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ABSTRACT 
The effect of local losses on the acceleration of energetic particles by shocks is discussed considering 

both energy losses of individual particles and damping processes for the scattering hydromagnetic 
waves. The calculations are all time asymptotic and steady state. For locally plane and infinitely 
extended shocks, the requirement for acceleration is that the loss time exceed the acceleration time. 
The resulting modifications of the spatial structure and of the momentum dependence of the 
cosmic-ray distribution are described. For acceleration to be a local effect within the Galaxy, the local 
scattering mean free path must be small compared to the effective overall galactic mean free path as 
deduced from the cosmic-ray escape time. The required strengths of the scattering wave fields are such 
that neutral molecular clouds do not allow acceleration; in a partially ionized, warm interstellar 
medium, quite large shock strengths are needed. Such strong shock discontinuities are surrounded by 
an ionization layer within which Alfvén wave damping is presumably negligible. Given the spatial 
extent of the layer for strong shocks propagating into neutral interstellar clouds, the possibility of 
localized diffusive acceleration is investigated. The estimated strength and extent of the scattering 
region is not large enough to confine acceleration within the layer. Rather, it will extend across the 
whole cloud, whose integrated losses then determine the efficiency. 
Subject headings: interstellar: molecules — particle acceleration — shock waves — stars: winds 

I. INTRODUCTION 

The question of cosmic-ray acceleration has received new attention through simple models of the first-order Fermi 
effect in hydromagnetic shock waves (Axford, Leer, and Skadron 1977; Krymsky 1977; Bell 1978a, b; Blandford and 
Ostriker 1978). These models approximate the shock as a transition between two scattering media. The hydrodynamic 
shock compression can be viewed as a relative flow of these media resulting in a finite divergence of the (shock normal) 
velocity in which the cosmic-ray particles are accelerated nonadiabatically as they are convected across. Direct 
reflections (i.e., discontinuous reversals of velocity direction) of energetic particles at the jump in the average magnetic 
field (e.g., Parker 1963; Fisk 1971; Morfill and Scholer 1975) are neglected in this theory. They would only increase the 
acceleration effect. Also not considered is the acceleration calculated by, e.g., Chen and Armstrong (1975), which is due to 
particle drifts parallel to the electric field during multiple shock interactions; these latter acceleration effects are most 
pronounced for nearly perpendicular shocks. The mechanism discussed here applies, however, equally-well to parallel 
shocks which exhibit no change in the average magnetic field. This theory has been reviewed recently by Axford (1980). 

Particle acceleration proceeds in a succession of scatterings across the shock on irregularities moving relative to each 
other with a speed that is approximately equal to the velocity discontinuity ÀF at the shock. An energy increment AE of 
order pAV is given to a particle in such individual scattering processes of which a number N ~ v/AV is needed to enhance 
the particle’s energy significantly (here p is the particle momentum and v its velocity). Yet, particles are not always 
scattered across the velocity discontinuity. On the contrary, most of the collisions occur within the regions upstream and 
downstream of the shock, respectively. Neglecting second-order Fermi effects, these collisions do not change the particle 
energy and are, therefore, “ neutral.” This can be seen from the transport equations describing the average change of the 
particle energy distribution. They yield a typical acceleration time (e.g., Forman and Morfill 1979), iacc ~ 4/c/Fs

2 ^ 
4k/(Í M)2 X (í\v\/vs)

2 = íscatt X 4 X (i|»|M)2 ~ Lea« x N2, as opposed to the result <acc « tscaU x N which would be 
expected if there were only energizing collisions (k, Vs, and iscatt denote the spatial diffusion coefficient normal to the 
shock, the shock velocity, and the mean scattering time respectively). Thus, diffusive shock acceleration is a slow process, 
and energetic particles traverse a considerable amount of matter on both sides of the shock, losing energy while being 
accelerated. Whether or not these energy losses are relevant depends basically on the ratios iacc/T and l/(Vsr), where t is 
the characteristic energy loss time, and 1/t is proportional to the column density of gas sampled during acceleration. For 
¿acc A ^ 1 and l/(Vsx) < 1, the acceleration process is almost undisturbed, whereas, for iacc /t > 1, or 1/(Vst), the particles 
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tend to lose energy faster than they gain it, and acceleration is quenched. Depending on energy, nuclear particles will lose 
energy mainly by ionizing, Coulomb, and nuclear collisions with the gas atoms; for electrons also bremsstrahlung, 
synchrotron radiation and inverse Compton effect can play a role. The low energy ionization and Coulomb losses play 
their dominant role at particle injection (Fermi 1949; Ginzburg and Syrovatskii 1964). If the shock is not plane but 
three-dimensional, e.g., produced by supersonic expansion from a localized source into a gas at rest, there will also be 
adiabatic energy losses in the downstream region affecting the overall acceleration rate. To lowest order, the adiabatic 
momentum loss rate (l/p)(dp/dt) = —^ div V simply adds to the collisional loss rate, although in more complicated 
cases, like shocks in the solar wind, a more detailed treatment is necessary (Fisk and Lee 1980). 

The energy loss which accumulates during each acceleration step depends on the mean free path 3k/ 11> | of the particle 
in the magnetic irregularities (hydromagnetic waves) on both sides of the shock transition. The availability of such waves 
depends on another form of losses, the dissipation rate of these waves. In cases where the magnetic fluctuations in the 
medium are produced by powerful nearby sources, like the Sun for the solar wind, the wave damping is not very 
important. Then, the particle mean free path may be so short that energy losses are negligible. However, in many 
astrophysical environments, the generation of irregularities may be limited. Indeed, it might be due only to cosmic-ray 
streaming (Lerche 1967; Kulsrud and Pearce 1969; Wentzel 1974; Bell 1978a) in the face of wave dissipation like 
ion-neutral collisions (Kulsrud and Pearce 1969; Kulsrud and Cesarsky 1971) or nonlinear Landau damping (Lee and 
Volk 1973; Kulsrud 1978). Then, cosmic-ray energy losses may overpower the acceleration effects. 

Associations of shocks with loss regions exist not only by chance. Rather, there is often a physical coupling, like H n 
regions, supernova remnants, or cloud formation in the wake of the galactic density wave. Particular cases are shocks in 
and near interstellar clouds which are often the source of shock waves through violent processes in their interiors. 

As far as observations distinct from in situ cosmic-ray measurements are concerned, a number of molecular clouds are 
expected to be observable sources of high energy y-rays due to n° production and decay, or electron bremsstrahlung, 
especially if they are illuminated by a locally enhanced cosmic-ray flux. In fact, one such source which requires a local 
cosmic-ray enhancement appears to have been identified with the nearby cloud p Ophiuchi (Wills et al 1980; Bignami 
and Morfill 1980). Morfill ei al (1981) have argued that the enhanced y-ray emission from p Ophiuchi is due to an 
enhanced cosmic-ray intensity associated with an old supernova remnant, the North Polar Spur (Loop I), which is 
probably interacting with the cloud. Another suggestion has been that stellar wind terminal shocks from young stars in 
and near the cloud could be responsible for this enhancement (Cassé and Paul 1980 ; Paul, Cassé, and Montmerle 1980). It 
has been argued that other y-ray sources are not only apparently but also physically associated with supernova remnants 
and OB associations (Montmerle and Cesarsky 1979). 

In this paper, we discuss the problem of shock acceleration in a lossy medium in a number of illustrative examples. We 
do this always in the time asymptotic limit. The effect of losses on the build-up time of the scattering wave field, for 
example, would be even more pronounced in a situation where a freshly created shock starts to accelerate an existing 
population of cosmic rays over its finite lifetime. The loss process itself is described in terms of a (energy-dependent) loss 
time T for analytical simplicity. Since we are concerned with acceleration rather than, for example, modulation, this 
approximation seems acceptable. 

In § II, we first consider steady state acceleration by a shock in a medium with spatially uniform losses and a 
background source of cosmic rays. In § III, the conditions on the local diffusion properties of the medium are discussed, 
and, in § IV, the requirements on the wave field in the face of damping and energy losses are determined for several 
characteristic environments. Up to this point, the ionization structure of the medium was assumed to be unaffected by the 
presence of the shock. In § V, we discuss the possibility of local acceleration within the ionization layer accompanying 
strong shocks in essentially neutral interstellar clouds. 

II. STEADY STATE ACCELERATION OF ENERGETIC PARTICLES WITH SPATIALLY UNIFORM LOSS RATES 
In the frame of the shock (assumed to be steady), the transport equation for the isotropic part f(x9 p, t) of the 

cosmic-ray distribution function in coordinate and momentum space is written as 

dl+v
dl--ïLl 

dt âx âx ydx/ 3dp ôx t ’ (1) 

where F denotes the velocity component of the background plasma normal to the shock (approximately equal to the 
normal phase velocity of the resonantly scattering waves if | F| > | VAfn\, where is the normal component of the 
relevant Alfvén speed in the medium, cf. Kulsrud and Pearce 1969), k is the tensor diffusion coefficient for the energetic 
particles of momentum p, and 1/t is their momentum loss rate. The term/T*, describes a distributed stationary source 
which maintains the energetic particle distribution /ooT/t^ far away from the shock. By analogy with 1/t, I/t^ is a 
production rate for the source distribution 

For continuous energy losses, instead of a catastrophic loss after a mean time t, the correct form of equation (1) would 
replace //t by a Fokker-Planck term (l/p2)d/dp[(dp/dt)p2f]9 where now dp/dt is the mean momentum loss rate (e.g., 
Skilling 1971). In this form, equation (1) becomes analytically very difficult. For the present discussion, it is, therefore, 
much more convenient to restrict ourselves to the description in terms of the loss time t which leads to a simple analytical 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
8l

A
pJ

...
24

9.
.1

61
V

 

No. 1, 1981 DIFFUSIVE SHOCK ACCELERATION 163 

solution. Whether or not this is a physically reasonable approximation depends on the problem considered. In the case of 
pure degradation by losses (of a cosmic-ray distribution given either at some initial time, or, in a steady state problem, at 
some removed boundary), the evolved distribution at a given energy will be determined largely by particles starting at 
higher energies. A typical example is the modulation of galactic cosmic rays in the solar wind (e.g., Parker 1965; 
Goldstein, Ramaty, and Fisk 1970). However, the situation where particles are accelerated from lower energies to higher 
ones while suffering energy losses is difficult. In this case, the main question is whether they can gain a certain amount of 
energy before they lose it again—or if they are lost entirely from the process. The last alternative is the one described by a 
loss time and, therefore, appears a reasonable simplification. 

The boundary conditions regarding equation (1) are that/remain well-behaved everywhere and be continuous across 
surfaces of discontinuity of the background plasma. The current density 

S = c,r/-«g (2) 

must also be continuous (e.g., Axford 1980). With the so-called Compton-Getting factor Cg = {—pßf)df /dp, this 
requirement for S implies a differential equation in p. 

For plane shocks, as treated throughout most of this paper, and an overall steady state, equations (1) and (2) simplify to 

OX OX ( OX) T T 

on either side of the shock, as well as to continuity of the normal component of the current density, 

s-c.n-Jl (4) 

at the shock surface. Here k denotes the effective diffusion coefficient along the shock normal direction, which defines the 
x-axis. In fact k; ~ k y cos2 ß, where k y is the diffusion coefficient along the magnetic field, and ß is the latter’s angle with 
the shock normal. We shall assume F, /c, t^, and t to be spatially uniform on either side of the shock. The shock will be 
taken at x = 0, positive x denoting the upstream region. Thus x > 0, one has V = —Vs, where Vs > 0 is the shock normal 
velocity in the frame of the upstream medium. For x < 0 then, V = —(Vs — AV), where AV > 0 is the velocity jump 
across the shock. For strong adiabatic shocks, AF = 3 Fs/4. 

The spatial dependence of/is then given by 

f± =foo + [f(x = 0,p)-fao]e\p ( —a± |x|), (5) 
with 

«+K+= Ks/2+(Fs
2/4 + jc+/t + )1/2 , (6) 

a_ K- = {AV - Vs)/2 + [(Fs - AVf/A + k_ /t_]1/2 , (7) 

the subscripts ± referring to the regions x ^ 0 respectively. For simplicity, it has also been assumed that t± /1V+ = 1. 
This implies/+ -►/00 for x -► ± 00. 

In the case where the loss rates are zero, we have a_ = 0 and a+ = Vs/k+ . Finite losses increase these a’s and steepen 
the spatial gradients of the accelerated component [f(x = 0, p) — f^] exp ( —a± | x | ). 

Continuity of S implies [writing /(0, p) for /(x = 0, p)] 

{-p/3)(e/dp)[f{0, p)] = (k+ a+ + k_ a_)[/(0, p) -f^/AV , (8) 

with the formal solution 

48 

Writing 

with 

[/(0,rt-/J=-fo'(f)/xp[-3/i 
'p (k+oc+ + K_a_)dp" 

AV 
dp' 

K+ CL+ + a_ Fs 

AF = AV+ri’ 

(9) 

(10) 

,?=^[(1 + Z + )1/2_1] + i:^ÄF:[(1 + X-)1/2"1]’ (11) 

X+=AkJ{Vs
2z+)- X_ =4k_/[(^-AK)2t_], (12) 
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Fig. 1.—The effect of different uniform loss rates t 1 on the acceleration and spatial distribution of energetic particles near a shock. A unit 
source with a power-law spectrum in rigidity is assumed. The absorption parameter X = 4k:/1/s

2t. 

the losses are contained in the quantity q. The parameters X + and X_ represent approximately the ratio of the 
acceleration time iacc ~ 4k/Vs

2 to the loss time t + . Obviously, losses are important if either X + or X_ or both are large 
compared to 1 (Bulanov and Dogiel 1979a, b ; Volk, Morfill, and Forman 1979). The form of rj shows clearly that losses on 
both sides of the shock are about equally effective; if either V+ or is large compared to 1, there is little acceleration 
because acceleration requires scattering between both regions. If the losses in one region (due to ionization or adiabatic 
deceleration, for instance) are large, then the acceleration is suppressed even if the losses in the other region should be 
negligible. Effective acceleration requires a combination of large shock velocities, small diffusion coefficients, and small 
loss rates on both sides of the shock. 

To demonstrate this very simply, we choose/^(p) ^ p~3C and (k+ a+ + a_ tc_)/AF = C, where C is simply a large 
constant, larger than the Compton-Getting factor C of the source spectrum. Then, we get 

mp)= c . 
foo C-C 

(13) 

for C' > C, which approaches 1 for C C. 
Figure 1 illustrates the effect of different values of X on the acceleration near the shock. Note how both the maximum 

intensity and the spatial scale over which it extends are suppressed by the losses. In this example, t is the same everywhere. 
In general, equation (9) can be written as 

/(0, p) -/oo = exp 3 rp n(p")dp" 
■V p" 

(14) 

Expression (14) shows that the accelerated particles at momentum p come from all lower momenta p' in the source 
spectrum, attenuated by the exponential factor involving rj[p). If the losses are large at some p", then very few particles of 
momentum p' < p" in the source can contribute to the accelerated particles. 

The different types of possible loss mechanisms will cause rj to vary with momentum or energy in characteristic ways. 
Ionization and Coulomb losses will always make t] large at low energies, but these losses may be small enough to permit 
acceleration above a certain threshold energy. Nuclear collisions will make rj finite and constant at relativistic energies, 
and large, if the medium is dense, so that acceleration would not be possible in dense media at relativistic energies. Finally, 
it is possible that losses due to adiabatic deceleration behind an expanding shock, or simply a combination of all three 
effects, will make rj large at all energies for some shock environments. Then, there will be no appreciable acceleration at 
any energy. Figure 2 shows the steady state spectra according to equation (14), which this acceleration mechanism 
produces for these representative types of variation of rj with energy. More realistic, smoother variations of r¡ with energy 
will produce smoother spectra. 

Exact evaluation of the exponent in equation (14) will not affect these general conclusions but only describe more 
precisely how f(p) varies near momenta where X(p) is changing from small to large or from large to small values. 

Power-law spectra with C > 0 cannot extend to arbitrarily low energies. We chose for illustration in Figure 2 a 
spectrum which has a low-energy cutoff at momentum p0, although any spectrum with C->0 as p->0 with some 
characteristic momentum p0 would be equally realistic at small p and show similar effects. Note that the accelerated 
spectrum in Figure 2a becomes a power law independent of p0 only for p>p0. Similarly, in Figure 2b, the accelerated 
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10° 101 102 103 

P/P0 
Fig. 2a 

10° 101 102 io3 

P /Po 
Fig. 2b 

Fig. 2.—Spectra resulting from acceleration 
by diffusive scattering across a shock, for a 
power-law source spectrum, for different repre- 
sentative variations of X = 4k/Vs

2x with mo- 
mentum: (a) X small at all energies; (b) X small 
above some critical momentum; (c) X small 
below some critical momentum. 

spectrum just above (the momentum where X becomes small, p1 = 10po in the figure) is not a power law, but it 
becomes a power law when p>Pi- 

In Figures 1 and 2, the Compton-Getting factor of the source spectrum was chosen to be hard enough so that 
C = 1.2 < Fs ! XV = I. Then, the spectrum of accelerated particles at p > Pi retains the same form as the source spectrum, 
and the amplification at p px becomes independent of energy and is given by equation (13). This was done to illustrate 
the effects of losses without other complications. In fact, C = 1.2 is an unrealistically hard spectrum. The local 
high-energy cosmic-ray background, which is a likely source for his mechanism, has C = 1.53. Other conceivable, 
locally preaccelerated sources for this mechanism, such as flare-type spectra, would probably have even larger C. 
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The steady state solutions we have been discussing are applicable only when C < J^/AF + f;. Otherwise, equation (13) 
makes no sense, and even equation (14V (which is correct for the truly steady state) incorrectly predicts larger 
amplification, proportional to (p/Pi)3C-Fs'AK at high energies. The problem is that the steady state spectrum in the case 
C > FS/AF + rç is only reached after a long time at high energies, p $> Pi. The time-dependent solutions (Krymsky 
et a/. 1979; Forman and Morfill 1979) will be discussed in detail for various source spectra in another paper, but we 
present a few relevant results from that work here. At energies just above px (or p0 if px < p0), the steady state form, 
equation (14), applies. At p rather larger than pl5 a characteristic spectrum,/(0, p)—/^ =/oo(Pi)(p/Pi)-3Fs/AF, is 
produced. This spectrum extends from a few times px to, near the highest momentum, Pn^Pi exp 
{CFs

2í/4k:[(C — FS/AF]}, where the steady state has been reached in the age of the accelerating region, t. Above ph, the 
spectrum falls off more steeply, parallel to the source spectrum. At momenta so large and at times so small that the steady 
state has not been reached at that momentum, the amplification does not depend on the particle momentum but only on 
the age, i, as exp [3CFs

2i/(4/c)]. 

III. CONDITIONS ON DIFFUSION COEFFICIENTS IN SHOCK ACCELERATION REGIONS 
In § II we discussed the formal changes that occur in the general shock acceleration picture if losses are included. This 

was done for a homogeneous medium. In order to see whether shock acceleration can indeed be considered locally in the 
Galaxy, and whether the propagation characteristics of cosmic rays in a shock acceleration region must be similar to or 
different from the overall galactic propagation, as inferred from the leakage lifetime tcr and a linear galactic scale L, we 
compare the relevant time scales. 

Assuming overall galactic storage as well as leakage of cosmic rays to be described by a diffusion approximation with 
an effective diffusion coefficient /q, the diffusion time of a particle across the galaxy is given by tcr ^ I}/kx. The time an 
accelerating shock needs to cross the Galaxy is L/Vs (if the shock itself lives for such a long time). In order to apply 
diffusion theory everywhere in the Galaxy, we must have 

L/F^L2/^. (15) 

Then, the shock is a local phenomenon, and the conditions at the galactic boundary are unimportant. On the other hand, 
for acceleration to be faster than leakage, we need to have 

4/c2/Fs
2 ^ L2/^ , (16) 

where k2 is the diffusion coefficient in the acceleration region. Inequalities (15) and (16) are compatible only if 

k2<k1, (17) 

i.e., the scattering mean free path in the acceleration region must be small compared to the effective overall galactic mean 
free path. 

This condition can be fulfilled under two circumstances. The overall galactic escape may be based on turbulent 
diffusion and convection of the interstellar medium as a whole, carrying the fields and cosmic rays with it on scales which 
are large compared to the cosmic-ray scattering mean free path along the magnetic field lines (e.g., Jokipii and Parker 
1969 ; Parker 1969 ; Axford 1980). Then, k ± can indeed be much larger than the microscopic scattering diffusion coefficient 
and inequality (17) may not have much significance. Alternatively, may not be entirely dominated by large-scale 
stochastic mass motions. In this case, the acceleration region must be associated with strongly enhanced wave activity 
compared to the average galactic situation. These waves must then be produced either directly by the shock or by the 
accelerated cosmic rays themselves (e.g., Lerche 1967; Kulsrud and Pearce 1969). There is no positive guarantee, 
however, that the necessary wave power exists for efficient acceleration in every convenient type of shock configuration, 
nor that this can then be used as a kind of a black box for cosmic-ray production. On the contrary, for shocks in regions 
with strong wave damping, one expects much less scattering power of the background medium than that which exists on 
the average in the Galaxy, unless the waves stem ultimately from the shock itself. In § IV, we make some estimates for the 
shock strengths required in different environments where wave damping and particle energy losses occur. 

IV. WAVE FIELD REQUIREMENTS AGAINST ION-NEUTRAL DAMPING AND PARTICLE ENERGY LOSSES 

Considering first molecular clouds, we use the estimates which Cesarsky and Volk (1978) made for a so-called standard 
cloud of density nH = 2 x 103V atoms cm-3, ion density = 2 x KT6#* cm-3, radius Rc = 8.2Rpc,massMc = 105 M0, 
and magnetic field Bc = 50B micro-gauss ; the normalization parameters AT, Nh R, and B equal unity for the standard case. 
Two types of criteria are used to estimate the scattering mean free path 2scat = vtscat and the shock velocities required for 
particle acceleration. First of all, lower bounds on Ascatt are set by estimating the maximum level of fluctuations Ww which 
the available energy sources for waves can maintain against ion-neutral friction. The most important energy sources for 
waves considered are gravitational collapse of the cloud and hydromagnetic motions induced by expanding H n regions. 
Asking, then, for the necessary speeds Fs of shocks that can accelerate cosmic rays with the estimated Àscatt against particle 
energy losses (i.e., for which X < 1 from equation [12]), we obtain lower bounds on Vs. The strongest energy source, at 
least averaged over the entire cloud, is presumably the gravitational energy released in a free-fall time. In this case, we 
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obtain Fs/RAf < 108 cm s“1 for mildly relativistic particles [p/(mc)] < 1, and nuclear losses dominant] and VJRN < 1010 

cm s_1 for 10 MeV protons (ionization or Coulomb losses dominant) respectively. 
In reality, we must assume wave production to be only a minor by-product of gravitational collapse. Since 

K2 Kcatt OC Ww~
l for iscatt = T, such a reduction in the efficiency of wave production will correspondingly raise the 

lower bound for Vs. The wave intensity to be expected from the volume oscillations of H n regions in the cloud’s overall 
magnetic field (Arons and Max 1975) is about two orders of magnitude smaller than that possible from free-fall collapse. 
Thus, formally, the required values for Vs would have to be an order of magnitude larger than those given above. Such 
unreasonably large numbers, of course, simply show that, from energy arguments regarding wave production by 
processes not directly related with the shock, typical molecular clouds are to be considered as scatter-free, as far as 
acceleration is concerned, on the average, over the whole cloud. 

On the other hand, it is only near the shock where a high level of magnetic fluctuations is required for acceleration. 
Thus, even without cosmic rays present, the local influence (e.g., the ionization precursor) which a strong shock will have 
on the ambient medium may be important. This question is the subject of § V. Here, we continue to assume that the 
ionization structure of the upstream medium is not altered by the presence of the shock. In order to obtain the second 
criterion mentioned above, the possible self-excitation of upstream waves through the accelerated particles is considered 
in competition with ion-neutral friction in the upstream cloud. From the kinematics of the acceleration process (e.g., Bell 
1978a), it follows that the accelerated particles diffuse with (normal) speed Vs through the upstream medium. This 
determines a critical wave growth rate which must exceed the damping rate to lead to a self-consistent mechanism in the 
absence of other sufficiently strong wave sources. For Vs below the critical value, there is no acceleration of any kind in 
this picture. The critical condition is Vs/VAt„ > 1 + [p/(mHc)]3/2 x 4.2 x 102/A for nonrelativistic shock speeds (cf. 
Kulsrud and Cesarsky 1971 ), where mH is the proton mass. Neglecting geometrical factors, for most parameters of interest 
(see §V), VA n equals F4* = 1^(47^7^)“1/2 ~ 2.4 x 108 BNi~1/2 cm s“1, the Alfvén speed of the ionized cloud 
component alone (Kulsrud and Pearce 1969), where nii is the mean ion mass; v4 > 1 is the amplification factor of the 
cosmic-ray spectrum relative to the galactic nucleon spectrum (Morfill, Volk and Lee 1976). Formally evaluating the 
numbers, we obtain Vs > 1011 BAT; “1,2¡A cm s“1 for mildly relativistic protons, and Vs > 5.5 x 109BNi ~1/2/A cm s_ 1 for 
10 MeV protons. From these numbers, we conclude that, unless the upstream ionization structure is strongly modified by 
the shock itself, molecular clouds should be scatter-free (k; ~ 00) from both criteria. 

In particular, the criterion employing self-excited waves can also be applied to other media where ion-neutral friction is 
the dominant wave damping process. In the so-called warm intercloud medium, for the parameters of Kulsrud and 
Cesarsky (1971; see also McKee and Ostriker 1977)—nH = 02N atoms cm-3; = 3 x 10~2Ni ao cm“3; and B = 3B 
micro-gauss—the condition reads VS/VA* >1-1- [p/(mHc)]312 x 10A/A, with VA* ~ 3.8 x 106BVi>oo

1/2 cm s“ L Thus, one 
obtains > 4 x 101 BNifQ0~

1/2/A cm s“1 for mildly relativistic protons, and > 3.8 x 106BNi oo~
ll2/A cm s“1 for 

10 MeV protons. Neither requirement appears prohibitive for strong shocks. 
From the consideration of self-excited upstream waves, it is clear that VJVAfn > 1 is a necessary condition for 

acceleration in a medium without a sufficiently strong background of preexisting magnetic irregularities. In this case, the 
(self-excited) waves travel in one direction into the upstream medium and, for their excitation, the drift speed Vs must 
exceed VAn. Indeed, under these circumstances the approximate transport equations (l)and (2) are exact to order v/c, if it 
is understood that V= Fgas + VAttl where now Vgas is the (normal) mean flow velocity of the gas carrying the waves (e.g., 
Skilling 1971). In order that the waves do not leave the shock upstream, and for V (*, t) to describe a shock transition in 
the first place, we must therefore have | Fgas| > \VAt„ \ everywhere in the region of the shock. 

This is a slightly more general condition than the one required by the instability criterion alone. Particularly in the case 
of a partially ionized medium with strong wave damping, this can be a severe restriction : on the one hand, there only exists 
a negligible wave background; on the other hand, the phase velocity VA* oc (n,)“1/2 can be quite large if /nH 1. Even 
with a strong wave source providing a large background of waves propagating in both directions, equations (1) and (2) 
with F= Pgas are meaningful only for the case |Fgas| > \ VAtn\ since, otherwise, second-order Fermi acceleration 
dominates shock acceleration (see also Blandford and Ostriker 1978). Thus, quite generally, shock acceleration requires 
rapidly propagating shock fronts. Large mass, momentum, and energy fluxes are only of indirect importance. 

V. COSMIC-RAY ACCELERATION BY IONIZING SHOCK WAVES IN CLOUDS 
The estimates of acceleration efficiencies in § IV assume that the ionization structure of the medium remains 

unchanged by the shock. In sufficiently strong shocks, however, not only collisional ionization becomes important in the 
hot postshock region, but also a radiation field is set up which photoionizes the gas ahead of the shock. This produces an 
“ionization precursor” (see, e.g., Raymond 1979; Shull and McKee 1979) and presumably an associated wave field. 
Behind the shock, radiative cooling eventually lowers the gas temperature and recombination takes place. Thus, even in a 
medium in whose unperturbed neutral state hydromagnetic waves are strongly damped, a strong shock carries along with 
it an ionization layer which exhibits very different wave propagation characteristics, in particular, little wave damping from 
neutrals. Compressive waves will still be damped heavily, on account of transit-time damping (Barnes 1966), but Alfvén 
waves are subject only to nonlinear damping mechanisms, which we disregard here. Concentrating on Alfvén waves, the 
question then is whether this ionization layer can serve as a local acceleration region irrespective of the large-scale 
environment. 
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Fig. 3—Schematic configuration of an ionizing shock of speed Vs in a neutral cloud, which is embedded in external media (1) and (4). The 
frame of the shock is assumed to describe a steady state, and the shock is located at x = 0. It creates upstream and downstream ionized regions 
(2) and (3), of extent x2 and x3. The remaining neutral portions of the cloud are assumed essentially scatter free with spatial extents l2 and /3, 
and densities n2, and n3 respectively. In the framework of a diffusion convection theory, they can therefore be treated as ¿-functions located at 
x = x2 and x = -x3. The cosmic-ray distributions in the various regions are Fi to F4; the arrows denote flow speeds in the shock frame. 

o) Macroscopic Model 
A typical scenario is the interaction of a supernova shock with a neighboring interstellar cloud. The shock propagates 

into the cloud and is slowed down compared with the intercloud propagation speed. The postshock intercloud gas 
streams into the cloud and—for sufficiently dense and massive clouds—condenses onto the cloud so that we may 
disregard the possibility of a backward traveling shock. Figure 3 shows the situation schematically. The shock is inside the 
cloud; the ionized region around the shock extends the distances x2 upstream and x3 downstream. The two surrounding, 
almost neutral, and therefore practically scatter-free portions of the cloud are formally concentrated into infinitely thin 
slabs at x = x2, and — x3 with column densities and hn3 respectively. The shock is at rest in the comoving 
coordinate system. We make the assumption that the time scales relevant for the cosmic rays (e.g., cloud traversal times, 
l2/c and /3 /c, and acceleration time, 4k/Vs

2) are small compared with the time scale for the shock passage through the 
cloud, (l2 + /3)/Fs, and that losses in the ionization region are small compared with losses in the main body of the cloud. 

With these conditions, which do not seem unreasonable when substituting typical cloud parameters, the solution of the 
cosmic-ray transport equation is derived in Appendix A. This solution is rather unwieldy in its general form because 
there are two velocity jumps whose acceleration effects have the typical spatial range k/Vs. Thus, the two scale parameters 
x2 V2 /k and x3 V/k determine whether or not the two acceleration regions overlap with each other and with the residual 
parts of the cloud. 

There are simple limits, however. The first limiting case, Fsx2 //c> 1, where the upstream cosmic-ray effects due to the 
shock are confined to the precursor region is indicated in Appendix A. The opposite limiting case, where the shock at 
x = 0 does not play a direct role any more, is obtained by the requirements 

Vs(x2/k) <0 ; V{x3/k)<1. (18) 

They imply a spatial extent of the acceleration region k/Vs which is large compared to the size of the ionization layer. 
Then, the solutions (A15)-(A20) of Appendix A give 

Ki = K2 = 0 ; X3 = X4 = i(Fs-y4); K5 = Vs + (l2 + l3)/r ; K6 = K5-VS; (19) 

where the parameters Kx through K6 determine the p-dependence of the particle distribution. 
The spectral exponent of the amplified component of the cosmic-ray flux is then 

^5 3F5 3(Z2 + lj) 
K3 Vs - V4 r(Vs - V4) ' 

(20) 

If there are no losses, this reduces to the standard result (e g., Axford, Leer, and Skadron 1977). The solution for the 
cosmic-ray distribution inside the cloud is (for p > p0) 

/'’/o+'4,fe) +'4°te) ■ ,21) 

where f0 = G(p/p0)~3c is the cosmic-ray distribution at x = oo upstream, and Ai and A2 are given as 

(22) 

(23) 
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with 

Q = (l2 + h)/[r(Vs - F4)] ; L = VJ(VS - V,) (24) 

This result was considered (not as a special case of a more general solution) by Morfill et al (1981), who investigated 
the possible interaction of the North Polar Spur, Loop I, supernova remnant with the interstellar cloud p Ophiuchi. We 
do not, therefore, repeat the conditions under which the cosmic-ray intensity may become enhanced even in the presence 
of losses, and refer the reader to this paper. 

b) Waves in the Ionization Layer 
The above solution and its limiting cases describe the typical overall situation from the point of view of the cosmic-ray 

transport equations. The central question, however, concerns the wave activity surrounding the shock since it determines 
the spatial scale k/V of the acceleration region. 

The waves in the upstream ionization zone are generated by photon emission and, possibly, resonant cosmic rays from 
the shock. Therefore, there is a tendency for the waves to propagate forward, in the same direction as the shock. Assuming 
wave production to be ultimately due to photoionization, we expect a broad-band frequency spectrum to be established 
around x ~ x2-If the shock is super-Alfvénic, the forward waves also will encounter the shock since they are eventually 
overtaken. Also, apart from amplification, reverse waves are then generated though with smaller amplitude (e.g., 
McKenzie and Westphal 1969; Morfill and Scholer 1977). For linear, forward waves with amplitudes SB0 B0 in the 
upstream medium, and a strong shock, the wave amplitudes downstream are given by: 

0B+ = 

0B~ = 

3 Vs-Vaq 
2VJ2 -VAo 

1 Vs-Vaq 
2 Vs/2 + VAo 

0B0 , 

SB0, 

(25) 

(26) 

where the + and — signs denote forward and backward traveling waves respectively, and F^is the Alfvén speed ahead of 
the shock based on the average field strength B0.Fov Vs>VAo, ôB+/ôB -► 3, which is the minimum ratio allowed, and 
ÔB~ < 0B0. 

However, it is unlikely, from energy arguments, that propagating shocks inside dense molecular clouds can have 
velocities Vs much in excess of 107 cm s“1. Furthermore, VAo is typically of the order of 106 cm s-1. Since 
^scatt ~ I (àB+ )2 + (àB~ )21 ” \ the contribution of the shock-generated ôB~ to >lscatt is, therefore, typically of the order of a 
few percent and may be neglected. The same argument applies to shock-generated forward waves from reverse waves. 
Thus, unless the expected asymmetry between the generation of forward and reverse waves upstream should be very 
large, it remains basically unchanged through the shock. The amplification for both waves is still given by equation (25). 

As the wave disturbances travel further downstream the flow velocity may become smaller than the relevant Alfvén 
velocity. Also, recombination begins to set in, and the medium becomes increasingly more neutral. A detailed calculation 
is given in Appendix B. As a consequence, for slowly varying background parameters, the fate of the waves is 
characterized by four possibilities. 

1. For sufficiently low wave frequencies m in the frame of the shock, collisional friction between ions and neutrals 
enforces coherent mass motion. The wave propagation in the rest frame of the medium is ± VAfC ^ ±B/[4n(pi + p)]1/2, 
where ph p, and B are the mass densities of ions and neutrals, and the field strength respectively. Wave damping, i.e., 
spatial decay, is very small until, behind the shock, e = p¿/p ultimately becomes small compared to unity. 

2. The forward, low-frequency waves are quite likely to reach a resonance V — VA c ~ 0 before they are damped away if 
we assume partial flux freezing Boc (p¿ + p)1/2 (see, e.g., Mouschovias 1976); then VA c remains roughly constant, 
although (pi + p) rises strongly in the relaxation zone behind the shock (e.g., Shull and McKee 1979). In resonance, the 
forward waves cannot propagate further away from the shock. The associated, strong, resonant damping dissipates the 
wave energy around that point. However, part of the forward wave energy might also be transformed to reverse wave 
energy which can propagate freely. 

3. If co is sufficiently high compared to the ion-neutral collision frequency v0, the waves propagate with the rest frame 
phase speed ±VA* ~ ±B/(4npi)

i/2 and a damping length proportional to v0
-1. 

4. Forward, high-frequency waves will reach resonance V — VA* with decreasing e and get damped there. Again, 
production of reverse wave energy might be associated with this resonance. 

c) Estimate of the Cosmic-Ray Interaction Scales 
The acceleration of cosmic rays by an ionizing shock propagating through a largely neutral cloud will be inhibited if 

losses inside the cloud are important. In order to estimate the effects which the cloud may have, the typical cosmic-ray 
interaction scale length k/Vs must be compared with the extent of the region of wave activity surrounding the ionizing 
shock, i.e., with x2 and with x3 (see Appendix A). The extent of the region of wave activity upstream of the shock must be 
the same as the extent of the ionization, since it is reasonable to assume that the waves are generated by the ionization 
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precursor itself. From numerical calculations (Shull and McKee 1979), a column density of ionized material L* ~ 1017 

cm-2 both upstream and downstream of the shock is obtained [shock speed O(107 cm s_1), upstream gas density 
10-100 cm - 3]. Downstream, the extent of wave activity is more difficult to determine. Wave convection and propagation 
into the neutral cloud is, in principle, possible (see Appendix B), albeit with some damping. Thus, the downstream extent 
of the region of wave activity is larger than the extent of the downstream ionization region. Furthermore, when the waves 
enter the partially neutral recombination region, cosmic rays may interact (under certain conditions) with two types of 
waves. First, if the resonant interaction frequency/res > v0 (the ion-neutral collision frequency), cosmic rays interact with 
waves which are “ uncoupled,” i.e., ions and neutrals do not move together. Second, if the resonant interaction frequency 
c^res ^ v0, cosmic rays interact with waves which are “ coupled,” i.e., ions and neutrals move coherently. The damping and 
the propagation velocities of these two wave modes are different (see Appendix B). 

In order to obtain quantitative estimates we make the following assumptions: 
1. The cosmic-ray diffusion mean free path A > 10rg, where rg is the particle’s gyroradius. (In the solar system, where 

wave activity ÔB/B is very strong, of the order of 1, this relationship is roughly measured for relativistic cosmic rays. Since 
the available wave power is generally distributed over a broad frequency range, a minimum value A = 10rg appears 
reasonable [also on theoretical grounds] even though, by adiabatic effects, the wave amplitudes may be strongly amplified 
near resonances.) 

2. The background field strength B scales with the total particle density as (n, + n)1/2, and, as reference values, we use 
Bref = 3 micro-gauss, (n* + n)ref = 1 cm-3. The quantities and n are ion and neutral particle densities respectively. 

3. In the fully ionized region surrounding the shock, wave damping is negligible. 
4. For definiteness only, we assume that the chemistry in the recombination region has not proceeded very far, so that 

the dominant ions are H+ and He+, and the dominant neutrals are H and He. Under these circumstances, we may use a 
constant mean molecular weight 1.4 mH throughout. The ion-neutral collision frequency v0 ~ 10-9n(Hz) (see, e.g., 
Kulsrud and Cesarsky 1971). 

The gyroradius of a cosmic ray with rigidity R(GV) is given by rg = R/(3 x 10“ 7B), where B is in gauss. Applying our 
scaling for B, we obtain 

A > 10ra = 1.1 x 1013 7 (cm). 
~ 9 (n + rii)112 v ' 

(27) 

For relativistic particles, k = ^Ac, so that the cosmic-ray scale length k/Vs \s given by (using Vs = 107 cm s 1 as a typical 
value): 

£>1.1 X 1016 

’s 

R 
(n + nj112 (cm). (28) 

In the upstream ionized region, we have n ^ 0, and the extent x2 of the ionized region is given by x2 = M, i.e., 

x2 & lO^/n^cm). (29) 

It follows that, for rigidities > 1 GV and for an upstream density n* + n > 100 cm-2, conditions (28) and (29) are not 
compatible any more and, thus, the whole upstream portion of the cloud influences the acceleration at the shock. We shall 
come back to this point later. 

The condition that cosmic rays should be able to interact resonantly with both “ coupled ” and “ uncoupled ” waves is 
given by 

/res «Vo, (30) 

where the resonant interaction frequency for a cosmic ray of rigidity R(GV) is given by 

3 x 1Q-7B(V + VA,„) 
Jres 2nR 

(31) 

For “uncoupled” waves, we must use VA n & VA*9 for “coupled” waves VA n ^ VAfC. 
We may differentiate two regions in the downstream medium from the work of Shull and McKee (1979): 
1. F > VA* > VAtC9 i.e., the region before which cooling and recombination become important. This region is of no 

consequence for wave damping and is assumed to contain the full, undisturbed wave field. 
2. VA* > VA-fC > F, i.e., the region of recombination. Here, neutral particles are able to damp wave activity. The 

damping lengths for F->0 and e = Pi/p <^1 are, for low-frequency “coupled” waves (cd v0), 

Ll 

2v0e(l + e)VA'C (32) 
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and, for high-frequency “ uncoupled ” waves (co v0), 

Xh 
v0 

(33) 

(see Appendix B, eqs. [B16] and [B12]). 
Using the scaling for B and equations (30) and (31), we obtain the result thatcosmicraysmay interact resonantly with 

both types of waves if the rigidity exceeds a critical value 

R > Rcri, = 
78.8(n + nt)

1/2 

n 
(34) 

For rii n, jRcrit = 1 GV if n = 6.2 x 103 cm" 2. In the postshock recombination region, such values for the gas density 
are not unusual even for relatively modest, upstream gas densities (see, e.g., Raymond 1979; Shull and McKee 1979), so 
that, in general, we have to consider both types of waves. 

Using the resonant frequency (31 ) and substituting in equation (32), we obtain the damping length for those “coupled” 
waves with which a cosmic ray of rigidity R(GV) may resonantly interact 

Ll = 4.5 x 109e(l + e)R2(cm) . (35) 

In other words, the result is independent of density, and, for small e, it is proportional to e = p¿/p. Damping scale lengths 
comparable with the mean free path (eq. [27]) can only be obtained for rigidities far in excess of 1 GV. 

Similarly, for “uncoupled” waves, we have (substituting VA*[e/(l + e)]1/2 = VA c) 

Lh ~ 1.1 X 1015-[(1+£fl.1/2(cm). (36) 
ne 

For example, with n = 103 and 6 = 0.1, this is 3.6 x 1012 cm. LH is independent of particle rigidity. 
In both cases, we conclude that the wave damping lengths for the particle rigidities of interest (1-100 GV) and for small 

e (~ 0.1) are less than 1013 cm. 
Compared with the extent of the fully ionized region in the postshock regime, which can again be derived from the 

“ canonical” ion column density of ~ 1017 cm" 2, this is small. Thus x3, the postshock extent of wave activity is, for all 
practical purposes, given by the extent of the postshock ionization region. Equations (28) and (29) apply in the postshock 
region also; however, the mean ion density in the whole postshock ionized region, e > 1, is much greater than that 
upstream (due to shock compression and subsequent cooling). A typical scaling factor is ~ 50, as can be deduced from the 
work of Shull and McKee (1979). This implies that the scaling factors for cosmic-ray acceleration are too large (using 
sensible upstream gas densities n > 10 cm"3), compared with x3 (at least for particles with rigidity > 1 GV), and the 
whole downstream portion of the cloud can inhibit the shock acceleration. 

A likely scenario, and one which is probably quite common, is the interaction of supernova shocks with interstellar 
clouds. A typical feature of such events, which we may derive from the above analysis, is that, initially, while the shock is 
propagating through the more tenuous outer layers of the cloud (density < 10 cm"3), cosmic-ray acceleration may still 
occur and lead to enhanced y-ray emission. Later on, the cloud will inhibit further local cosmic-ray acceleration, both 
because the shock slows down and because the acceleration scale length becomes larger than the ionization regions. 

The authors would like to thank W. I. Axford for valuable discussions. 

APPENDIX A 

COSMIC-RAY INTERACTION WITH IONIZING SHOCK WAVES 

The physical situation is depicted schematically in Figure 3, which is also described in the main text. For convenience, 
we choose the same k in all the ionized regions and assume a cosmic-ray distribution function/0 at x = oo of the form 

/0 = G^-j (P > Po) (A1) 

/o = G (p<Po)- (A2) 

In regions i = 1 through 4, we have to solve the diffusion convection equation for the distribution functions/¿ 

d_ 
dx 

= 0, (A3) 
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where the K, are indicated in Figure 3. The solution is of the general type, 

fi — foi + Ai exp [— F¡(x/k:)] , (A4) 

with d/0i/¿be = = 0, and the boundary conditions are 

/i-Vo (for x -► oo) (A5) 

/4 finite (for x ^ — oo), (A6) 
if VA is directed in the same sense as Fs, or 

/4=/_ (for x — oo). (A7) 

Then,/_ is the (arbitrary) intensity at — oo. Continuity of/requires 

/i(*2)=/2(x2)=/c2 (for x = x2) (A8) 

/2(0) =/3(0) =/c3 (for x = 0) (A9) 

f3(-x3)=M-x3) (for x = — x3). (A10) 

In addition, the streaming across the cloud portions and the shock must be continuous (if we include absorption). This 
yields three further equations: 

(K-c-/i+“iL-(K‘c'/i+KSL-'2 

6c^+-‘S)0-( 
VCJ3 + 

V4CJa + 

■II.- 

■a„- 

0 

fc2 (AH) 

(A12) 

-/c3, T3 
(A13) 

where (1/t2) = an2 and (1/t3) = an3 are the loss rates of cosmic rays due to nuclear interactions in the preshock and 
postshock region of the cloud (with densities n2 and n3 and column densities l2 n2 and /3 n3 respectively). The 
Compton-Getting operator is C0 =-(p/3)(d/dp). 

The process of solving these equations is rather cumbersome and will not be repeated here. By suitable substitutions, 
one arrives at two coupled, first-order, ordinary differential equations in p. These can be combined to a second-order 
differential equation for the amplitude A1 (see equation A4): 

Ky{£3yi+
K2P2{£Iyo+K

3p{£jA
l+

K^i£jfo+K5A+K6fo=o, (a i4) 

where, putting 

al = ll— exp 
t) 

M l2 h 

I . /2 ^2 
‘■•=|1"^.+írñ“p 

we have 

u aA = \ \-V exp 
t3 ^)]+è“pH?) 

K^^-FX^-F) —flla2 

K2^(V4-V)(Vs-V) — aia3 

K3=- 
à)- 

K. = 5^ - KJ«, HK - ^)(^) «P 

K5 = f(1 + M'K + |0! 

V — V 
3Ki -I ——îï2u4 

Vs - V 
ai — 3K2 H -a3aA 

K“v¿v,ap ;(t) 
h a4 + — a3 . 

x3 

(A15) 

(A16) 

(A17) 

(A18) 

(A19) 

(A20) 
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The cosmic-ray intensity in the upstream portion of the cloud then becomes (for p > p0) 

where/o is given in (Al) and 

/c2=/o(l-ßo) + G(eO-Öl 
a 

K23C(3C + 1) — K43C + K6 
Qo - K13C(3C + 1) - K33C + K5 

CXP 

(A21) 

(A22) 

(A23) 

and a is defined by the simple quadratic 

Ki oc(oc —1) K$ et K5 = 0 . 

Similarly, the cosmic-ray intensity in the downstream portion of the cloud is (for p > p0) 

fc3 —fo{ — K9Q0 exp 
#)] 

+ KgG(Q0 — Qi) exp 

(A24) 

(A25) 

where a is given by (A24) and 

(A26) 

(A27) 

(A28) 

We see quite generally from (21) and the expressions for Q0 and that, with increasing x2, the shock begins to be more 
and more isolated from the upstream portion of the cloud. The critical scale factor is Vs(x2/k). In the limit where this is 
large compared to 1, we obtain^ :=/o /(I + ^2 hi K)? which now acts as the convected input from the local acceleration 
within the ionization layer. The opposite limiting case is described in the main text. 

APPENDIX B 

CONVECTION AND PROPAGATION OF ALFVEN WAVES IN A PARTIALLY IONIZED MEDIUM 

In § Vb we stated that waves are locally produced in the fully ionized region ahead of the shock and then are convected 
(in the shock frame) downstream into the cloud which, through recombination, becomes progressively more neutral. In 
the steady state frame of the shock, the waves are characterized by a (real) frequency co, which is determined by the 
physical process responsible for wave generation and remains constant during propagation. The question then concerns 
the spatial dependence of the wave field. This is in contrast to a situation discussed by Kulsrud and Pearce (1969) who 
solved an initial value problem. The steady state case considered here allows the discussion of waves propagating in 
(quasi) stationary flows like supernova remnants interacting with clouds, stellar winds in a cool interstellar medium, 
radiation-dominated H 11 regions, or high-velocity clouds. Therefore, it has a different and perhaps wider application. We 
assume all background parameters to vary slowly over a wavelength so that a lowest order WKB approximation may be 
employed. 

The local dispersion relation for Alfvén waves (Kulsrud and Pearce 1969) is Galilean invariant. It reads 

(co2 - cofc
2)a)-|-ív0[(1 + e)a)2 - ecok

2] = 0 , (Bl) 

where cb = œ-k • V, œk = k • VA*, VA* = B^npi)112 with B denoting the field strength, c = pi/p is the ratio of ion to 
neutral mass density, v0 = p((rvtymred/(m x mf) is the ion-neutral collision frequency for momentum exchange, 
((jvt) * 10" 9 cm3 s"1 (e.g., Kulsrud and Cesarsky 1971) is the collision rate, and mred is the reduced mass for ions and 
neutrals with the masses and m respectively. In the one-dimensional aligned case considered here, we have 
œ = co - kV,œk = kVA*. The parameters co, V, and VA* are assumed positive. 

Equation (Bl) determines the wave number k. Introducing instead 

= (B2) 
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the phase velocity in the frame of the medium, we get the two alternative forms 

(V/ - VA*
2) Vt + i^eiV. + V) + ^W+K) = 0 

co 
VJ   V,*2 

* (1 + e) A = 0 . 

Vol. 249 

(B4) 

(B5) 

(B6) 

We solve the cubic equation (B4) or (B5) in several asymptotic limits. 

a) Vq/co -4 1 . 

In this case, to lowest order, independent of e 

F*=±V; co/k=V±VA*, (B7) 

corresponding to a fully ionized medium or large frequencies co in a partially ionized medium. The ± sign describes 
reverse (+) and forward (—) waves. Using the zeroth order (B7) in equation (B4), the first-order result is 

™ = (V+V *)il iv° i^Ll 
k < - '■'I 2 co [± VA* + k(v0/co)(V ± VA*)\ 

If, in addition to inequality (B6), we assume 

\(V±VA*)\ 4Va*, 
CO 

equation (B8) simplifies to 

| = (k±f. 

(B8) 

(B9) 

(BIO) 

Inspection of equation (B8) shows that this last result remains essentially valid up to e(v0 /co) | (V ± VA*) \ = 0(VA*). 
Thus, for V = 0(VA*) also, large values of c = O(co/v0) are described basically by equation (BIO). 

The wave number is given by 

co 
(F ± VA*) \ * ' ^ '■'l ’ (B11^ 

showing a strongly damped resonance of forward waves for K — F4* = 0. In general, the damping length is given by 

Hs)- 

1 i(v±vA*) Im (k) v0 

b) v0/co M . 

(B12) 

(B13) 

Since c > 0 this also means (v0 /co)(l + e) > 1. Therefore, away from the resonance V + = 0, we obtain to lowest 
order for e (v0/oj)_ 1 : 

1/2 
va*^±vA'C, (B14) 

where the subscript c in VAc implies coupled motion of ions and neutrals in the wave. Many collisions occur during a wave 
period. 

The first-order solution for (v0/co)(l + c)| K + VA c\ ä> VA c is then 

— = (y + y ) — i 6i,c  
k 1 - Ac> l2(vo/cu)(l + c)(F+K4,c)c- 

As long as e (v0/cu)_1, this leads to the damping length 

1 /^2(v0/cj)(1 + c)(F + F4,c)3 

Im (k) u>VA'C
2 

The solution (B15) is inappropriate near the resonance V — VAtC = 0 since the ordering (v0 /co)(l + e) | F — VA c | > VA c 
does not apply for forward waves. However, one can show that the physical expectation of a strongly damped resonance 

(B15) 

(B16) 
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near V = holds for forward waves, as in case (a) for V = VA*. Putting V<t, = — VAtC + ix + y in equation (B5), with 
x/Va,c < h y/VA,c < 1, but neglecting terms ~ (V — VA c), results in 

i V 2 vA,c 
4 ê(v0/co)(1 + e) 

1/2 
(B17) 

This implies strongly damped resonance at F = VAtC — x. 

c) F « I r* (B18) 

In this case, convection is negligible and equation (B5) reduces to a quadratic equation for F;> with the solution 

k = 
(±V) 

1 + £(l+e) CO 

2\ 1/2 
1 + 

(1 + e) ~ (1 + í) CD CO 

1/2 
(B19) 

This of course comprises the asymptotic cases (a) and (b) for V = 0. For (v0/co) > 1, but e(v0/co) = 0(1), or smaller, the 
wave becomes critically damped, ie., Im (k) > Re (k). 
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