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Abstract. The ecliptic as a mean orbital plane of the Sun in Le Verrier’s theory is a mean orbital plane
determined from the secular parts of the longitude of the ascending node and the inclination of the Sun with
respect to a reference plane. On the other hand, the ecliptic in Newcomb’s theory is so chosen that the
latitude with respect to his ecliptic does not have cos g nor sin g where g is the mean anomaly of the Sun.
The two definitions are really different in spite of their apparent similarity. Standish (1981) defined the
ecliptic from a kinematical point of view, and it is shown that the ecliptic defined by Standish (in the rotating
sense) does coincide with the ecliptic defined by Newcomb.

1. Introduction

The ecliptic, which is one of the fundamental reference planes in the dynamics of
the solar system and astrometry, is usually understood as a mean orbital plane of the
Sun or more exactly the barycenter of the Earth and the Moon system respect to the
barycenter of the solar system. The definition of the ecliptic as a mean orbital plane
of the Sun seems to be unique but the various authors have given various definitions
of the ecliptic. In this paper, we discuss such various definitions of the ecliptic and
investigate the relationships among them. As a result, we recognize only the two
different ones in principle.

The first one comes from the Le Verrier’s theory and is a mean orbital plane
determined from the secular parts of the longitude of the ascending node and the
inclination of the Sun with respect to an inertial reference frame. His definition of
the ecliptic is simple from a theoretical point of view. We call the ecliptic coordinates
by Le Verrier simply Le Verrier’s framework. If we use Le Verrier’s framework, the
observed declinations of the Sun near the soltices have a constant perturbation and
the observed declinations of the Sun is not zero near the equinoxes. The second one
comes from Newcomb who, avoiding the above situation, defined the ecliptic so that
the latitude with respect his ecliptic does not have cos u or sin u (u is the argument of
latitude). Newcomb did not explicitly mention the above definition, but we could
only guess what Newcomb’s ecliptic is from his Solar Tables. In fact his tables do
not contain terms with argument u in the periodic perturbations. In Section 2 we
discuss the relationships between Le Verrier’s framework and Newcomb’s framework
and give the numerical differences between them. Newcomb defined ecliptic from a
geometrical point of view. In Section 3 we give a kinematical interpretation of
Newcomb’s framework. Standish (1981) defined the mean ecliptic in the rotating
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framework. In Section 4 we show the ecliptic defined by Standish does coincide with
the ecliptic defined by Newcomb.

We recommend that the definition by Newcomb is better from a rather intuitive
point of view, similar to the definitions of the eccentricity and inclination of the Moon
by Brown in his Lunar Theory. Furthermore, the observation analyses have been
referred to his framework so far, and thus Newcomb’s definition provides us with the
continuity of the results.

2. Newcomb’s Definition of the Ecliptic

The coordinates r of the Sun referred to an inertial reference frame, say the equator at
an epoch, are expressed by

rcos u
r=R,(—Q)R,(=1)|rsinu |, (1)
0

R, (0)and R, (0) are rotational matrices by the angle 6 around the x-axis and the z-axis,
respectively, and are given explicitly by Mueller (1969). Q is an osculating longitude
of the ascending node and I is an osculating inclination (obliquity) with respect to
a fixed reference plane, i.e., the equator at a definite epoch, and u is the argument of
latitude. Q and I are expressed by

0=0+46Q, and I=1I,+36I, 2

where the subscripts s and p stand for the secular part and periodic part of
each element, respectively. Here the secular parts mean those which do not depend on
longitudes of the Sun and disturbing planets among the perturbations. Now we
introduce a moving reference plane, P, defined by Q  and I_ (see Figure 1): the
x-axis is along the ascending node of this plane and the y-axis is in this plane. The
coordinates of the Sun referred to this plane are given by

rcos iicos f
i =|rsinicos f| =R, (I)R, (Q)r. (3)
rsin f§

We call F-coordinates the ecliptic coordinates by Le Verrier or simply Le Verrier's
framework. Substituting Equations (1) and (2) into (3) and keeping first-order terms
with respect to 62 and 1, we have

d=u+0Q cosl, (4)
sinf=f= —6stin1scosu+51psiﬁu. (5)

The periodic perturbations, 6Q  and éI, due to disturbing planets, have terms of
argument 2u:

sin Iséﬂp = A sin 2u + B cos 2u + (periodic terms), 6)
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Fig. 1. Relations of various coordinate systems: P, is the mean ecliptic defined by Le Verrier; P* is the
osculating plane referred to the moving Le Verrier coordinate system (P,).

and
ol ,=Csin 2u + D cos 2u + (periodic terms).

From the terms with argument 2u, periodic terms with argument u appear in the
expression of the latitude: -

B = M sinu + N cos u + (periodic terms), (7)
where
M= —(4+D)y2 and N=(C— B)2.

The remaining periodic terms include terms with argument 3u, which are extremely
small and are ignored in the following discussion. The obliquity of the ecliptic is well
determined from observations of the declinations of the Sun around the soltices.
If we use the ecliptic as a mean orbital plane defined by Q_and I_, observed declina-
tions near the soltices (u = + n/2) include always M and the latitude is not zero when
u = 0. In order to avoid this difficulty arising from use of this ecliptic, we introduce
another moving reference plane defined by

Q,=Q,+dQ where Q= — N/sinl, (8)
and

Iy=1,+0d1 where dI=M.
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The latitude referred to this new reference plane is
By=FB+sinl cosudQ—sinud'l
=(M —d&'I)sinu + (N +sin I _6'Q) cos u + (periodic terms)
=0 x sinu + 0 x cos u + (periodic terms). )

The ecliptic in Newcomb’s Solar Tables is so defined that the ecliptic does not have
the motion of short periodic terms with respect to a fixed reference plane and that the
latitude referred to this ecliptic (or the latitude with respect to Newcomb’s framework)
does not have cos u or sin u terms. The moving plane defined by Q, and I, satisfies
Newcomb’s requirements of the ecliptic.

The expression of the latitude, so as to satisfy the Newcomb’s requirement, can
be derived from the fundamental numbers of the amplitudes of sin I .6Q , and ol

given by Le Verrier (1858). Using Le Verrier’s numerical values we can calculate
o'l and 6'Q:

o'l = 07004, and 6'Q = 07091, (10)

which are referred to the equator of 1850.0. When we use VSOP80, which is newly
developed by Bretagnon (1980), ' and §'Q referred to the equator of 2000.0 are

o' = 0700329, and 6'Q = 0709351. (11)

Standish (1981) derived 6’1 = 0700334 and 6'Q = 07093 66 from the different point
of view (see Section 4). These numerical values are slightly different from those in
Equation (11); this difference originates from the fact that Standish’s values are
essentially based on the secular perturbation by Newcomb while the values of
Equation (11) are based on the periodic perturbations by Bretagnon.

It is worthy to note that the latitude obtained by Le Verrier does include sin u
and cos u terms. Therefore, the ecliptic in Le Verrier’s Solar Tables (1858) is defined
Q. and I, which is different respectively, from the ecliptic defined by Newcomb, by the
quantities 6'Q and ¢'I.

3. A Kinematical Interpretation

We are constructing the relation between Newcomb’s framework of the ecliptic
coordinates and the osculating elements kinematically. First of all, we consider
only the secularly changing case for the longitude of the ascending node and the
obliquity, and assume that the Sun is revolving uniformly within this orbital plane,
for brevity, taking aside the equation of center as well as the perturbations. A justi-
fication for this procedure is given at the end of this section.

Let u, be the argument of latitude in this case; then the equatorial coordinates
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r is, under the above assumption, given by

X
z
where
CoS Uy,
ro=| sinu, (13)
0

provided that only the motion on the sphere of the unit length is here considered for
brevity. I, and Q, are assumed to be expressed by

Iy=1,+1t+ 1,2 +1,t>+ -
and

Q=Qt+Q,° +Q,0>+ . (14)

It is true that the instantaneous velocity vector of this hypothetical sun (hereafter
we omit ‘hypothetical’) does not lie within the moving orbital plane defined by
I, and Q, . On the contrary, we may obtain an osculating plane of the Sun, which is
not necessarily in coincidence with the moving orbital plane, by the following
conditions:

r=R,(— Q)R (= I')royu'), (15)
%;=(n+5Nn)R3(—Q’)R1(—I’)-6%;(,u—’) (16)
where
I'=1,+06y1, (17)
Q' =Q,+3,Q,
U =uy + oyu,
and

du
n = —( = constant).
dt

After some manipulation, we have indeed the osculating elements, and the deviations
(the quantities affixed by dy) from the mean elements given by Newcomb, as follows:

b I—I—Ns'n —XsinI 2
wl=- in uy, cos uy . sin I, cos? uy,
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I Q
0y Q=—=>—sin*u, — —Lsinu, cosu,, (18)
nsin I n
IycosI
= - NTT" NG N 1
Oyu= sin uy, + —cos I, sin u, COs u,,

nsin i, n
and
dyn =298, cosI,,

where the dot above characters represents the derivation with respect to the time
argument ¢.

It is true, therefore, that, if we take the plane defined by the osculating elements,
Q' and I', (neglecting du, from the argument of longitude in this new plane), we have
again a uniform motin (of n + é, n) within this plane. In other words, we can have the
latitude referred to this plane always being zero, from the condition (15). Now, this
case includes short periodic terms in the obliquity and the longitude of ascending
node, as will be seen from Equation (18).

If we take only the slowly varying part taking aside the periodic parts of sin 2u,
or cos2u, in oyl and 6,Q, we have

8,1 = —Q,sinl,/2n,
6, Q=1,/2nsinl,), (19)
dyu= —1I,cosl,/(2nsinl,),
dyn=0yn=Q,cosl,.
If we take the coordinates referred to this framework, we have

cos A" cos f’
sinA’cos B’ | =R, (Iy+ oy )R, (Qy + I)r
sin 8’
cos (uy — I, cos I,,/(2nsin 1))
=| sin(uy — I, cosI,/@nsinl,)) |. (20)
(I cosuy + Q, sin I sinly)/2n

from which we can easily have

sin ' = ' = (I, cos uy + Q, sin I sin u, )/(2n), (1)
retaining only the first order perturbation. Therefore, we must have

oyl = —01,

o= —0Q, (22)
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comparing Equation (21) with Equations (7), (8), (9) and (19); this shows that the
application of dyI and §,Q to the Newcomb’s framework provides that of Le Verrier (see
also Equation (36)).

In this section we have taken aside the equation of center and the perturbation in
longitude; however, this is justified because such periodic terms do not affect directly
the position of osculating plane. Moreover, the change of Newcomb’s framework to
that of Le Verrier can only affect the sin ¥ and cos u terms in latitude but not other
periodic perturbations. From this point of view, our procedure in this section, even
though simple, holds the essential part of the problem, and can be justified.

4. Another Kinematical Interpretation by Standish

The velocity vector of the Sun in the moving reference plane defined by I and Q

is
dF_d (F\_Fdr dfF ’
a o dt \r)Trar TTar\r ) (23)
where r is the radial distance. The definition of 7 should be referred to Section 2.

The angular momentum vector G with respect to the ecliptic coordinates by Le
Verrier is given by

L (dF\ (. d (i
G=rx<a—t>—r<rx a—t(;>> (24)

The vector G is not equal to the angular momentum vector in the inertial reference
frame because of the motion of the reference plane. The components of G in the Le
Verrier framework

G;=rXbsinu+udéQ,sinl),
G;= —r*(bcosu + i dl ), (25)
G, =r*i,

where
= —06Q sinI cosu + ol sinu,

which are easily calculated with use of Equations (3), (4), (5), and (24). Here we neglect
the second-order terms with respect to 6Q  and 61,. Now we determine a plane, P*,
which is perpendicular to G. In order to determine the longitude of the node Q* and
the inclination I* of the osculating plane P*, we express components of G in a reference
frame of which x,, axis is towards the node of the osculating plane and y,  axis is in
the fixed reference plane (see Figure 1):

G,. = R;(Q—Q)R, (- I,)G. (26)
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From (26), we have

~ 2y -
G, =r°bsinu,

os

G, =r’(—bcosl cosu—ticosIdl, —usinl), (27)

~

G, =r’(—bsinl cosu—usinI 6l —ucosl).

Zos

The components of G are expressed in Xos— Vos — Zos SyStem
G, =GsinI*sin(Q* - Q),
G, = —GsinI*cos(Q* - Q), (28)

Gz = G cos I*,

os

where G is the angular momentum: G = r24i. Now we define I* and 6Q* by
I*=1 +6I* and Q*=Q_+ Q. (29)

Substituting (29) into the third equation of (28) and comparing its result with the third
equation of (27), we easily derive

OI* = oI, + (b cos u)/u. (30)
From the remaining Equations (27) and (28), we obtain
0Q* =0Q  + (bsin u)/(usin I). (31)

From the definition of the osculating elements of Q and I, we have (see Brown and
Shook, 1933)

dr . dQ | | _0 (32)
dtsmu i sin] cosu =0,

which means that the velocity of a particle does not have the component perpendicular
to the osculating plane. Substituting I =1, + 61, and Q =Q_ +6Q  into Equation
(32) and keeping the first-order terms of 6Q ,and 61 ,, we have

b= —0Q sinI cosu+ 6l sinu
=Q sinl cosu—I sinu. (33)
Then we obtain from Equations (30), (31), and (33)
OI* = d1 , + (€ sin 1,)/(24) + (€ sin I cos 2u — I_sin 2u)/(2u), (34)
and
oQ* = 0% — I /(2usin 1) + (Q sin I sin 2u + I cos 2u)/(2isin I).  (35)
The secular parts of 6I* and 6Q* and are not zeros, but we have

(81*), = (Q, sin I )/(2n), (36)
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and
(0Q*) = — I's/(2n sin [ ),

where n is the sidereal mean motion of the Sun. Here we neglect the square of the
eccentricity of the Sun. Now we are another mean orbital plane defined by

I,=1 +(5I*), and Qg=Q_+(59%),. (37)

The mean orbital plane thus derived does not coincide with the mean orbital plane
defined by Q_and I_. We shall show relationships between (6Q*), and (61*), of (36)
and &'I and §'Q of (8). By substituting the expressions of periodic perturbations of
sin I;6Q , and 61, (Equations (6)) into (33) and comparing coefficients of sinu and
cos u, we obtain

I.=(C-Byu and Qsinl = —(4+ D). (38)
Combining Equations (38), (7), (8), and (36), we finally obtain

(0I*),=0'1 and (0Q*) ='Q (39)
thus we have

Ig=1, and Qg =Q,. (40)

The relation of Equation (40) shows that a mean orbital plane defined by Standish
kinematically is such that the latitude referred to this plane does not have sin u nor
cos u terms. Therefore, the ecliptic defined by Standish (in the rotating sense) does
coincide with the ecliptic defined by Newcomb.

The expression (36) can be expressed in terms of precessional quantities = and

M / ECLIPTIC OF EPOCH

ECLIPTIC OF DATE

Fig. 2. Rotation of the mean ecliptic.
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IT (Lieske et al., 1977). From the spherical triangle y, N M (see Figure 2), we have
dI,= —cos N\M dn — sin nsin N M dII,

sin I dQ_ = sin N.M dn + sin = cos N M dII. (41)
Since contribution from dIl is of second-order, we obtain

I,=7cosTl and Q= (iisinI)sinl,. (42)
and then

(0I*), = (nsinI1)/2n) and (6Q*) = — (i cosII)/(2nsinl ), (43)

which coincides with the result obtained by Standish (1981).
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