <£>rcc is the mean 
energy emitted during a recombination, which can be shown to be E0 + 0.66/c T (the coefficient 0.66 being accurate at 104 K but 
slightly erroneous at higher or lower temperatures); (E')¡ni is the mean energy injected per photoionization—for 105 K sources, 
this is 1.44£0- At high redshifts (z > 10), the dominant cooling mechanism is inverse Compton cooling by electrons Thomson 
scattering off the 3 K background photons. The associated cooling rate is 

4 = (8 x 103 yr)"1 yH z¿ k(Tr - T), (4.14) 

where Tr = 2.7(1 + z) K is the background radiation temperature. In the absence of this effect, the balance of the first two terms 
on the right-hand side of equation (4.13) would ensure a temperature Trec = 9.1 eV, providing both terms exceed the cosmological 
expansion rate. In its presence, however, equation (4.13) implies 

T = Tr + ^Trec , where iA = 0.23 (4-15) 
1 + lA \TrJ 

which determines T implicitly. Providing Trec > T > Tr, the approximate solution is 

T » iATrec = 3.2 x 103z2-° V-6 K . (4.16) 

Thus T is close to Tr for ÿ < l, close to Trec for iA > 1, and given by equation (4.16) in between. Putting these expressions into 
equation (4.12) determines £2¡(z) for z > zs. 

The parameter tj in the above discussion depends on the quantity <5 which measures how underdense or overdense the H ii 
region is relative to the background. Two effects are relevant here, one tending to make ô negative and the other tending to make 
it positive. The first effect arises because the H n region will try to expand in order to attain pressure balance with the Friedmann 
background, i.e., until its density has fallen to a value <nT')/T. Roughly speaking, this expansion will occur on the dynamical 
time scale 

tdyn = (3.4 x 107yr)M^3z2-2i?-2/3T40-2 . , (4.17) 

However, since this appreciably exceeds the lifetime of the star unless z > 300M[ 6, this effect is not very important. A more 
detailed calculation shows that ô evolves as - (3t/tdyn)

2. 
The second effect arises because one might expect stars to form in overdense clumps (<) > 0), thus reducing the size of the 

H ii region [Rs oc (1 + i5)“2/3]. On the other hand, one would expect many VMOs to form in such a clump, with the interstar 
separation being reduced by a factor (1 -I- <5)1/3. One might therefore expect the individual H ii regions to overlap and form a super 
H ii region around the whole clump before the sources turn off. Since the luminosity scales with M, the previous equations 
should still apply except that M must be replaced with the value appropriate for the whole clump of stars. Thus, for example, 
a 105 M0 clump would produce a 5 kpc H ii region at z = 102. This would usually exceed the size of the clump itself, so 
throughout most of the super H ii region the density would just be the background density (<5 = 0). 

Once the whole universe is ionized, the temperature is still determined by equation (4.15) except that the parameter ô, on which 
rj and hence iA depend, now reflects the volume-averaged dumpiness of the background gas. In terms of this dumpiness factor, 
the background ionization has the value 

(1-x)« lO-10^1^^0-8^+ <5) (4.18) 

determined by the balance of photoionizations and recombinations. This ionization is maintained so long as the stars are burning. 
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Finally we discuss how the above analysis is modified for MOs. If one assumes that the luminosity of such stars is LEDMl 
and that their temperature is KPM^3 K (cf. eqs. [3.4] and [3.10]), then one can show that the number of ionizing photons is reduced 
by a factor 

/(M): 1.6M¿-8e -1.6AÍ20-3/, (O.8M2 6 + 1.3M2 + 1). (4.19) 

From equations (4.8) and (4.10), Rmax and Rs just scale as /(M)1/3, and so the value of Q,- specified by equation (4.12) is increased 
by a factor /(M)-1. Clearly, M cannot be too small if the stars are to reionize the universe without producing too much 
enrichment. The limits discussed in § V require M > 30 M0. The value of (1 — x) given by equation (4.18) is also scaled by a factor 
r1. 

b) The Explosive Phase 
In BAC, we showed that any VMOs smaller than the critical mass Mc should end up exploding, and we now consider 

the consequences of this. The energy released per unit rest mass in each explosion is approximately (BAC, § III/z) 

(472keV)/,g0^5x (M 
Mc2 \ M 

(4.20) 

where 472 keV is the energy released per nucleon in burning oxygen to silicon, fc is the fraction of the oxygen core mass burnt, 
B0 is the number of nucleons in the oxygen core, and M is the mass of the initial hydrogen star. A rough analytic expression 
for £ as a function of M was shown to be 

fc = f i Mo V 
k \102 mJ 

with /o « 0.7, b « 1.8 . (4.21) 

Providing </>L < M0/M ^ 0.5, </>L being the fraction of the initial mass lost during hydrogen burning; M0/M ^ (1 — (j)L) for 
(j)L > Thus we get 

M 
e(M)^ 3.5 x 10" 

102 Mr, 
min [0.13, (1 — 0L)2*8] (4.22) 

If the stars are MOs rather than VMOs, they may still explode in some mass range below 102 M0, and, in this case, the value 
of £ lies in the range 10~4 to 10"5 (Bookbinder et al. 1980). MOs may therefore generate explosive energy with efficiency 
comparable to VMOs. SMOs can explode in some mass range above 105 M0 only if they contain metals (Fricke 1973), so we 
assume that at least the first Population III SMOs collapse. Stars with Mc < M < 105 M0 can produce explosive energy only 
if they eject their envelopes during hydrogen shell burning (BAC); in this case, £ ^ 3 x 10"5. 

Exploding stars or clusters would generate shock fronts, and, as discussed by Ostriker and Cowie (1981) and Ikeuchi (1981), 
the shells swept up by these shocks could fragment into new bound objects. In some circumstances the new objects would be 
bigger than the first, thus initiating a bootstrap process in which ever larger objects form; Ostriker and Cowie were particularly 
interested in whether this process could generate galaxies from smaller pregalactic objects. In our context, the redshift may be so 
high that the shell fragments may be stars of comparable mass to the original ones. In this situation, the formation of a few 
MOs or VMOs might trigger the production of many more; one could thus amplify the value of /*, the fraction of the universe’s 
mass in stars. Our aim in what follows is to determine under what circumstances this can happen. 

We start off by reviewing the Ostriker-Cowie argument. Let us first assume that all the relevant time scales are much longer 
than the burning time of the stars. In this case each cluster of stars of total mass M will, upon exploding, produce a single 
spherical shockfront which expands adiabatically according to the Sedov solution until its cooling time becomes comparable 
to the cosmological time. For z > 5, the dominant cooling process is inverse Compton cooling off the 3 K background, for which 
the cooling time is (cf. eq. [4.14]) 

2.4 x 1012(1 + z)-4yr . (4.23) 

This is less than the VMO burning time for z > 30 and less than the cosmological expansion time for z > 10. When the 
shock front begins to cool, its radius is 

^c0ol 
Ä 4(1 + z)~2 2E¡6

2Q~0'2h~0A Mpc . (4.24) 

Here £56 is the explosive energy released in units of 1056 ergs; this corresponds to M ~ 106 M© if e = 10“4. The mass swept 
up at icool is 

A£00i * 2 x 1013(1 + z)~3-6E0
5fQgAh0-a M© , 

and the “amplification” factor is therefore 

(4.25) 

'scool   
M,, 
M 

2 x 107(1 + zY 3-6£°ÍM60-4Q°-4/¡0-8 

where M6 = M/106 M© and £_4 = 104£. This exceeds 1 providing 

M < 3 x 1024(1 + zy^blClgh2 M© . 

(4.26) 

(4.27) 
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We also need to know the velocity and Mach number of the shell at icool; these are, respectively, 

and 
^cool :0.7(1 +z)1-8D;0-2/z'°-4E?62 kms-1 

1 cool 3(1 + z)1-3^^-0-2 *•- 56 ‘-"ir" 

(4.28) 

(4.29) 

where Tc is the temperature of the cooled shell, and Tr is the microwave background temperature. These are Ostriker and Cowie’s 
equations, renormalized to different values of E, M, and h. For simplicity, we henceforth assume Qg = Q. 

The shell can fragment at icool providing there exists a range of scales, a, within the shell over which pancakes are unstable 
to gravitational collapse. Ostriker and Cowie show that this requires that the shell expansion time exceed 

Crit ^ 1-3^ 5 

where tE is the cosmological time. From equations (4.23) and (4.29), fragmentation can only occur at icool if 

M > 1 x 10_16(1 + z)18-5 eZlh~8Q- 
r\5/2 

/z-8D-4|^j Mq 

(4.30) 

(4.31) 

otherwise it cannot occur until later. The typical fragment mass is that associated with the fastest growing instability at 
ícooi(>ícrit); it has a scale 

(4.32) /-1 ^ cool 5 

and hence a mass 

Mfrag « 3 x 103(1 + zY^h-^EJe0-2^0-8 ||J2 M0 (4.33) 

It is interesting that this mass is in the VMO range for reasonable values of z and E. 
In order for the Ostriker-Gowie mechanism to initiate a bootstrap process in the fraction /* at icool, one must satisfy both the 

amplification condition (4.27) and the fragmentation condition (4.31). The intersect of the two lines specified by these equations 
in the (M, z) plane occurs at 

30hOAQ°-2e°ji , M » 2 x lO1^® ]^0-6/!'13 * M0 (4.34) 

As indicated by the broken lines in Figure d, the bootstrap mechanism could then occur only to the left of this point. This means 
that it could only be initiated well after decoupling and only if the seed mass M were itself of galactic scale. Both these 
conditions would fail if, for example, one considered the sort of cluster of stars which might form at decoupling. However, equations 
(4.27) and (4.31) are the conditions for amplification and fragmentation to occur at icool. We will now show that the conditions may 
still be satisfied after icool, thus extending the (M, z) domain in which a bootstrap process can be initiated. 

During the period after icool (not considered by Ostriker and Cowie), the shell expands according to the usual “radiative” 
solution, in which 

R = Rr 
(f)“ 

v = v,n 

-3/4 -3/4 

This solution will apply until V becomes comparable to the Hubble velocity, which occurs at 

 3 / fcoo1 ícooi y ^  
-¿rR^rh*- 

3 
5i£ 

The amplification factor at this time is 

t   z I ^max I 
Çmax Ccool IT I 

\icool/ 

\ 3/4 
: 4 x 105ê“-|M6°-4(1 + z)~ 1'7Qg'02h0'04 , 

and, using equations (4.23) and (4.26), this will exceed 1 providing 

M < 1 x 102O(l + z) -4.3,1.5 h° lQ0.05 M . 

(4.35) 

(4.36) 

(4.37) 

(4.38) 

This condition is much easier to satisfy than equation (4.27). Since amplification ceases after imax, because the shell stops expanding 
relative to the cosmic flow then, amplification can never occur if equation (4.38) is not satisfied. The fragmentation condition 
at imax corresponds to 

> 3.2 
\ 3/4 

>1/ 
(4.39) 
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Fig. 5.—This shows the situations in which a cluster of stars with total mass M, exploding at a redshift z, can initiate a bootstrap process in which 
more stars form via fragmentation in the shock front generated by the explosions. The broken lines specify the conditions for amplification and fragmentation 
to occur when the shock front first begins to cool at fcool; this is derived from the analysis of Ostriker and Cowie. The solid lines specify the conditions for 
amplification and fragmentation to occur at some time after this but before the shock front stops expanding at imax. The bootstrap process can only be initiated 
within these two lines (i.e., not in the shaded region). It can therefore only occur after decoupling and, even then, only within the range of values of M indicated. 
The numbers by the lines indicate their z-dependence. We have assumed that explosive energy is released from the stars with an efficiency of order 10 ~4, 
that the shock temperature is the background radiation temperature, and that Q3 = h=\. 

and, using equations (4.23) and (4.29), this implies 

M > 3 x 10-2(1 + zfe:^-1'8^;0'9 ^j2 5 

The lines in the (M, z) plane given by equations (4.38) and (4.40) intersect at 
/T\-°.3 

M, 

z « 9 x lOhllh0-2^0-1 M « 2 X lO^:^1/!”1-0^-0-5 
7^ M0, 

(4.40) 

(4.41) 

as indicated in Figure 5. Thus, one can initiate a bootstrap process shortly after decoupling (z — 103) providing the initial seed 
mass is about 107 M0; the seed mass can be even smaller at later times. 

From equation (4.32) with icool -► icrit, the typical fragment mass at icrit is 

M) frag ' 1.5M(£./r2)crit « 8 Me (4.42) 

This would appear to be in the VMO rather than SMO mass range. However, equation (4.42) should obviously be regarded with a 
certain amount of scepticism, since many extra processes could complicate the simple fragmentation criterion invoked in deriving 
it (Vishniac 1983). In particular, Ikeuchi, Tomisaka, and Ostriker (1983) and Bertschinger (1983) have shown that the preceding 
analysis must be modified once the shell has been expanding for a time comparable to tE since the lowering of the background 
density due to cosmological expansion must then be taken into account. This apparently results in a density enhancement within 
the shock, which would reduce the fragment mass. It also means that the factor of | in equation (4.36) is inaccurate; indeed, 
the shell may continue to sweep up material long after tE if fragmentation is inefficient. Nevertheless, Carr and Ikeuchi (1983) 
show that equation (4.37) is still approximately correct. 

The qualitative implication of this discussion is clear. Providing the initial bound regions lie within the shaded lines in Figure 5, 
the formation of exploding fragments within these regions will inevitably generate a shell of new stars which collectively contain 
more mass than the original bound region. In the standard big bang model with isothermal fluctuations, the mass of the original 
region might be of order 106Q-1/2 M0, the Jeans mass at decoupling, and this is interestingly close to the sort of mass required by 
equations (4.41). If the new stars also explode, they could generate a new spherical shock front, roughly concentric with the original 
one, but with a larger value of Rcool since, in equation (4.24), z is decreased and E is increased. The process can then repeat itself 
either until M and z fall into the shaded region of Figure 5 or until Mfrag falls outside the exploding range. How this picture 
links up with the Ostriker-Cowie-Ikeuchi picture of galaxy formation is discussed in more detail by Carr and Rees (1983). 

Note that the preceding discussion assumes that all the stars at each stage can be regarded as exploding simultaneously. 
However, equation (4.24) applies only if the cooling time scale icool is much greater than the main-sequence time iMS associated 
with the stars. The latter is given by equation (3.4), and, even for stars with M > 102 M0, equation (4.23) implies that one 
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needs z < 30; for smaller stars, z has to be even less. Thus at sufficiently large redshifts one cannot regard each cluster of exploding 
stars as producing a single expanding shell. Nevertheless, once the first star has exploded and produced a shock front, the density 
behind this front will be very low. This means that, when the second star explodes, the velocity at which the new shock propagates 
outward will be very large, so it will soon reach the first shock and merge with it. Similarly, as further stars explode, their shocks 
will just catch up with and enhance the already existing one. After the time fMS, the scenario should revert to the previous one. 

The previous analysis must also be modified if the nuclear burning time of the stars exceeds their formation time. In this case, 
the values of z and are themselves determined by the individual star mass. For example, if the stars are VMOs, equations 
(4.38) and (4.40) become 

3 x 109eli h3^ > 
M 

> 7 x 105eZih~3-8Q6 
-r 

(4.43) 

This range of values corresponds to where the line z = zMS cuts the boundary lines in Figure 5. Having iMs > h thus cuts off 
the corner of the permitted (M, z) region. 

V. THE ENRICHMENT PROBLEM 

In this section we will discuss one of the most stringent constraints on the spectrum of Population III stars : the requirement 
that they do not generate an excessive amount of enrichment. This constraint derives from the fact that there exist Population I 
stars with metallicity as low as 10“1 times solar, or Z ~ 10“3. The Population III enrichment, therefore, cannot exceed this value. 
There also exist Population II stars with Z as low as 10“5 (Bond 1981). While conventional wisdom would say that Population II 
stars form after Population III, in which case the Population III enrichment would need to be below 10“5, one cannot exclude the 
possibility that both populations form at the same epoch. This is because one would expect the first bound regions in the universe 
to form stars with a spectrum of masses, and the exploding stars might not enrich the background until after the smaller stars 
have begun their main-sequence phase. For the same reason, one would only expect the amount of pregalactic enrichment to be 
reflected in a lower cutoff in the metallicity distribution of present-epoch stars if all Population III stars were large enough to 
complete their evolution by the present epoch. Thus the maximum enrichment Zmax cannot be specified precisely. The problem is 
compounded by the possibility that mixing of enriched material may be incomplete : the amount of pregalactic enrichment might 
only be defined in some sort of average way, and there could be stars with Z much less than this average value. We will assume 
10“3 > Zmax > 10“5. 

a) Limits on the Mass Spectrum from Nucleosynthesis 
The pregalactic nucleosynthesis constraint could be potentially embarrassing to the Population III star hypothesis. This is 

certainly true if the stars have a mass in the range 15-102 M©. For, in this range, numerical calculations of Weaver and 
Woosley (1980) show that the fraction of mass ejected as heavy elements can be expressed as 

Zej ~ 0.5 - (5.1) 

i.e., the yield lies between 20% and 50% in this mass range. This is related to the mass of the carbon-oxygen core: Zej = 
(M0 - 1.5 M0)/M if it is assumed that such stars leave 1.5 M0 remnants. The ejected metallicities of Arnett (1978) agree with this. 
It can be inferred that the fraction of the universe going into stars in the mass range 15-102 M0 over the whole history of the 
universe cannot exceed 

/m 
^ej 4” -^max j 

< 5 x 10'3 (5.2) 

Similar limits apply for other exploding mass ranges. Stars smaller than 4 M0 are assumed to produce no enrichment. 
However, stars in the mass range 4-8 M0 end up with degenerate carbon cores and eject a large fraction of their mass as iron 
(Zej ^ 0.2). Stars in the range 8-15 M0 may have either a large yield (Zej ~ 0.1) or a small yield (Zej ~ 0.01), depending on 
whether or not they leave condensed remnants. Stars in the range 102 M0 to Mc will form exploding VMOs and therefore also 
contribute to the Population III enrichment. The precise yield of these stars is uncertain because of the uncertainty in the fraction 
of mass lost during the hydrogen- and helium-burning phase, but, for a given value of </>L, the considerations of BAG show 
that the yield in elements heavier than helium should be 

Zej = min [(1 - (l>L), 0.5]. (5.3) 

For plausible values of </>L, Zej could lie anywhere between 0.5 and 0.1. 
These limits on /* are shown in Figure 6, where we assume Qg = 0.1, and one can use them to put restrictions on the mass 

spectrum of Population III stars. For example, if a < 2 (so that most of the density is in high-mass stars), we require 

ÍZ ■ f\1/(2 "a) 

M,mis>M( . (5.4) 
\ ^max / 
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Fig. 6.—This summarizes the various restrictions on the function Q*(M). The background light limit depends on the formation epoch of the stars, zf , but can 
provide the most stringent constraint for M < 4 M0 and for M > Mc if < 10. The black hole limit is independent of zf and provides the most interesting 
constraint for M > 106 M0. The limit applies only if the holes reside in galactic halos; unclustered holes could in principle have the critical density. The 
enrichment limit is also independent of zx, and it provides the strongest constraint over the mass range 4 M0 < M < Mc. We have assumed that the maximum 
enrichment Zmax is 10“3, although it could conceivably be as small as 10“5. The form of the enrichment limit for M > 102 M0 depends sensitively on </>L, 
the fraction of mass lost by the stars during their hydrogen- and helium-burning phase. We assume 1 ; if it were close to 1, the limit would be much weaker in 
this mass range. The form of the helium limit for M > 102 M0 (not shown) is also very sensitive to </>L. The amount of helium generated is very small, 
giving only weak constraints, if (f)L is either very small or very close to 1. 

On the other hand, if a > 2 (so that most of the density is in low-mass stars), we require 

/Z • f \1/(2“a) 

Mmin<4M0 . (5.5) 

In these equations /* is the fraction of the universe’s mass which goes into stars over every mass range. If /* = 0.5, Zmax = 10“5, 
and Zej = '0.2, the factor Zej fJZmax is 104, and the restriction on the mass spectrum can be expressed very simply. For example, 
A/max is hardly likely to exceed 106 M0 if a < 2 because of the halo dynamical limit; thus equation (5.4) requires a < 1. 
Similarly, Mmin is hardly likely to be less than 0.004 M0 (say) in any fragmentation scenario; thus equation (5.5) requires a > 3. 

b) Ways of Producing a Small Enrichment 
As indicated in § III, some of the explanations for spectral distortions in the microwave background require a pregalactic 

enrichment of 10 ~5 in the form of dust. People have also tried to explain the G-dwarf problem in terms of a prompt initial 
enrichment of Z ~ 10“5 (Truran and Cameron 1971). In this case the enrichment would not necessarily need to be pregalactic, 
but it could be. If one demands Z ~ 10“5, the inequalities in equations (5.4) and (5.5) must be treated as equalities. Clearly, 
providing Mmax > 4 Me or Mmin < Mc, it is always possible to satisfy these equalities if the values of a and Mmax or Mmin are 
suitably chosen. However, these situations are somewhat contrived. In view of the missing mass problem, it might seem more 
natural to assume either Mmax < 0.1 M0 or Mmin > Mc since, in the first case, all of the dark matter would be in low-mass stars, 
and, in the second case, it would be in massive black holes. Naively, one would infer that there could be no enrichment in either 
situation. However, we will now show that this need not be the case. 

First, the assertion that all stars larger than Mc collapse is clearly too simplistic since parameters other than mass may 
affect a VMO’s evolution. For example, the VMO could have some angular momentum or a magnetic field, and, if it is part of a 
binary system, its evolution could be affected by its companion. These complications presumably mean that some fraction of stars 
larger than the critical mass Mc may be able to explode after all. In particular, it is shown in BAG that the effect of rotation is to 
increase the critical mass by a factor [1 -b 3.5(J/J0)

2], where J/J0 is the angular momentum in units of the breakup value. This will 
have two effects: it will increase Mc to some “effective” value <MC>, associated with the average value (J); and, for any 
particular J distribution, there will always be a small fraction of VMOs larger than <MC> which have sufficient angular momentum 
to explode. Another possibility is that rotation could drive convective dredge-up of oxygen through the hydrogen- and helium- 
burning shells before core collapse. 

A second way of generating a large density of dark remnants as well as a small amount of enrichment through Population III 
stars is to postulate that there were two generations of such stars. One of these generations could contain a large fraction of the 
mass of the universe and provide the dark matter; the other could contain only a small fraction but comprise stars whose mass 
is such that they produce a large individual heavy-element yield. One fairly natural way in which this could come about is as follows : 
One would expect the density fluctuations from which the first stars derive to have a Gaussian distribution on any particular scale. 
Thus, if the first regions to bind have a mass Ml5 then the distribution in the overdensity at decoupling, <5dec, over regions of mass 
Mi should have the form 

Piô^M^dô^ = exp ^dec 
2^(M1)

2 dóñ (5.6) 
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where is the root-mean-square density fluctuation on the scale Since the time at which an overdense region binds is 
h ~ idee ^dec^. the fraction of regions which bind between tB and tB + dtB should be 

2/3 
exp P(tB)dtB — (2n) -1/2 ec 2/3 / <i,)4/3\ 

->) exp(-^J 
dtB (5.7) 

Here (tB} is the time at which most of the overdense regions would bind, i.e., the value of tB associated with ¿5|í. This is just (tB} ^ 
10“5(M1/Mo)^^3/2 s. Integrating equation (5.7) over tB implies that the fraction of the universe which has already gone into stars 
at a time t < <iß> is 

/*(4~e*p(- ^4/3 ) • (5-8) 

As this fraction rises, the heat generated by the stars will also increase, and eventually one would expect the whole universe to be 
reionized, in the manner described in § IV. Thereafter, the binding of further regions will be inhibited by Compton drag either 
until a redshift zdrag ^ 140(Q/z2)1/5, or until the stars burn out, whichever comes first (Hogan 1979). 

Eventually, more regions will bind, with further associated star formation. If these later stars are not themselves to produce 
heavy elements, we require that they be either much smaller than the first stars (e.g., because the small amount of metals present 
decreases the effective fragment mass [Silk 1977]) or much larger (e.g., because the Jeans mass has been boosted above the critical 
value Mc). Providing that one of these alternatives applies, one would expect the initial enrichment to be generated only by the 
fraction of the universe, /max, which goes into stars prior to reionization. This possibility, which was first suggested by Hartquist 
and Cameron (1977), is essentially a way of producing a bimodal mass spectrum for Population III stars, rather than a continuous 
spectrum. 

In order to determine the expected value of /max in this scenario, we must calculate the value of Q* when the universe is 
reionized (Q¿). Hartquist and Cameron use simple energetic arguments to determine and obtain the z < zs result of equation 
(4.12). However, if z exceeds zs, the considerations of § IV show that the appropriate value is somewhat larger. In any case, 
this scenario would clearly limit the initial enrichment to a value Zmax = /max Zej, where Zej is the yield of the first stars. In fact, 
equation (5.8) permits one to predict the value of Zmax and the epoch of reionization zt more precisely. For it requires that z¿ 
be the solution of equation (4.12) and the equation 

log 
. ^ 2<zb>2 ' 

(5.9) 

Thus Z; and hence Q; are determined by <zß>. The quantity A/Q0 is just 3 x 10~5 for z¿ < zs, and, in this case, z¿ ^ 5<zß>. 
A somewhat different way of producing a bimodal mass spectrum of stars would be to invoke the Ostriker-Cowie scenario 

discussed in § IV. In this case, the first generation of exploding stars may only produce a small enrichment if /* is small. However, 
since the amplification factor ^max given by equation (4.37) can be large, one may automatically generate a large density of second- 
generation stars. These later stars will collapse, without producing further enrichment, providing Mfrag is large enough. 

So far we have assumed the exploding stars form first. However, it is also possible that the nonenriching stars could form 
before the enriching ones. The self-limiting scenario discussed above might suggest that one could never have a large value for Q* 
before zdrag. However, if one believes that the 3 K background is itself generated by Population III stars or their remnants, as 
suggested in § III, then Compton drag cannot operate while the first stars are forming since no radiation is present. In this 
situation, self-limiting star formation does not begin until after the dark matter has formed, and, in contrast to the first situation, 
we now require the first stars to be more massive than the ones which form later. Lacking any reliable theory of fragmentation, 
it is difficult to judge which of these two scenarios is more plausible. However, it should be stressed that, if one wants to explain 
the distortions in the spectrum of the 3 K background as deriving from grains, then the grains definitely have to be produced 
after the bulk of the 3 K background. 

VI. OTHER NUCLEOSYNTHETIC CONSEQUENCES OF POPULATION III STARS 
In this section we examine some specific abundance features which may throw light on nucleosynthetic processes involving 

Population III stars. We will suggest that some of these features may require particular types of stars, perhaps VMOs, while 
others may impose important constraints on how many of them ever formed. Most of our considerations will be qualitative 
since, for the most part, we lack detailed quantitative information about the nucleosynthetic products of the stars. 

a) Elements Heavier than Oxygen 
Abundance ratios of heavy elements to oxygen have been found to vary in astronomical objects with metallicity (e.g., French 

1980). In particular, Sneden, Lambert, and Whitaker (1979) argue that stars with [Fe/H] < -1 have about 3 times the solar 
oxygen-to-iron ratio, with the ratio in stars with [Fe/H] > -1 decreasing with increasing metallicity until it attains the solar value 
at [Fe/H] = 0. This high [O/Fe] is found in both field metal-poor stars and globular clusters. Twarog (1980) models this 
behavior by assuming that the galactic disk was born with [O/H] = -0.5 and [Fe/H] = -1, the remaining 90% of iron and 66% 
of oxygen being produced during the lifetime of the disk. The implication is that predisk stars had different nucleosynthetic 
yields, and presumably therefore a different mass spectrum, from the postdisk ones. Since more massive stars tend to have large 
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oxygen cores, which yield higher [O/Fe] ratios than lower mass exploding ones, the predisk stars are presumably exploding 
MOs or exploding VMOs. 

Another relevant point is that observations of extragalactic giant H n regions (French 1980) show that the sulfur-to-oxygen 
ratio decreases with increasing oxygen abundance. This contrasts with the situation in the disk of our own Galaxy, where sulfur 
and oxygen are not clearly correlated. Since sulfur is a direct product of oxygen burning, this ratio may be a good indicator of 
what sort of exploding oxygen cores are required. Field metal-poor stars also have enhancements of oxygen-burning products: 
in párticular, calcium, silicon, and titanium. 

It is interesting to inquire whether VMOs exploding in low-metallicity regions could account for these features. In BAG, we 
calculated the fraction of a VMO’s oxygen core which undergoes burning. VMOs with M0 < Moc were found to completely disrupt, 
except perhaps when M0 ^ M0m ~ 30 M0, the minimum mass required for oxygen cores to experience the pair-instability. We 
will not make a large error in assuming that all burned products are ejected for M0w < M0 < Moc, and that none are if 
M0 > Moc. The fraction of the oxygen core mass which is burned and ejected can be approximated by equation (4.21). Comparison 
with the numerical results of Arnett (1973) and Woosley and Weaver (1982) suggests f0 may be somewhat smaller; also, b may be 
smaller for M0 ~ Moc and larger for M0 ~ M0m. We take our results as indicative; more detailed numerical computations over 
a wide mass range would be needed to improve the yield formula. 

If the minimum and maximum masses in our assumed power-law spectrum span the range M(M0m) to Mc, and if M/M0 is mass 
independent, then a simple relation can be obtained for the ratio of oxygen-burning products to oxygen. Using equation (4.21), 
we obtain 

where 

(6.1) 

/ 2- « \ [(Mqc/MqJ2^-“ - 1 
\b + 2-a)[l- (M0C/M0m)2-a (6.2) 

The yield of oxygen-burning products is sensitive to the stellar mass spectrum since more massive VMOs burn more oxygen 
before exploding. For example, using b = 1.8 and f0 = 0.7, the ratio given by equation (6.1) is 0.36 if a = 2.35, and it decreases 
from 0.51 to 0.09 as a increases from 0 to oo. The solar ratio is 0.48 (if we disregard the carbon-burning product neon). BAG also 
calculate the iron yield of VMOs. While their result is certainly an overestimate, the results of Woosley and Weaver (1982) 
confirm that one expects low values of Fe/O, as required. 

b) Primary Nitrogen 
It is usually assumed that nitrogen is produced by CNO processing in stars after a prior generation has produced CO. If 

nitrogen is “secondary” like this, one expects (N/O) cc (O/H)2. However, Pagel and Edmunds (1981) have reviewed arguments 
which suggest that some nitrogen may be primary (i.e., produced at the same time as the oxygen), so that N/O is constant. 
For example, though there is a great deal of scatter in the data, irregular and compact galaxies with a range of low metallicities 
(such as the SMC and LMC), as well as very metal-poor stars (Barbuy 1983), seem to have N/O approximately constant. A 
possible solution is that the CNO processing of later-generated metals superposes secondary nitrogen upon primary nitrogen 
produced by Population III stars. 

A mechanism for this may be found in VMOs. If convective dredge-up can pass carbon and oxygen from the helium-burning 
core through the hydrogen-burning shell, in such a way that it is CNO processed to nitrogen before entering the hydrogen 
envelope, then nitrogen emission may occur in a wind driven by nuclear pulsations. Since the adiabatic index is near 4/3 in 
radiation-dominated stars, it does not cost much energy to pass metal-rich material into metal-poor zones, so this scenario is not 
implausible. Either meridional circulation or convective penetration could be the mechanism for an upwelling of nitrogen. 
Woosley and Weaver (1982) already have indications from their 500 M0 Population III star evolution that this dredging may 
occur. If such a mechanism allowed metals to be ejected from stars with M > Mc, then a strong limit could be placed upon the 
number of black holes resulting from Population HI VMOs (cf. Klapp 1982; Tarbet and Rowan-Robinson 1982). 

c) Helium Production 
One of the chief successes of the standard big bang picture is the prediction of the helium abundance generated by cosmological 

nucleosynthesis. An abundance Y ^ 0.23 would be generated if the photon entropy per baryon, Sy = 5 x lO8^/i2)-\ were 
7 x 1010 (Yang et al 1979); here QN specifies the nucleon density at the epoch of primordial nucleosynthesis. In the standard 
model, helium is overproduced if Sy is smaller than this unless neutrinos are partially degenerate. On the other hand, we saw in 
§ III that VMOs could, in principle, have generated part of the background radiation; this would necessitate a smaller primordial 
entropy per baryon ratio than today. In addition, BAC show that VMOs could have generated a lot of helium through winds. 
Thus the formation of Population III stars may involve an overproduction of helium on account of both an increased primordial 
abundance and a nonprimordial contribution. 

If Population III remnants are to provide the missing mass, one may need to give up the conventional cosmological 
nucleosynthesis picture anyway. For, in the standard picture, the implication of Y not exceeding 0.23 in some regions of the 
universe is that ÛN h2 < 0.007 ; in particular, the density of remnants which arise after cosmological nucleosynthesis must satisfy 
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this. Thus, the dark matter problem cannot be solved by black holes or low-mass stars of nonprimordial origin unless one 
modifies the conventional cosmological nucleosynthesis scenario. This is the well-known argument that the bulk of the mass in the 
universe was in nonbaryonic form at the epoch of primordial nucleosynthesis (Bond, Efstathiou, and Silk 1980; Schramm and 
Steigman 1981). 

These problems are not, in fact, insurmountable. For example, if the baryon asymmetry in the universe is generated as a 
consequence of baryon-nonconserving processes occurring at very early times, then a lepton asymmetry would presumably also 
be generated. In standard grand unified models (Georgi and Glashow 1974; Harvey et al 1982), one would expect the lepton 
asymmetry to be of order the baryon asymmetry. This leads to a degeneracy parameter (chemical potential divided by temperature) 
for neutrinos which is proportional to Sÿ1 and thus exceedingly small unless Sy is itself small. However, scenarios have been 
constructed in which a much larger lepton number could arise from the grand unified era (Kolb 1981), leading to large 
neutrino degeneracy parameters even for large Sy. In these models, the reaction e~ + /? -> n + ve is inhibited by Fermi statistics, 
and so the neutron-to-proton ratio is smaller than in models without degeneracy; this implies that a smaller helium abundance 
is generated during primordial nucleosynthesis. The extreme example of this is a cold universe (Sy < 1) with a lepton-to-baryon 
ratio in excess of 1.5: no neutrons and hence no alphas form (Kaufman 1970; Carr 1977h). In such a universe, pregalactic 
stars would be needed to generate both the 3 K background and the observed helium. On the other hand, if pregalactic stars could 
be shown to be incapable of significantly affecting either Sy or T, then universes with Sy <1 x 1010 would become untenable. 

It seems clear that stars smaller than ~102 M0 cannot produce a value Y æ 0.23 without overproducing heavy elements 
at the same time. VMOs with M > Mc, however, could avoid ejecting any metals, even though they could eject a lot of helium 
as a result of pulsations (Talbot and Arnett 1971). If the fraction of mass lost </>L is less than (1 — ^)/(2 — IJ), where ^ prescribes 
the initial helium abundance, then BAC find that the fraction of mass returned as extra helium is 

AY = (l-^)<A¿. (6.3) 
Larger mass loss fractions lead to smaller helium yields, so the maximum yield occurs when </>L has the critical value. Thus 

(AY)max = 0.25(1-Yÿ/(I-YJ2). (6.4) 

This corresponds to a situation in which the mass loss just keeps up with the shrinkage of the convective core. If ^ = 0.23, as 
would apply in the conventional cosmological nucleosynthesis scenario, (AT)max = 0.17, a value also obtained in the numerical 
calculations of Talbot and Arnett (1971). If Yi — 0, as would apply in a cold universe with no cosmological nucleosynthesis, 
(AT)max = 0.25. It is, of course, intriguing that this is so close to the observed abundance. 

We stress that helium generation would be reduced if </>L was smaller than the critical value. However, in BAC we discuss 
a mechanism whereby, for Population I stars, the helium-rich envelope above the final helium core and hydrogen-burning shell 
could be ejected via a super-Eddington luminosity. During this catastrophic mass loss, M becomes so large that all the synthesized 
helium above the hydrogen-burning shell could be ejected. This would produce exactly the optimum yield (Ay)max derived above. 
Woosley and Weaver (1982) find a similar mechanism operative in their 500 M0 Population III stars. While it drives the helium- 
rich envelope to very low densities (~ 10"14 g cm '*), it does not eject it. However, winds would presumably be enhanced in such 
low-density envelopes, and this could lead to helium ejection. 

We have described elsewhere (Bond, Carr, and Arnett 1983) a scenario in which VMOs with M > Mc can generate the entire 
primordial helium in this way. However, we caution that the problem cannot be solved without further study of nucleosynthesis, 
convection, and mass loss in VMOs. For example, it may turn out that too many metals are dredged up in either the hydrogen- 
or helium-burning phase (cf. the discussion of nitrogen production), in which case one could not invoke VMOs to generate the 
helium. On a more positive note, we emphasize that, even at low metallicities, the helium abundance appears to vary widely 
with location (Peimbert 1980). It is not clear how much of this spatial variation is due to observational uncertainties and how 
much is intrinsic, but VMOs could certainly impose fluctuations of say AT ~ 0.05 upon a primordial background value of 
T ^ 0.23. In a hot universe one could clearly use these sorts of considerations to constrain the amount of matter going into 
VMOs. However, we do not discuss these constraints explicitly since they are obviously very dependent on the unknown 
parameter </>L. 

d) Deuterium 
Primordial deuterium provides another strong nucleosynthesis argument favoring a low baryon density, high entropy, big bang 

model. Standard models with Sy < 5 x 109 produce XD < 10"5 (Yang et al. 1979), and having partially or completely degenerate 
neutrinos does not aid in deuterium production. VMOs are like other stars in that they destroy rather than create deuterium. 
Indeed, since VMOs are initially almost completely convective, one would expect all deuterium processed through them to be 
destroyed. The deuterium problem may therefore impose another strong constraint on how much of the universe can have gone 
into Population III VMOs: the present deuterium abundance would have to be smaller than its initial value by a factor (1 — /*) 
in a hot universe. In a cold universe, of course, the problem is to produce any deuterium at all. We note, however, that 
Population III stars or their remnants may well be associated with particle acceleration mechanisms, generating cosmic rays 
and y-rays. Epstein, Lattimer, and Schramm (1976) show that spallation of helium by cosmic rays could generate deuterium 
providing it occurs at a large redshift (to avoid overproduction of y-rays when the universe is optically thin to them), but the 
cosmic rays have to be of high energy (>30 GeV) to avoid overproduction of lithium. Ozernoi and Chernomordick (1975) and 
Bond, Carr, and Hogan (1983) have discussed the possibility of generating deuterium by photodissociating helium with y-rays. 
It is not inconceivable that these sorts of mechanisms could produce the tiny amount of deuterium required. 
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TABLE 2 
Cosmological Explanatory Power of Different Types of Stars 

VMO VMO 
Cosmological Feature LMO MO (M < Mc) (M > Mc) SMO Comments 

Dark matter    v ? v v LMOs need M < OA MQ. QB too small for MOs unless 
much accretion. SMOs excluded by dynamical effects if 
M>106Mo. 

3 K background  v y Only black hole accretion can produce radiation early 
enough (z* ~ 103) for it to be thermalized by free-free 
processes. The holes need Qß ~ 0.1, excluding large SMOs. 

3 K distortion   ? v v v Black holes not necessarily required ; nuclear burning 
suffices if Q* ~ 0.1 and z* ~ 102. Need some grains and 
hence some exploding stars, but MOs may overenrich. 

Helium  v Only VMOs with M > Mc can avoid overenrichment. 
They produce helium via winds in their hydrogen- and 
helium-burning phase. 

Enrichment   v v D* must be small, viz., self-limiting star formation. SMOs 
probably collapse completely if Z = 0 initially. 

Oxygen anomaly   v v Either VMOs or MOs could explain this but very 
uncertain. 

Primary nitrogen  v v Conceivably produced by upwelling in VMOs but 
uncertain. Could severely constrain number of M > Mc 
remnants. 

Galaxies  v v ? Need exploding stars. SMOs probably do not explode if 
Z = 0 initially. M > Mc VMOs may eject envelopes. 

VII. DISCUSSION 

The considerations of this paper may be seen as placing various limits on Q*(M, z), the density of Population III stars of mass M 
which formed at a redshift z. Which is strongest depends on the particular values of M and z: roughly speaking, the background 
light limit is best for low M, the black hole limit is best for high M, and the nucleosynthesis limit is best for intermediate M. 
The combined limits are represented in Figure 6. Only the light limit is sensitive to z; and only if z < 10 does it become the most 
interesting one in the M > Mc regime. Clearly, Population III stars can provide the missing mass in halos and clusters only for 
M < 0.1 M0 or for M > Mc and z > 10. However, stars in the intermediate range could still be used to reionize the universe 
or provide a burst of pregalactic enrichment or generate galaxies through explosions. The form of the Q*(M) limits in Figure 6 in 
turn constrains the mass spectrum of Population III stars. Thus, if we know any one of the parameters a, Mmax, Mmin in 
equation (1.1), we can infer limits on the other two. Some of these spectral constraints have already been given explicitly in 
§§ II and V. For example, we have seen that, for a large total star density, the spectrum can intersect the mass range 
4 M0 < M < Mc only if a > 3 or a < 1. 

The limits on £2*(M, z) are obviously of interest in their own right, but it is of particular importance to examine what light 
they throw on the plausibility of the various cosmological roles attributed to Population III stars. In Table 2, we assess which types 
of star could explain the particular cosmological features discussed in this paper. In terms of the number of check marks, collapsing 
VMOs fare best, while LMOs fare worst. Of course, this mode of assessment may be misleading. If there is more than one 
generation of Population III stars, each in a different mass range, there would be no need for the same type of star to explain 
more than one cosmological conundrum. On the other hand, there is clearly an aesthetic appeal in having a single type of star 
explain as much as possible. 

An immediate implication of Table 2 is that no type of Population III star can perform all of the cosmological roles. However, 
since the mass spectrum of Population III stars could span several types of star, even if it is continuous, one would not necessarily 
require this anyway. One might expect a continuous spectrum to span at least two neighboring columns of Table 2, and it is 
therefore interesting to consider the combined explanatory power of pairs of neighboring columns. On this criterion only the 
two VMO columns can explain everything. One should interpret this result with caution in view of the aesthetic character of 
Table 2, but it obviously lends support to the notion that Population III stars were VMOs. 

Recently Ober, El Eid, and Fricke (1983), Woosley and Weaver (1982), and Tarbet and Rowan-Robinson (1982) have also 
considered the cosmological roles of Population III stars. Ober et al. and Weaver and Woosley have focused on their nucleo- 
synthetic yields. In particular, they have argued from the theoretical estimates of the relatively low yield of elements around 
calcium from MOs that a pregalactic generation of VMOs may be required. Tarbet and Rowan-Robinson have considered the 
circumstances under which Population III stars could explain some combination of the first five cosmological conundrums in 
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: Table 2. While questioning some of their stellar evolution assumptions, we are in broad agreement with their conclusion that, 

^ in order to solve all these conundrums, Mmax must be large and a must be small. 
f We should point out that only the second, third, and last of the cosmological roles listed in Table (2) definitely require that the 
I Population III stars form at a high redshift (z > 102). The other roles could equally be played by the sort of Population III 
^ stars which might form in pancake fragments at relatively low redshifts (z < 10). Even in the latter context, VMOs would appear 

to be the most plausible candidates as judged by the check marks in Table 2. This also applies if the Population III stars form 
after the protogalaxies have bound, though before Population I and II stars. 

Finally, we stress that the following observations would help one to determine the possible existence and characteristics of 
Population III stars: (1) the confirmation of spectral distortions in the 3 K background; (2) the determination of the far-infrared 
background spectrum; (3) ascertaining that there is a definite lower cutoff in the metallicities of Population II stars; (4) the 
confirmation of various abundance anomalies; and (5) the detection of a gravitational wave background. 
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