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ABSTRACT 
We have investigated the envelopes of nonmagnetic neutron stars using the best available 

opacities and equation of state. The temperature at the inner boundary of the envelope, Tb, 
is found to be very nearly a universal function of the parameter Tt/gs, where Ts is the eifective 
surface temperature, and gs is the surface gravity of the neutron star. This result is used to 
derive a number of other scaling relations, to investigate the effects of general relativity on the 
thermal structure of the envelope, and to compare envelope calculations by different workers. 
Tests of the sensitivity of the computations to variations of the input physics show that the 
accuracy of the Tb versus Ts relation depends largely on having accurate values for the conductive 
opacity in the region where it is dominated by electron-ion scattering. In our calculations 
we use the conductive opacities calculated by Yakovlev and Urpin, which are the most accurate 
ones available. For a given Tb we find luminosities that are 2-2.5 times lower than those calculated 
using Flowers and Itoh’s calculations of the conductive opacities. 
Subject headings: dense matter — relativity — stars: interiors — stars: neutron 

I. INTRODUCTION 
The first calculations of the cooling of neutron stars 

were performed almost 20 years ago (Chiu and 
Salpeter 1964; Morton 1964; Tsuruta 1964). In the 
intervening years a number of additional models were 
calculated, for example, by Tsuruta and Cameron (1966), 
Tsuruta (1974), Malone (1974), and Maxwell (1979) (see 
also the reviews by Tsuruta 1979, 1980), and most 
recently, results obtained using the Einstein Observatory 
and other X-ray satellites stimulated a spate of activity 
in this field (e.g., Urpin and Yakovlev 1979; Glen and 
Sutherland 1980; Van Riper and Lamb 1981; Tsuruta 
1981a; Nomoto and Tsuruta 1981; Richardson et al 
1982). 

The neutron star X-ray luminosities (or the upper 
limits on the X-ray luminosities) measured by the 
Einstein Observatory (see, e.g., Helfand, Chanan, and 
Novick 1980; Helfand 1981a, h) are in some cases com- 
parable with those derived from the recent theoretical 
cooling calculations for neutron stars without pion 
condensates. However, the various cooling calculations 
give rather different results, with the surface luminosities 
differing in some cases by an order of magnitude or more 
for seemingly similar models. Pinpointing the reasons for 
the differences between the calculations is difficult 
because different workers often use different input 
physics for the equation of state, neutrino emissivities, 
specific heats and opacities and usually choose different 
stellar masses when reporting results. 

There are two rather different and separate problems 
involved in the study of neutron star cooling. One is 
the thermal evolution of the high-density core, which 
contains nearly all the mass and heat content of the star, 
and the second is the thermal structure of the envelope, 
i.e., the outer region of the star where densities are less 
than lO^-lO11 g cm-3. In this paper we shall concen- 
trate on the second problem. We will show, among other 
things, that it is possible to gain valuable insights into 
cooling calculations by studying neutron star envelopes 
separately from the specific hydrostatic and thermal 
structure of the stellar cores. Calculations similar in 
spirit to ours have previously been reported by Urpin 
and Yakovlev (1979). 

The structure of the paper is as follows: In § II we 
discuss the general relativistic equations of the structure 
and evolution of nonmagnetic neutron stars and show 
that they can be reduced to a single equation for calcula- 
ting the thermal structure of neutron star envelopes. 
The physical input, i.e., the equation of state and the 
opacity, needed to solve the thermal structure equation 
is investigated in § III, and § IV contains the numerical 
results of our envelope model calculations. There we 
also show that the thermal structure of neutron star 
envelopes is determined by the single parameter T^s, 
where Ts is the effective surface temperature, and gs 
is the surface gravity of the star. This important result 
is used in § V to derive a number of other scaling 
relations. In § VI we investigate in detail the effects of 
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general relativity on the envelope thermal structure, and 
in § VII we present the results of a sensitivity analysis 
which pinpoints the regions in which it is most 
important to know the opacity well in order to obtain 
a reliable relationship between the temperatures at the 
outer and inner boundaries of the envelope. The results 
of our envelope calculations are compared with those of 
other workers in § VIII, and § IX gives a short summary 
of our major conclusions. 

II. THE THERMAL STRUCTURE EQUATION 

The hydrostatic equilibrium and thermal evolution 
of spherically symmetric, nonrotating, and nonmagnetic 
neutron stars are determined by six ordinary differential 
equations (eqs. [4]-[9]), which are the relativistic 
generalizations of the Newtonian equations of stellar 
structure and evolution. In a fully dynamical calculation 
of neutron star thermal evolution these equations must 
be solved numerically for each specific neutron star 
model. This is generally a very time-consuming and 
costly procedure, but the problem can be simplified 
considerably by dividing the neutron star into two 
regions which can be studied separately: the high- 
density interior, which we shall call the core, containing 
practically all the mass and thermal energy of the star, 
and an insulating envelope, which surrounds the core 
and which has no sources or sinks of energy. For 
sufficiently old stars the redshifted temperature (Tc^^2) 
in the core is uniform, whereas temperature gradients 
can be appreciable in the envelope. 

In this section we will show that for most neutron 
stars more than a few tens of years old, the full set of 
general relativistic equations can to a very good degree 
of approximation be reduced to a single equation in the 
envelope. This equation, which determines the thermal 
structure of the envelope, can be written as 

dT _ 3 K Tt 
(1) 

where T is the temperature, P is the total pressure, k is 
the total opacity of the stellar matter, Ts is the effective 
surface temperature, and 

(2) 

is the proper surface gravity of the star (i.e., the accelera- 
tion due to gravity as measured on the surface). In 
equation (2) G is the Newtonian gravitational constant, 
M and R are the gravitational mass and radius of the 
star, respectively, and eAs is the surface value of the 
relativistic length correction factor 

e A 2Gm\ -1/2 

c2r / (3) 

where c is the velocity of light, r is the Schwarzschild 
radial coordinate, and m(r) is the gravitational mass 
enclosed within a sphere of radius r. 

Inspection of equation (1) shows that the thermal 
structure of neutron star envelopes is determined by the 

two parameters gs and Ts. Models of neutron star 
envelopes can therefore easily be calculated and classified 
in terms of the surface gravity and the surface tempera- 
ture, independently of the specific structure of the cores. 
In fact, in § IV we shall demonstrate that the thermal 
structure is largely determined by the single parameter 
Tt/gs. We also note that the effects of general relativity 
enter only through the expression for the surface gravity 
of the star (eq. [2]). 

To derive equation (1) we use the six general 
relativistic equations, equations (4)-(9). For a more 
detailed discussion of these equations see, for example, 
Thorne (1967). For our purposes the most important 
of these equations are the Tolman-Oppenheimer- 
Volkoff (TOY) equation of hydrostatic equilibrium and 
the energy transport equation. The first is 

dP 
dr (4) 

where p is the mass-energy density, and the other 
symbols are defined above. The heat transport 
equation is 

3 KP Ld 2 

dr 16(7 T3 4nr2 

where a is the Stefan-Boltzmann constant, Ld is the 
luminosity due to thermal conduction and radiation, 
e®10 is the redshift factor, and O is the gravitational 
potential, which is determined by the source equation 

JO G(m + 47rr3P/c2) 2A 
7 = 7 ^ (6) 

There is no corresponding transport equation for the 
neutrinos since at the temperatures of interest to us here 
(T < 109 K), their mean free path is of the order of one 
or more stellar radii, and hence they act simply as a sink 
of energy and do not transport energy from one part of 
the star to another. The equation for the neutrino 
luminosity, Lv, is 

, (7) 

where ev is the neutrino emissivity per unit volume. 
In this investigation we are interested in nonaccreting 
neutron stars. In these stars there is no nuclear burning, 
and the equation of energy conservation can be written as 

d(Le2*lc2) 
dr 

- cv e®lc24nr2eA , 
dt (8) 

where L is the net luminosity and is equal to 
Ld + Lvi cv is the specific heat per unit volume; and t 
is the time measured by an observer at r = oo, who is at 
rest with respect to the star. 

Finally, the equation which determines the gravita- 
tional mass, m, enclosed within a sphere of radius r is 

t=4Kr2p- (9) 
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In the above equations the quantities P, p, T, k, L, 
Ld, Lv, cv, and ev are all local ones, i.e., they are 
evaluated in a proper reference frame comoving with the 
stellar material. 

The boundary conditions at the center are 
m(0) = L(0) = Lv(0) = 0. As an outer boundary condi- 
tion we use the Eddington approximation and define the 
surface pressure, Ps, to be that at an optical depth of 
f, i.e., Ps — jgs/Ks, where ks is the value of the opacity 
at the surface. The effective surface temperature, Tsf is 
defined in terms of the luminosity at the surface, Ls, by 

Ls = Ld(R) = 4nR2(jTt . (10) 

For r > K the redshift factor is given by 

Semiquantitative estimates (Ray 1981) and detailed 
calculations of neutron star evolution (Malone 1974; 
Nomoto and Tsuruta 1981; Richardson et al 1982) 
show that for most neutron stars more than a few tens 
of years old, the temperature at densities less than 
~ 1010 g cm-3 has fallen below 109 K and is decreasing 
sufficiently slowly so that this low-density region is 
quasi-stationary, and the time derivative in equation (8) 
can be neglected. In our model calculations of neutron 
star envelopes (see § IV), we have set the envelope-core 
boundary at a density of 1010 g cm-3 (this value was 
also used by Glen and Sutherland 1980 in their model 
calculation of neutron star cooling, and Van Riper and 
Lamb’s 1981 boundary temperature is estimated at 
densities close to this). We find that to a good degree of 
approximation the temperature has leveled off to a 
constant value by this density except for the hottest 
envelopes considered in our calculations (see Fig. 5 and 
§ IV below). 

In what follows we will denote surface values by 
the subscript s and inner boundary values (i.e., quanti- 
ties evaluated at the envelope-core boundary) by the 
subscript b. When making numerical estimates, we put 
pb— 1010 g cm-3, and the corresponding pressure is 
Pb = P(pb) ^ 7.3 x 1027 dyn cm“2. We shall also use the 
notation Yn = Y/10n[Y], where n is an integer, and [Y] 
stands for the units of the quantity T. We use cgs units, 
and K for the temperature. Thus, for example, 
Osu = 0s/lO14 cm s~2. 

In the envelope one can to a very good degree of 
approximation neglect the pressure terms in equations 
(4) and (6), replace the relativistic factors eA and 
e°/c by their surface values, and put m equal to the total 
mass of the star, M. To see this we notice first of all that 
P/pc2 < Pb/pbc

2 ä 8 x 10“4. Furthermore, we have that 
4nr3P/c2 < 4nr3Pb/c

2 < 4 x 10"7(r/20 km)3 M0, which 
is negligible compared with the gravitational mass of the 
neutron star, which is typically of order 1 M0. Hence, 
the TOV equation can be written as 

in the envelope. By use of this equation, the mass 
equation (9), and the expression for eA, equation (3), 
we find 

dA 
dP 

Gm (1 - 3p/p) 
„ „2 (12) 

where p = m/[(4n/3)r3]. Since p ~ central density of the 
star ~1014-1015 g cm-3, and p < 1010 g cm-3 in the 
envelope, we have to a very good approximation that 

AA _A A-[PbdP 
— Ab As 2 > 

jPs PC 
(13) 

independent of the mass and radius of the star. Since 
most of the contribution to this integral comes from the 
higher density range where it is appropriate to use the 
equation of state for relativistic, degenerate matter, 
P oc p4/3, we can estimate the variation of A through the 
envelope by 

Hence, 

(14) 

which shows that eA is constant in the envelope to 
better than 0.5%. The mass of the envelope can also be 
estimated in a simple way. Setting eA = eAs in the TOV 
equation and using equation (9), we can write 

4 SnG 
dP < dP . (15) 

By integrating the above expression, we find for the mass 
of the envelope, AM, 

6 x KT7 

0S14 

Since gSl4 > 0.1 for all neutron stars of astrophysical in- 
terest (see, e.g., Fig. 3), we can neglect the mass of the 
envelope and set m = M in equations (4) and (6). Integra- 
tion of equation (6) gives the variation of O through the 
envelope: 

A<D = O* - 0>s = GMe2As f ' ^ 
jR r 

rPb dP 
f — = c2(As — Ab) 
Ps P 

(see eq. [13]). Hence, we may put c0/c2 = = e~A\ 
and the energy transport equation (eq. [5]) can be written 
as 

dP 
dr (ii) ÍL= 

3 kp há ¿a- 
dr 16cr T3 4nr2 (16) 
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Combining equations (16) and (11), we obtain the emissivity is dominated by neutrino pair bremsstrahlung, 
thermal structure equation for neutron star envelopes: whose emissivity is given by (Soyeur and Brown 1979) 

=  (H) 
dP 16(7 T3gs 4nR2 ' V ; 

The largest errors made in deriving this result are of order 
4(Pb/Pbc2) ^ 3.2 x 10“3, independent of the mass and 
radius of the star. 

When the envelope is in a quasi-stationary state (see 
the discussion above) and neutrino losses within the 
envelope can be neglected, the factors cv(dT/dt) and ev 

in equations (8) and (7J, respectively, can be neglected, 
and Le2*lc2 and Lxe™/c2 are constant through the 
envelope. Since ^/c2 is essentially constant in the en- 
velope, we may put Ld(= L — Lv) equal to its surface 
value Ls = 47tR2aT^, and equation (17) can be written as 

dT _ 3 K Tt 

lP~Y6T^~g~s' 

This is our thermal structure equation (eq. [1]). We note 
that equation (1) is just what one would obtain from 
a plane-parallel approximation, but we have not made 
this approximation. 

Putting Ld equal to a constant requires that the varia- 
tion of Ld through the envelope, ALd — Ls — Lb, where 
Lb — Ld(pb), be small compared with the surface 
luminosity, i.e., 

(18) 

By use of equations (7), (8), and (11), we find 

(19) 

where we have introduced the cooling time defined by 

tcoo\(T) — — TI ■ (20) 

We can get a rough estimate of the values of icool 
for which condition (18) is satisfied. Most of the 
contribution to the integral in equation (19) comes from 
the high-density envelope layers. Hence, we assume that 
P oc p4/3. To find the maximum effect of the specific 
heat term we put the specific heat equal to that of a 
Dulong-Petit solid and a degenerate relativistic electron 
gas: 

cv = 3ni k + n2kne — 
eF 

» (4.5 x 1016pio + 3.9 x 1016p2/qT9) ergs cm-3 K”1 . 

Here k is the Boltzmann constant, eF is the Fermi 
energy of the electrons, and ne and are the number 
densities of electrons and ions, respectively. The neutrino 

ev ä 6 x 1019|—j Tg ergs s 1 cm 3 

= 2 x 1015plo Tg ergs s_1 cm-3 , 

where p0 = 2.8 x 1014 g cm-3 is the density of nuclear 
matter. To estimate the temperature range for which 
variations of Ld within the envelope are unimportant, 
we approximate the temperature by a constant equal to 
Tb = T(pb) in the part of the envelope which contributes 
most to the integral in equation (19), and we neglect 
the deviations of e-<I>s/c and r/R from unity. We then 
find that condition (18) is satisfied if 

180rb9(l + 12Tbg) 

¿coolie) 
- 0.28Tb

6
9 « Tteds^ (21) 

where tcool(Tb) is in years. In our thermal structure 
calculations (see § IV and Gudmundsson, Pethick, and 
Epstein 1982), where condition (18) is assumed to hold, 
we find that Tb is related to Ts and gs by 

(t-'4 \ 0.455 

IO-2 102 . 
Çlsi4. 

Using this relation in equation (21), we find that for 
Tb9<l the cooling time must satisfy 

tCool(Tb) ^ 
23 yr 

T--2.18^1.46 1 s6 ys 14. 

2yr 
n9

2gl 
(22) 

We note that tcool(Tb) depends primarily on the heat 
content of the core and the total emissivity, which is 
mainly due to neutrino losses from the core during the 
first 104-105 yr. From equation (22) we see that condition 
(18) is most severe for very rapid cooling, which would 
occur if a pion condensate or free quarks were present 
in neutron star interiors. 

It may sometimes be of interest to determine P and 
T as functions of depth in the envelope. For this purpose 
it is convenient to introduce a depth coordinate z, 
which is related to r and the depth coordinate 

<23) 

The above expression may be integrated to give 

or 

z=W1-^)1 • (24) 
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In terms of this new coordinate, the TOY equation 
(eq. [11]) and the energy transport equation (eq. [16]) 
take the forms 

and 

(25) 

= A T4 

dz 16 T3 s (26) 

where we have assumed condition (18) by setting 
Ld = 47cK2crT4 in equation (16). Using equation (25), 
the thickness of the envelope can easily be estimated 
by evaluating zh. 

^ = 
^ 4 /Pb\ 

9s Ks P ~ 9s W 

0.3 km 

9 S14. 
(27) 

We have assumed P oc p4/3 when performing the integra- 
tion. We stress that the largest terms neglected in 
equations (25) and (26) are of order ~0.5%. We have 
not neglected terms of order xb/R, which can be as 
large as 10%. We note, however, that if one is willing 
to accept errors of this order, when calculating T and 
P as functions of x, one can replace z by xeAs in 
equations (25) and (26). 

Given the opacity and the equation of state one can 
integrate equation (1) (or eqs. [25] and [26]) inward 
from the surface of the star. In § IV we shall present 
the results of our model calculations of neutron star 
envelopes. The input physics used in our calculations 
is discussed in the next section. 

III. THE PHYSICAL INPUT 

In this section we discuss the basic physical conditions 
in the matter in neutron star envelopes when there is no 
magnetic field present (for a more detailed discussion 
see Gudmundsson 1981). For astrophysically inter- 
esting models we need the physics of matter in the 
temperature range 105 < T < 109 K and in the density 
range 10-4 < p < 1011 g cm-3. Information about the 
basic properties of matter is summarized in Figures 1 
and 2, and to indicate which regions are of interest, 
we also show temperature-density profiles for neutron 
star envelopes for surface temperatures of IO5-5, 106, 
and IO6,5 K and a surface gravity of 1014 cm s-2. 

The equation of state has been worked on extensively. 
(See, e.g., Cox and Giuli 1968; Clayton 1968; Huebner 
et al 1977. The last reference describes the numerical 
calculations of the Los Alamos group, and we shall 
refer to it in what follows as LA). However, since the 
physics is relatively straightforward in the regions of 
interest to us here, we shall not take over directly the 
earlier work but rather construct a simplified equation 
of state which is adequate for our purposes. Our equation 
of state agrees well with the earlier work in their regions 
of common validity. 

Throughout most of the region of interest for our 
investigation, we are dealing with a finite-temperature 
ionized plasma. As a good first approximation one can 
treat matter as a two-component plasma with one species, 
the ions (consisting of nuclei and some bound electrons), 
immersed in a uniform neutralizing background of free 
electrons. No other particles (except photons) are 

Fig. 1.—Physical conditions at densities and temperatures of interest in the study of neutron star envelopes. The various regions are 
identified in the text. Also shown are temperature-density profiles for envelopes for three values of the surface temperature and a surface 
gravity of 1014 cm s-2. 
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Fig. 2.—The dominant sources of opacity at various densities and temperatures. Also shown are temperature-density profiles for neutron star 
envelopes for three values of the surface temperature and a surface gravity of 1014 cm s-2. See text for further explanations. 

present. For example, free neutrons do not appear until 
the “neutron drip” density, p æ 4.3 x 1011 g cm-3, 
well beyond our envelope-core boundary (which we have 
set at p = 1010 g cm-3). The neutron drip point is 
indicated by a vertical dashed line in Figure 1. 
Furthermore, radiation pressure is less than the pressure 
of the matter below the dotted line in Figure 1. 

We begin by discussing the general properties of the 
free-electron gas and the ions and then go on to describe 
the equation of state and the opacity used in our model 
calculations. 

The free electrons in neutron star envelopes can exhibit 
all degrees of degeneracy. This can be seen from Figure 1, 
where we show the Fermi temperature TF, as a function 
of density as well as the region of partial degeneracy, 
which is approximately bounded by the two dashed lines 
marked r¡ = —4 and rj = 10, where rç = p//cT is the 
degeneracy parameter, and p is the electron chemical 
potential. The Fermi temperature is given by 
TF = (eF - mec

2)/k, where eF = (m^c4 + pFc2)1/2 is the 
Fermi energy, pF = h(3n2ne)

1/3 æ 1.009(p6/pe)
1/3mec is 

the Fermi momentum, and me and h are the electron 
rest mass and Planck’s constant, respectively. Hence, the 
Fermi temperature can be written in terms of the 
density as 

TF * 6 x 10>6//O
2'3{l + [1 + W/O2'3]1'2}-1 K . 

The quantity pe = ^/<Z> is the mean molecular weight 

per electron, where A is the mass number of the ions, 
and <Z> is their effective charge, which depends on the 
charge of the nucleus, Z, and the number of bound 
electrons. 

In our calculations we have generally assumed that the 
nucleus present is that for cold catalyzed matter at the 
same density, and we have used the sequence of nuclei 
determined by Baym, Pethick, and Sutherland (1971). 
For densities less than 6.6 x 106 g cm-3 the nucleus 
present is 56Fe. In the region where the nuclei are 
partially ionized we have used the Los Alamos numerical 
determination of <Z> for 56Fe (LA) as well as the 
numerical calculations of Malone (1974), which extend 
to slightly higher densities than those of LA. The line 
marked PI in Figure 1 shows approximately the 
boundary of the region of partial ionization. 

Since the temperature in the neutron star envelopes 
of interest to us here is much less than (mec

2)/k & 
5.93 x 109 K, nondegenerate electrons are non- 
relativistic. Furthermore, we do not have to consider 
electron-positron pairs ; their presence can be neglected 
below the dashed line near the top in Figure 1. (See, 
e.g., Cox and Giuli 1968 for determination of the region 
where electron-position pairs exist in nonnegligible 
numbers.) It is only when pF > mec, i.e., for densities 
in excess of ~2 x 106 g cm-3, that degenerate electrons 
are relativistic. 

The electrons not bound to ions can be affected by 
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Coulomb interactions both with other electrons and 
with ions. The perturbative effects of the ions are 
~<Z>2/3 times those of the electrons, so the electron- 
ion interaction is the more important one. In general, 
one can define a dimensionless measure of this coupling 
by Ffi = /cT*), where = [(47r/3)rc¿]-1/3 is the 
radius of the Wigner-Seitz sphere, e is the charge of 
the electron, and kT* is a measure of the kinetic 
energy of the electron gas. We shall take kT* = Pe/ne, 
where Pe is the pressure of an ideal electron gas, and 
therefore, T* — T for nondegenerate nonrelativistic 
electrons, T* = f 7^ for degenerate nonrelativistic 
electrons, and T* — ^TF for degenerate relativistic 
electrons. When > 1, the electron density will deviate 
appreciably from uniformity, and the ideal gas approxi- 
mation is no longer valid. In Figure 1 the region 
bounded by the dot-dashed contour has F^ > 1. We see 
that for neutron star envelopes with surface temperatures 
>3 x 105 K, the unbound electrons can to a good 
degree of approximation be taken to be an ideal gas 
everywhere. 

In marked contrast to the free electrons, the ions in 
neutron star envelopes are strongly affected by Coulomb 
perturbations even at relatively low densities and high 
temperatures. The ion thermal velocities are only of 
order ~(kT/Amu)1/2 æ 3.9 x 107(56/,4)1/2T9/2 cm s-1, 
where mH is the atomic mass unit. The ions are there- 
fore nonrelativistic throughout the envelope, and the 
effects of the ion-ion Coulomb interaction, which are 
characterized by the dimensionless parameter F = 
((Zy2e2/rikT) ä 0.87/T7«Z>/26)2(56M)1/3p1_/i are im- 
portant even at the surface of the neutron star. In 
Figure 1 we show the contour for F = 1. To the right 
of this contour, F is greater than 1. The value of F 
increases with density, and at a critical melting value, 
Fm, a liquid-solid transition takes place; above F = Fm, 
the ions form a solid. The melting temperature of the 
solid can be written in terms of Fm as Tm& 
1.44 x 103<Z)5/3(p/^e)

1/3(158/Fm) K, where we have 
normalized Fm in terms of the characteristic value 158 
(Pollock and Hansen 1973) used in our numerical 
calculations. There is some uncertainty in the actual 
value of Fm. For example, Pollock and Hansen (1973) 
using another method found Fm = 155 ± 10, and the 
most recent determination gives Fm = 171 ± 3 (Slattery, 
Doolen, and DeWitt 1980). In Figure 1 we have drawn 
lines for both F = 150 and F = 170 to indicate the 
uncertainty in Fm. However, the results of our calcula- 
tions are not very sensitive to Fm (see § VII). 

Figure 1 also shows the Debye temperature, 0D, as a 
function of density. For ions arranged in a bcc lattice, 
0D is given by 0D « 0A5hQp/k, where Qp = [47c<Z>2e2 

x (ni/rrii)]112 is the ion plasma frequency, and nii is 
the mass of the ions (Carr 1961). We see that 
T < 0D only at the highest densities and lowest 
temperatures occurring in neutron star envelopes. Since 
the contribution of the ions to the total pressure in 
this region is small, we can for the purpose of thermal 
structure calculations neglect quantum effects in the 
equation of state and treat the ions as classical every- 
where. 

The effects of the Coulomb interaction on the ion 
equation of state can be taken into account by adding 
correction terms to the ideal gas law Pion = n^T (see, 
e.g., Salpeter 1961; Shaviv and Kovetz 1972; and 
references therein). For the conditions of interest the 
corrections are dominated by the classical Coulomb 
correction, which takes into account the electrostatic 
shielding of ions by the mean charge density of the 
electrons, and we therefore ignore other effects (such as 
the Thomas-Fermi and the exchange corrections) in our 
equation of state. Denoting the pressure correction term 
by Pc, we can write Pc = ^(Uc/kT)Pion, where Uc is the 
Coulomb excess internal energy per ion. (Note that Uc 
is negative.) For UJkT we use the results of the Monte 
Carlo calculations of Hansen (1973) and Pollock and 
Hansen (1973). 

The radiation pressure in the envelopes of interest 
can be neglected, and our equation of state is therefore 
given by 

P = Pe(ne, T) + nikT + (28) 

where Pe(ne, T) is the pressure of the free electrons, 
which are treated as an ideal Fermi gas, and ne = <Z)nf. 
The quantity Pe(ne, T) is calculated by an approximation 
scheme devised by Eggleton, Faulkner, and Flannery 
(1973) which approximates the Fermi-Dirac integrals for 
the density and pressure to a few parts in a thousand. 

We now discuss the opacity used in our calculations. 
The thermal energy transport in neutron star envelopes 
takes place by a combination of radiative diffusion and 
thermal conduction. The total opacity, k, is given by 

^ ^rad ^cond 

where Krad is the Rosseland mean radiative opacity, and 
7ccond is the conductive opacity, which is related to the 
net thermal conductivity Àc by Kcond = 16aT3/(3pÀc). 
The radiative opacity has contributions from bound- 
bound, bound-free, and free-free absorptions of photons 
as well as from Thomson scattering of photons by free 
electrons. The main scattering processes which con- 
tribute to Kcond are electron-phonon, electron-impurity, 
and electron-electron scattering when the matter is solid, 
and electron-ion and electron-electron scattering when 
the matter is liquid. 

In our calculations we used the Los Alamos radiative 
and conductive opacities (LA) in the regions where they 
are available. At higher densities we used conductive 
opacities calculated by Urpin and Yakovlev (1980) and 
Yakovlev and Urpin (1980), referred to in what follows 
as YU. In Figure 2 we show the regions over which 
we used the LA and YU opacities. Below and to the 
right of the line marked YU we used the YU conductive 
opacities. The upper part of the YU contour corresponds 
to T = ^qTf. The step-line boundaries show the regions 
in which we used the LA radiative opacity (solid line) 
and conductive opacity (dot-dashed line). The regions are 
different because we omitted points in the conductive 
opacity calculated using Mestel’s (1950) results which 
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do not join smoothly onto the other points calculated 
by Hubbard and Lampe (1969). For densities at which 
no calculations exist we used a straight-line logarithmic 
interpolation between the cut-off densities for the LA 
and YU conductive opacities at the same temperature. 
It was also necessary to extrapolate the radiative 
opacities to higher densities. The way in which this was 
done has very little effect on the results; for a fixed 
temperature we used a straight-line logarithmic extra- 
polation, with a slope equal to that at the last calculated 
points. A change of this slope by a factor of 10 typically 
results in a change in Tb of less than 0.5 %. 

Figure 2 gives information about the relative im- 
portance of the various processes which contribute to 
the total opacity. Below the line marked “conduction = 
radiation,” heat transport is primarily by conduction, 
and above it by radiation. Above the line marked 
“ scattering,” Thomson scattering is the most important 
process. In between these two lines the opacity is 
dominated by bound-bound, bound-free, and free-free 
absorptions. Between the lines labeled “conduction = 
radiation” and “melting line,” electron-ion scattering 
is the most important process. Between the melting 
line and the dot-dashed line, electron-phonon scattering 
is the dominant process, and below the dot-dashed line, 
electron-impurity scattering contributes most to the total 
opacity. The exact location of this line depends on the 
value of the impurity parameter Xj = Yimp<AZ)2>, 
where Yimp is the relative abundance of impurities, and 
<(AZ)2> denotes the average departure of Z^ (Zimp = 
charge of the impurities) from Z2. The value of Xj 
is not known but is usually assumed to be of order 
unity, and we therefore put X/ = 1 in our basic thermal 
structure calculations. We find that the results are not 
very sensitive to X/; for Xj < 10 and surface tempera- 
tures > IO5*5 K, a factor of 10 variation of Xj results in a 
less than 1% change in the calculated value of Tb. 

It should also be mentioned that under all conditions 
of interest to us here electron-electron scattering con- 
tributes very little to the conductive opacity and can for 
all practical purposes be neglected. 

The YU conductive opacities used in our calculations 
differ considerably from those calculated by Flowers and 
Itoh (1976) (referred to as FI in what follows), which 
have been used in most other recent calculations. For 
example, YU’s results for the electron-phonon contribu- 
tion to the opacity are typically some 2-5 times larger 
than FI’s, and their results for the electron-ion con- 
tribution are typically 2-3 times larger. We used the 
YU results rather than those of FI for a number of 
reasons. First, in the case of a solid, FI’s estimates for 
the transverse phonon frequencies are systematically too 
high and lead to values of the thermal conductivity 
that are too high. YU’s results, on the other hand, are 
based on detailed calculations of moments of the 
phonon spectrum for the Coulomb lattice. Second, for 
the liquid phase the YU calculations are in better 
agreement with estimates made by Nandkumar and 
Pethick (1982), who used improved results for the 
structure factor of the one-component plasma, than are 
those of FI. 

IV. CALCULATIONS 

The surface temperature, 7¡, and the surface gravity, 
gs, specify the thermal structure of a neutron star 
envelope. We therefore start this section by discussing 
the relevant ranges of these quantities. 

The recent X-ray observations by the Einstein 
Observatory have given several upper limits to the X-ray 
luminosities of neutron stars possibly present in young 
supernova remnants (Cas A [Murray et al. 1979]; 
Kepler, RCW 86, W28, G350.0-18, G22.7-0.2 
[Helfand, Chanan, and Novick 1980]; SN 1006 [Pye 
et al 1981]; Tycho [Gorenstein and Seward, quoted, 
e.g., by Van Riper and Lamb 1981]) and three detections 
(the Crab and Vela pulsars [Harnden et al 1979a, b] 
and RCW 103 [Tuohy and Garmire 1980]). In addition, 
upper limits have been obtained for seven nearby radio 
pulsars (Helfand, Chanan, and Novick 1980). The surface 
temperatures of the neutron stars (or the upper limits) 
deduced from the flux measurements are somewhat 
uncertain, mainly because of uncertainty in the inter- 
stellar absorption. With the uncertainties taken into 
account, the upper limits on the surface temperatures of 
neutron stars lie between 

2xl05<rs,upperlimit<3xl06K, (30) 

the highest value, 3 x 106 K, corresponding to the 
upper limit to the surface temperature of the Crab 
pulsar. Surface emission from neutron stars with 
Ts<2x 105 K is probably too weak to be observed in 

Fig. 3.—The surface gravity of neutron stars as a function of 
gravitational mass for neutron star models calculated with several 
equations of state. The masses and radii needed to calculate the surface 
gravities were taken from Baym and Pethick (1979), and we also use 
their notation for the different equations of state. MF is the 
Pandharipande-Smith (1975b) mean field theory calculation, TI is their 
tensor interaction model calculation (Pandharipande and Smith 
1975a), BJ denotes the Bethe-Johnson (1974) equation of state I, 
R denotes the pure neutron equation of state with the Reid potential 
(Pandharipande 1971), and n and n' denote equations of state for 
matter with pion condensates present (Maxwell and Weise 1976). 
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the near future (see, e.g., Helfand, Chanan, and Novick 
1980), and we therefore take equation (30) to be the range 
of observational interest. 

Observations of neutron stars suggest that they have 
masses exceeding 1 M0. The best mass determination 
is for the binary radio pulsar PSR 1913 + 16, with 
M = 1.39 ± 0.15 Mq (Taylor, Fowler, and McCulloch 
1979), and masses have also been obtained for a few 
binary X-ray pulsars. The uncertainties are larger in this 
case, but for the five best studied sources (4U 0900 — 40, 
SMC X-l, Cen X-3, 4U 1538-52, and Her X-l) 
Rappaport and Joss (1981) find that the most probable 
values for all the masses lie in the range 1 < M < 2 M0 

(see also Bahcall 1978). This is consistent with the results 
of stellar evolutionary calculations (see, e.g., Weaver, 
Zimmerman, and Woosley 1978) which predict neutron 
star masses of order 1.5 M0- In Figure 3 we show the 
surface gravity of a neutron star, 

as a function of the gravitational mass, M, for neutron 
star models calculated with several equations of state. 
Since neutron stars with masses lower than 0.4 M0 
probably do not exist (see the discussion above), and this 
is the lowest mass for which neutron star cooling 
calculations have been performed, we only show gs for 
stars with M > 0.4 M0. The vertical lines in Figure 3 
correspond to masses 1.0 M0, 14 M0 (PSR 1913 + 16), 
and 2.0 Mq. Under the assumptions that neutron stars 
have masses M > 1 M0 and that the equations of state 
of Figure 3 bound the correct equation of state, 
Figure 3 gives the limits on the range of astrophysically 
relevant neutron star surface gravities to be 

1O13'7<0S< 1014-9cms~2 . (31) 

The box in Figure 4 shows the area in the (gs, 7¡) 
parameter space which lies within the bounds of 
equations (30) and (31). The crosses show the (gs, Ts) 
pairs used in our model calculations. For each pair the 
structure equations (25) and (26) were integrated inward 
from the surface to a density of ph= 1010 g cm-3. 

Fig. 4.—The (gs, Ts) parameter space for neutron stars. The box 
encloses the area which is presently of astrophysical interest. The 
crosses show the (gs, Ts) pairs used in our model calculations. The 
two inclined lines bound the region for which our calculations give 
reliable results. 

The two inclined lines bound the region for which our 
calculations give reliable results. Above the upper line, 
no reliable calculations of envelope opacities exist for 
part of the required range of temperatures and densities, 
and below the lower line, the temperature profiles pass 
through the region where F^ > 1, and our equation of 
state and opacities are unreliable. 

The boundary temperature, T&, as a function of Ts 
and gs is shown in Table 1. The first thing to notice 
is that to better than about 1 part in 104, Tb is a function 
only of T4/0s. The reason for this can be seen by an 
inspection of the structure equation (1). One can see 
that T = T(P) depends only on the combination Tt/gs 
and the outer boundary condition. However, because of 
the rapid decrease of radiative opacities with increasing 
temperature, the solutions to equation (1) converge very 
rapidly to the radiative zero solution as the density 
increases, and hence, the surface condition plays a very 
small role in determining the interior temperature pro- 
file. This convergence is illustrated in Figure 5, where pairs 
of temperature profiles with the same values of T4/0S 
but different surface temperatures rapidly approach 

TABLE 1 
Values of log Tb as a Function of log Ts and log gs 

log gs 

log Ts 13.0 13.5 14.0 14.5 15.0 

5.25   7.19805 6.96627 
5.50   7.65854 7.42932 7.19800 6.96628 
5.75   8.10995 7.88341 7.65853 7.42930 7.19805 
6.00   8.56554 8.33690 8.10995 7.88341 7.65853 
6.25   9.02078 8.79672 8.56557 8.33692 8.10995 
6.50   ... ... 9.02073 8.79664 8.56553 
6.75     ... ... ... 9.02065 
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Fig. 5.—Temperature-density profiles for various values of surface temperatures and surface gravities 

each other below the photospheres. This behavior is 
well known in the case of ordinary stellar atmospheres 
(see, e.g., Schwarzschild 1958). 

Our results for the boundary temperature at 1010 g 
cm-3 are accurately fitted by the expression 

Tb8 = 12SS(Tt6/gsJ
0A55 . (32) 

This relation holds to better than 1.5% for 10"2 < 
TfJgSi4 < 102, or, equivalently, for 1.6 x 107 < < 
109 K. 

As mentioned in § II the redshifted temperature is 
nearly constant for densities above 1010 g cm-3. The 
actual increase in Te®10 between p = 1010 g cm-3 

and 1011 g cm-3 is found from our calculations to be 
approximately a factor of [1 + 9.7 x 1O-3(T^6/0S14)

0-50]. 
This increase is less than 1 % for TJg¡^ < 106 K and 
is - 3 % and - 10% for Ts/g^ = 106 25 K and IO6 50 K, 
respectively. 

In the above calculations it was found that the depth 
coordinate at the inner boundary at 1010 g cm-3 is 

0.310 l zb = km , 
g $14 

(33) 

in good agreement with estimates presented in § II (see 
eq. [27]). Note that the depth coordinate and the radial 
coordinate are related by equation (24), and that the 
variation of z with density near the boundary goes 
roughly as p1/3 (for example, our calculations give 
z[p = 1011 g cm-3] = 2.03z[p = 1010 g cm-3]). Figures 
5 and 6 shows runs of temperatures with density and 

depth, respectively, for three surface temperatures and 
a range of surface gravities. 

V. SCALING RELATIONS 

Because Tb depends only on T^/ps, it is possible to 
derive a number of scaling relations. By inverting this 
relationship, we obtain 

Tl = gsf(T„), (34) 

where / is some function which depends only on Tb, 
the opacity, and the equation of state. Using 

log z (cm) 

Fig. 6.—Temperature as a function of depth for three surface 
temperatures and a surface gravity of 1014 cm s~2. 
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equation (2) for gs and the fact that eAs = e <t>slcl in the 
envelope, we can express the surface luminosity as 

Ls = 4nR2oTt = e-^AnaGMf^) . (35) 

The luminosity far from the star is given by 

where the numerical expression is obtained by use of our 
Tb — Ts relation, equation (32). Since the R2 factor in the 
surface area is canceled by the 1/R2 factor in the surface 
gravity, the luminosity depends almost linearly on the 
stellar mass and only weakly on the stellar radius, 
through the redshift factor. Equations (35) and (36) 
enable us to understand Van Riper and Lamb’s (1981) 
observation that for a given core temperature, is 
essentially independent of R for neutron star models of 
the same mass. 

The general scaling relation, equation (34), can be 
used to determine the sensitivity of the thermal structure 
to gross variations in the input physics. For example, 
if the opacity is everywhere multiplied by a factor a, it is 
equivalent in equation (1) to multiplying the surface 
gravity by a-1 so that the flux is changed by a factor 
a-1. Additional sensitivity tests are discussed in § VII. 

VI. GENERAL RELATIVISTIC EFFECTS 

tivistically but energy transport is not, and the 
Newtonian approximation, in which neither is treated 
relativistically. In many of the earlier calculations of 
neutron star cooling, the semirelativistic approximation 
was used (see, e.g., Tsuruta 1979), and it has been 
suggested that some of the differences between various 
model calculations may be due to differences in the 
treatment of relativistic effects. 

To show clearly the differences among the envelope 
calculations in the three different approximations, we 
pick a neutron star with a given mass and radius. A 
comparison of equations (11) and (16) with equation (1) 
then shows that the thermal structure equations for the 
semirelativistic and Newtonian envelopes are obtained 
by replacing gs in equation (1) by gse~<s>s/c and 
gs e®*10, respectively, where gs is given by equation (2). 
Assuming a fixed Tb and using equation (34), we then 
obtain the surface luminosities 

T . = p~^Ic2J /KT = A-'semi ^ > ^Newt ^ 5 W ' / 

where Ls is the surface luminosity as obtained in the 
relativistic calculation. The expression for LNewt shows 
that general relativistic effects increase the stellar surface 
luminosity. 

Observationally what is of interest is the luminosity 
as observed far from the star. In both the semirelativistic 
and Newtonian cases the luminosity far from the star is 
the same as the surface luminosity, whereas in the 
relativistic case it is decreased by a factor of e2°s/c 

because of redshifting. We therefore have that 

General relativity plays a role in the hydrostatic struc- 
ture of the envelope, in the energy transport through 
the envelope, and in the relation between and 
Ls. To understand the interplay of these different effects 
we distinguish three levels of approximation in which 
general relativity is incorporated to varying degrees in 
the investigation of neutron star thermal evolution : the 
full treatment, in which both stellar structure and energy 
transport are treated relativistically, the semirelativistic 
approximation, in which the structure is treated rela- 

T _ p2<I>sIc2t -‘-'00 C 5 

and 

L . = e~3<s>s/c2L Lkt =e~®slc2L t38! 'L,semi e ^00 5 ^Newt c ^00 • W°/ 

Newtonian calculations are therefore in better agreement 
with the full relativistic treatment than the semi- 
relativistic ones are. A few typical values of the redshift 
factors are given in Table 2. We see that for massive 
neutron stars with a soft equation of state, the 

TABLE 2 
Relativistic Effects on Luminosities 

EOSa 
M 

A4Ö 
R 

km 
t-Newt / ^ 
TT = exp(-7 

- = exp 
(-?) 

BPS. 

TI. 

0.4 
0.7 
1.25 
1.41 

0.4 
0.7 
1.25 
1.41 

10.0 
9.3 
8.13 
7.0 

17.5 
16.6 
16.0 
15.7 

1.065 
1.135 
1.35 
1.58 

1.036 
1.070 
1.14 
1.17 

1.208 
1.462 
2.46 
3.94 

1.112 
1.225 
1.48 
1.60 

a BPS denotes the Baym, Pethick, and Sutherland 1971 equation of state, which is 
relatively soft, whereas TI stands for the Pandharipande and Smith 1975a tensor- 
interaction equation of state, which is representative of the stiffer ones. Model 
parameters are taken from Glen and Sutherland 1980. 
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differences between Lsemi and can be appreciable; 
for example, Lsemi = 3.94^ for a 1.41 Mö Baym- 
Pethick-Sutherland (1971) star. For neutron stars with 
a stiff equation of state, the differences are smaller; for 
example, Lsemi = l.óOL^ for a 1.41 M0 Pandharipande- 
Smith (1975a) tensor interaction star. 

We stress that equations (37) and (38) hold for fixed 
boundary temperature, Tb. There are also effects of 
general relativity on the behavior of as a function of 
time, as discussed, for example, by Kindi and Straumann 
(1981) and Gudmundsson (1981). 

VII. SENSITIVITY TESTS 

In order to obtain the Tb — Ts relation for neutron 
star envelopes one needs to know the physical input for 
a wide range of densities and temperatures. The equation 
of state is rather well understood except in the region 
of partial ionization; fortunately, this region is of very 
little importance for the range of surface temperatures 
we consider here. On the other hand, the opacity is 
uncertain in a much larger part of the p-T plane; in 
some regions no calculations exist, and in regions where 
there are calculations, different calculations differ by as 
much as a factor of 3-5 (see the discussion in § III). 
It is therefore important to find out at which densities 
and temperatures it is most crucial to know the opacity 
well to obtain a reliable relationship between Tb and Ts. 
It is clear that all regions are not equally important; 
for example, small errors in the opacity near the 
surface are quickly “forgotten” because of the rapid con- 
vergence of temperature profiles to the radiative zero 
solution, and small errors in the opacity near the inner 
boundary of the envelope are unimportant since that 
region is nearly isothermal. In order to find out which 
regions are the most important in this respect we have 
developed a functional derivative technique for analyzing 
the sensitivity of the solutions of equation (1) to uncer- 
tainties in the input physics. This technique, which can 
be used to determine how sensitive the solutions to any 
number of coupled ordinary differential equations are to 
variations in the input physics and boundary conditions, 
is described in detail by Epstein, Gudmundsson, and 
Pethick (1983). Here we shall only quote the results for 
the opacity sensitivity analysis. The change in the 
boundary temperature, Tb, of an envelope, with fixed 
Ts/gsi due to small changes in the opacity, k, is given 
to first order by the integral 

rlnpb Ifi \r\ T \ 
A In = i -—-1 A In /c d In p , (39) 

Mnps \omKj 

where we use logarithmic variables; A In /c is a small 
variation in In k at density p, and ¿In T/Ô In k is the 
functional derivative of \nTb with respect to In k 
evaluated at In p. Note that the functional derivative 
will depend on whether one uses In p or p as the integra- 
tion variable in equation (39). In this section we shall 
always use In p as the variable of integration, and we 
will not indicate this explicitly in our notation for the 
functional derivative. Figure 7 shows ô In Tb/ô In k as 

Fig. 7.—The values of the functional derivative <5 In Tb/ô In k 
for three neutron star envelopes. The surface gravity is the same in all 
these cases: 1014 cm s-2. 

a function of density for neutron star envelopes for 
three values of the surface temperature and for a surface 
gravity of 1014 cm s~2. The boundary temperature is 
most sensitive to variations in the opacity at densities 
where S In Tb/ô In k is largest. We have defined a 
sensitive region in the p-T plane as that region for 
which ô In Tb/ô In k is greater than one-half of its 
maximum value for each envelope. This region, where it 
is most important to know the opacity well, is the 
shaded one in Figure 8. In what follows we shall refer 
to this region as the sensitivity strip. Almost the entire 
sensitivity strip is in the region where the ions are in the 
liquid phase and the heat transport is mainly by thermal 
conduction. Since the main contribution to the opacity 
in this region is due to electron-ion scattering, this 
process must be well understood to reliably evaluate the 
Tb — Ts relation. 

Heat transport by radiative diffusion plays a relatively 
small role in the sensitivity strip, and hence, it is 
reasonable that our results are not sensitive to the way 
in which the radiative opacity is extrapolated beyond 
the published LA results. However, we note that a part 
of the region in which one needs to interpolate between 
the various published calculations for the conductive 
opacity lies in the sensitivity strip. 

The relative insensitivity of results to the radiative 
opacity is further demonstrated by the fact that if the 
total opacity is changed by a factor of 2, the boundary 
temperature increases by about 37% (for fixed Ts), 
whereas if only the radiative opacity is changed by a 
factor of 2, and the conductive one remains unaltered, 
the boundary temperature increases by less than 3 %. 
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log p ( g cm3) 

Fig. 8.—The sensitivity strip, where it is most important to know the opacity well, is indicated by the shaded area. Also shown are 
temperature-density profiles for ^ = 1014 cm s-2 and three different surface temperatures. Further explanations are in the text; also see 
Fig. 2. 

In § III we mentioned that the YU results for the 
electron-ion contribution to the conductive opacity are 
typically 2-3 times larger than those obtained by FI. 
In order to see how the differences between the YU and 
FI results are reflected in the Tb — Ts relation we have 
calculated a number of envelope models using the FI 
opacities and compared those with our YU calculations. 
We used the FI opacities in exactly the same regions as 
the YU ones before and interpolated between the FI 
opacities and the LA opacities in the same way (see 
the discussion in § III). For a given boundary tempera- 
ture the luminosities of the FI envelopes are about 
2-2.5 times the values for the YU envelopes (see Fig. 9). 
This is consistent with the luminosity-opacity scaling 
relation discussed in § V and the fact that in the liquid 
region the YU opacities are 2-3 times the FI ones. 
From our calculations of <5 In Tb/ô In k and the 
differences between the YU and FI opacities, one can 
use equation (39) to estimate by how much the boundary 
temperatures of FI envelopes should deviate from those 
of YU envelopes with the same values of Tf/gs. We 
have done this and find results which agree with the 
actual differences obtained in the full thermal structure 
calculations to within 10%-15 %. This is a very good 
agreement since equation (39) is only a linear approxi- 
mation. 

Finally, we mention that our results are not very 
sensitive to variations in Fm, the melting value of F, 
even though the melting line lies inside the sensitivity 
strip. This is because the melting line lies very close to 
the edge of the strip, where the sensitivity is relatively 
low, and in addition, the difference between the thermal 
conductivities of the liquid and solid is small. We find 
that the results for the boundary temperature obtained 
by using Fm = 100 and 200 differ by less than 2 % 
from those obtained with Fm = 158, the value used in 
all our basic calculations. 

VIII. COMPARISON WITH OTHER CALCULATIONS 

Even though different workers have generally made 
calculations for stellar models with different values of M 
and R, the scaling relation, equation (34), allows their 
results to be directly compared: Tb is mainly a function 
only of Tf/gs and virtually independent of other aspects 
of the stellar structure. In fact, we may equivalently 
investigate the relationship between Tb and 7¡/gs

1/4, 
which is more convenient since it corresponds closely 
to what most workers have looked at in the past, 
namely, the relationship between Tb and Ts. Figure 9 
shows TJgl1^ and e~<s>sLIX)/(M/MQ) as functions of 
Tb for our YU and FI model calculations and the 
envelope calculations of various other workers. We see 
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Fig. 9—The quantities TJgl1* and Lœ exp (-Q>Jc2)/(M/MQ) as functions of Tb. The open circles are results we obtained using the FI opacities 
instead of the YU ones. The Malone (1974) and Richardson (1980) points were taken from Richardson et al. (1982), where models I, II, and 
III correspond to Malone’s calculations, and model IV and V to Richardson’s. The tables in Richardson et al. (1982) give values of Ts and 
Tc, the central temperature of the neutron star models, at various times. We only used results for times >100 yr and converted central 
temperatures to boundary temperatures by use of the relation Tb exp (<E>s/c

2) = Tc exp (^Jc2). 

that there are considerable differences among some of 
the results. These differences are, to a large extent, due 
to the use of different opacity functions in the sensitivity 
strip. 

We first remark that the Malone points were obtained 
for a number of neutron star models all with different 
masses and different surface gravities. The fact 
that these points can be fitted by a smooth curve 
confirms our basic Th versus TJg]1* scaling relation. 
Similar remarks apply to the Tsuruta points and to the 
Glen and Sutherland ones. A second point is that Figure 9 
shows that luminosities we calculated using YU 
opacities, which we regard as the best available, lie 
below nearly all the other results, in some cases by as 
much as one order of magnitude. This shows con- 
clusively that differences in envelope calculations can 
have a significant effect on predicted X-ray luminosities. 
A third point is that our YU results agree closely with 
recent calculations by Van Riper (1982), who used 
opacity functions and interpolation procedures similar 
to ours. A fourth point is that calculations with 
nominally the same input physics exhibit widely dis- 
parate results. For example, Glen and Sutherland (1980), 
Tsuruta (1981b), and Van Riper and Lamb (1981) all use 
the Los Alamos opacities at low densities and the FI 
conductive opacities at higher densities. We attribute 
the differences among these calculations and our FI 
results to differences in the ways various workers inter- 
polated and extrapolated conductive opacities in the 
sensitivity strip, which had not been identified when the 
earlier calculations were carried out. Uncertainties in the 
equation of state are rather small for envelopes with 
TjQslt > IO5-5 K, but for lower temperature neutron 
stars, uncertainties in how to treat partial ionization are 
significant. 

IX. CONCLUSIONS 

This investigation shows that a separate study of 
neutron star envelopes gives valuable insights into calcu- 
lations of neutron star cooling. It was found that the 
temperature at the inner boundary of the envelope, T&, 
is a universal function of the single parameter TJgl1* 
for nonmagnetic neutron stars more than a few tens of 
years old. This scaling relation makes it possible to 
compare envelope results obtained by different groups 
using various approximations for the physical input. In 
§ VIII it was shown that envelope calculations can be 
a major source of the differences among the cooling 
calculations of different workers, a fact not previously 
appreciated, since the calculations were performed for 
different neutron star models and hitherto not directly 
compared. 

Using the LA radiative and conductive opacities at 
low densities and the recent YU calculations of the 
conductive opacity at high densities, we found (§ IV) that 
to a very good degree of approximation Tb is related to 
Tf/gs by the expression Tbs = 1.288(7t6/gSl4)

0-455. In- 
vestigation of the sensitivity of the Tb — Ts relation to 
small changes in the opacity shows (§ VII) that the most 
important input for the opacity is the conductive opacity 
of matter in the region where the ions are in the liquid 
phase. In this region the calculations of YU for the 
conductive opacity give values which are 2-3 times the 
values obtained by FI, which have been used in many 
recent calculations of neutron star cooling. Recent work 
by other investigators (Nandkumar and Pethick 1982) 
has now confirmed that the YU calculations are more 
accurate than the earlier calculations of FI. For a given 
Tb it is found (§ VII) that the luminosities obtained with 
the YU opacities are about 0.4-0.5 times the values 
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found using FI results. This is in good agreement with 
estimates obtained by using the results of our opacity 
sensitivity tests and the differences between the YU and 
FI opacities in the region where the energy transport is 
by thermal conduction (§ VII). 

The general scaling relation between Tb and Tf/gs is 
used in § V to relate the luminosities of different neutron 
star models, and in § VI it is shown how one can obtain 
the fully general relativistic Tb — Ts relation from 
envelope calculations performed in the Newtonian and 
semirelativistic approximations. 
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