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ABSTRACT 

A stellar-wind type formulation is developed to study axisymmetric MHD jet flows in radio 
galaxies. When the magnetic energy is small compared to the total energy of the jet flow and the 
azimuthal field has a pinching configuration, similarity methods can be employed to reduce the 
two-dimensional partial differential equations of the problem to a system of ordinary differential 
equations. These equations allow some approximate analytical solutions in the outer jet region 
where many parameters approach their asymptotic values, but numerical methods have to be used 
in the inner jet region where variables change rapidly. The results of the numerical experiments to 
study the effects of a pinching external pressure and a pinching magnetic field are discussed, and 
the observed width of the northern radio jet in 3C 449 will be fitted by each of the two pinching 
models. The asymptotic analytic expressions are tested numerically, and it is shown how they may 
be used to deduce physical properties of the jet from direct observations of its geometry. In 
particular, the radius of the jet nozzle, the internal magnetic energy, and the external pressure may 
be constrained in this manner. The significance of the recently discovered transition from parallel 
to transverse magnetic field in the jet is also demonstrated. 
Subject headings: galaxies: structure — hydromagnetics — radio sources: galaxies 

I. INTRODUCTION 

Supersonic beams were proposed as a means of transporting energy from intense central sources in galaxies or 
quasars to distant radio lobes almost a decade ago by Rees (1971). Since then, this idea has been modified and 
developed extensively (Longair, Ryle, and Scheuer 1973; Scheuer 1974; Blandford and Rees [hereafter BR] 1974; 
Wiita 1978). In recent years the existence of continuous bridges or jets of radio emission have in some galaxies been 
confirmed observationally—e.g., NGC 315 (Bridle et al 1976), 3C 31 (Burch 1977), NGC 6251 (Waggett, Warner, 
and Baldwin 1977; Readhead, Cohen, and Blandford 1978). It seems reasonable to assume that the lossy radio jets 
and the energy beams may be identified, or at least correlated in the sense that the radio electrons act as tracers of 
the thermal beam. 

With the highly sensitive VLA telescope now put into operation, more information about the structure of radio jets 
has been accumulated (e.g., Bridle et al. 1979; Fomalont et al. 1980; Perley, Willis, and Scott 1979). In particular, the 
continuous jets are observed to be highly collimated (usually cone angle <20°), and significantly enhanced 
collimation sometimes develops as the jet goes outward (cone angle decreases). It is also known now that the 
magnetic fields in these jets are highly organized—for the radiation is polarized (often approaching the theoretical 
maximum) and the electric vectors are well ordered. Frequently, in one side of the two sided jets,1 the magnetic field 
is observed to change its orientation from parallel to perpendicular relative to the jet axis. In view of these 
observational facts, it is natural to ask the following questions: How can one explain the decrease of cone angle? 
Does the observed well-ordered magnetic field have dynamically important effects on a radio jet? 

Many models proposed to explain radio sources are electrodynamically dominated (e.g., Lovelace 1976; Blandford 
1976; Benford 1978). However, in those cases the assumed geometries are usually very restrictive. On the other hand, 
the popular beam models are hydrodynamical and more flexible in handling the geometry (e.g., Begelman, Rees, and 
Blandford 1979), but the effects of magnetic fields are usually ignored. In this paper, the dynamical behavior of radio 
jets is studied by a “transverse self-similar” flow model which incorporates the magnetohydrodynamical effects as 
well as the usual pressure confinement. 

Following the standard treatment in beam models, we shall assume that a “typical” radio jet is continuous, 
stationary, and that the flow is principally confined and colhmated by an external pressure (at least near the central 

1A. H. Bridle, private communication. 
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source). However, our formulation will include the possibility of magnetic pinching. Since there is evidence that some 
jets are nonrelativistic and relatively dense (Perley, Willis, and Scott 1979), we shall make the simplifying assumption 
that the flow can be described by the nonrelativistic magnetohydrodynamical equations. The magnetic field is 
assumed to be frozen-in, and the geometry is assumed to be axisymmetric. 

We recall that a similar problem has been encountered and studied extensively in connection with magnetized 
stellar winds (see Weber and Davis 1967; Mestel 1968; Michel 1969; Goldreich and Julian 1970; Henriksen and 
Rayburn 1971). However, in those cases attention was mainly focused on solutions in the equatorial plane, where 
analytical results can be obtained. The radio-jet problem is concerned more with flow in the polar directions, and 
moreover the angular width (0) of a jet is an important variable which needs to be calculated for comparison with 
observations. 

Thus our present problem is essentially two-dimensional, but fortunately the standard treatment of MHD winds 
can be nicely generalized to two dimensions (see Appendix A). However, even though this general approach is quite 
powerful, its application to a completely two-dimensional problem requires the solution of a pair of complicated 
partial differential equations (e.g., eqs. [A17],[A18]). Fortunately, by assuming paraxial flow, and assuming that the 
strength of the magnetic field is small and that the dependent variables have self-similar distributions across the flow, 
it is possible to reduce the partial differential equations to a system of ordinary differential equations which is much 
easier to solve. Note however that no restrictive self-similarity is required in the z direction. 

In § II, the -similar flow model will be presented (w represents the radial coordinate in a cylindrical system). The 
properties of these flows as obtained by numerical experiments will be described in § III. Section IV will discuss 
various implications. 

II. THE “'»-SIMILAR” MODEL FOR A CONTINOUS JET 

A steady MHD flow must satisfy 

V X (V X B) = 0, (1) 

V-B = 0, (2) 

V-(pV) = 0, (3) 

+ -y»+v4>=vxVxy--;-i-BxVxB, (4) 
2 p 477-p v 

where is the gravitational potential and all other symbols have their conventional meaning. An equation of state is 
required to complete the system, and we shall assume that the beam may be treated as an ideal gas (pccpT) and 
moreover normally that p has a polytropic dependence on p, i.e., 

peep1', (5) 

along a streamline (y is a constant). Furthermore, we shall ignore gravitational effects in this paper as we are 
primarily interested in the outer portions of the jet. 

From the streamline formulation discussed in Appendix A, one can obtain the following system of equations in 
cylindrical coordinates (w, <j>, z): 

Bz, = BzVv/Vz, 

b - o ( \ L/fixcr2-1 
i-«;’ ' 

(^-4)*--*.IM^)- 

( 
V dv V IS VV TB {JV z 
Vf drer 3z )• 

(v J-+V±\v =-LJ-n+H-J!± 9 X . ^ r 
&B+Vzdz )v™ p 9zaß+ Vf AirpZf ter (®rÄ4‘)+ 4irp [ dz cto 

(6) 

(7) 

(8) 

(9) 

(10) 
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r* = (Grß) 
L/ÇItb2 — Ma ~2 

i-ma-
2 (11) 

(12) 

where fí, L (angular momentum per unit mass), and E (total energy per unit mass) are parameters that stay constant 
along a stream line and 

MA = (4WpF//fi/)1/2 (13) 

is the poloidal Alfvénic Mach number. 
We separate the dependencies on ns and z by assuming the following ns self-similar forms (c.f. Chan, Chau, and 

Henriksen 1980), namely, 

B = (14) 

V=(ÎFroï’^ï’^)’ (15) 

L = S2Ra
2(J)2, (16) 

T=Tj-(Tj-Tr)(v/R)2, (17a) 

where b^, V bz, Wz, Tj, Tr, and R are functions only of z, and ÄA is a constant identified subsequently 
with R at the Alfvénic point. The scaling radius R(z) is taken to be the radius of the jet boundary at z so that it 
obeys (boundary is a streamline) 

dR/dz=Wv/Wz. (18) 

The quantities TR, etc., are values of T, 2?^, etc., on the boundary streamline, and Tj is the temperature 
on the jet axis. Moreover, we take p to depend only on z as required in Appendix A. Equation (17a) can then be 
written equivalently asp = Pj — {Pj —pR)C&*/R)2- In general, total pressure balance at R(z) requires 

PR=Pe + Pré 
by2 + bz

2 

877 

withpTe=Pe + B^/%iT, but we will assume the magnetic field to be strictly continuous at R so thatpR=pe and so (17a) 
becomes 

P=Pj-(Pj-Pe)(&/R)2- (17b) 

Here, pe, the external pressure, is a given function of z, and pj (a function only of z) will be taken to depend on p as 
in equation (5). 

Using equations (15) and (18), the left-hand side of equation (10) becomes 

v a+fa 
k 

z9z (19) 

When equations (14)-(17) and (19) are substituted into equations (6)-(ll) and (13), it is found that the assumed ns 
dependencies are indeed compatible with each other, so that relations among the z-dependent functions can be 
written down without the appearance of ns. Furthermore, equations (8) and (9) become integrable. Hence the exactly 
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b^ = bzWv/Wz, 

_ (RÜ\(R 
a/*) -1 
-ma 

bz = ^JR2, 

9 = ^JWzR\ 

w-7tw'‘-h(p-p') 
ü±!+_l 

R 477p 
IbS 
R 

i-ma-
2 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

where and 2m, the axial magnetic and material fluxes in the jet, are constants. 
However, the assumed forms (14)-(17b) fail to eliminate the vj dependence from equation (12), Bernoulli’s 

equation. Using (17a), this becomes explicitly 

£ = y Pj w: 
y-l p 

vrÁ 

~R2 

b*bz ÜR 
4irp fVz 

(Pr-Pj) O'2 

P R2 f 
Pr Pj dp 

pR2 P 
V3“ 

= EZ + Ev, 

where = const X17 = const X[ — p(II^/2ycr ] and Ez is a constant by Appendix A (E" a constant). Hence the 
assumed self-similar form overdetermines the problem by yielding two equations from the Bernoulli equation (unless 
Pj is allowed to be determined by the dynamics rather than eq. [5], or unless an anisotropic pressure is used). We shall 
avoid this difficulty here by treating the case for which E^a<^Ez so that Bernoulli’s equation reduces to 

W¿ , y p¿ 
2 y-l p =EZ. (26) 

This approximation will be valid provided: 

0 
I ¿«A I OR 
4wp Wz 

«A, 

and 

W 2 WA
2 

ii) 

.... \P'-Pj\^r 111)  . 

Condition (i) requires that the magnetic force be relatively unimportant in accelerating the longitudinal motion of 
the jet. Note that it does not mean that the magnetic forces may be neglected while calculating the transverse motion 
of the jet from equation (24), for the other transverse terms are small in the same order in this approximation. 

Condition (ii) is essentially the paraxial stream line approximation [(dR/dz)2= W^2/Wz 
2<^\,{Rd<i>/dz)2 = 

Wç 2/Wz 
2«:1]. The low rotational velocity is consistent with condition (i), and we note that for a collimation angle of 

30°, (W^/Wy^ian2 15°«0.07. 
Inasmuch as Vpj actually accelerates the jet initially (eq. [26]), condition (iii) must be interpreted as requiring the 

internal pressure to be very nearly the external pressure when they are large (i.e., near the central source). This is in 
fact the very condition needed for the Blandford-Rees nozzle to operate. In our numerical experiments (§ III), 
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I Pj Pe I / p Ez is usually less than a few percent. Only in very unfavorable cases with, say, 20% magnetic or rotational 
energy can it get as large as 20%, and then only in a small region near the nozzle. 

Equations (18) and (20) to (26) now define completely our model in terms of Wz, bz, b^, p, R, b^, 
(PjC£py). In fact, the actual equations to be solved are (18), (24), and (26) for R, and Wz. We proceed in § III to 
study these equations numerically, but it is easy to acquire a qualitative appreciation of their behavior. 

Looking first at the transverse equation (24), we observe that the magnetic term in b^ is the pure “pinching” term. 
It is accentuated in our self-similar form by virtue of = b^/r increasing outward. At the same time the repulsive 
transverse magnetic pressure due to Bz has been set to zero as Bz = bz{z). The only way we could accommodate this 
repulsion in our model would be to have Bz discontinuous at R(z), which we do not do here. The other magnetic 
term in equation (24) is ~0[{W1!i/Wz)

2bz
2/4'npR] and is therefore normally small compared to the term in b^. 

Thus the magnetic effects in the model are primarily confining or pinching. The repulsive centrifugal term is related 
to the strength of the pinching term, however, as b^ and are correlated (eq. [21] and [25]). 

The pressure term in equation (24) is normally dominant in the early stages of the jet. As pe drops along the jet, the 
jet accelerates and expands. Consequently p drops and therefore Pj{^py) dechnes rapidly. Eventually pj may become 
less than pe (case of confinement), and the jet will be confined radially until once again pj exceeds or equals pe. If the 
amplitude of these oscillations is small enough, the jet will be collimated. For eventually, both pj and pe become 
small, W-n becomes small, and the jet preserves its collimation inertially. On a larger length scale, the secular 
magnetic pinching term will become important, however. 

Equation (26) may be used alone to gain some insight into the longitudinal motion (see Landau and Lifshitz 1959, 
§§ 80, 90). The standard analysis shows that (here of course the “pipe” cross section is furnished by eqs. [18] and [24] 
solved simultaneously) the flow is divided into subsonic and supersonic regions by a sonic point at which 

W'^W^^pj/p)', (27) 

and 
Wvs = Q=Wzs{dR/dz)s. (28) 

The subscript 5 is used consistently to denote quantities at the sonic point. 
In the subsonic region (z<z5), pressure balance between the “wall” (external gas) and the jet fluid should permit a 

converging nozzle to form (BR 1974; Wiita 1978; and discussion above). The flow pressure decreases from the 
central pressure(at z = 0) to 

Ps = Pc- (29) 

However, because of the many possible instabilities (see Blake 1972) which grow rapidly in the subsonic region, this 
region may be violently turbulent, and one should not take the laminar flow equations (20)-(25) too seriously. 
Considered as an average, equation (26) may still hold. 

Above the sonic point (z>z5), the flow is accelerated in a diverging nozzle. As the nozzle width increases, Wz 

approaches a limiting value 

W2X = W2S[(y+l)/(y-l)]'/2. (30) 

It is well known (e.g., Blake 1972; Birkhoff and Zarontonello 1957) that the inertial and pressure-driven instabilities 
are suppressed in such a supersonic jet. (We also expect the surface tension provided by the magnetic field to inhibit 
Kelvin-Helmholz instability.) The azimuthal magnetic field adds the pinch instability, which in the absence of all 
other effects would grow spatially (in a supersonic jet the explicit time dependence is dominated by the convective 
term) as ~exp {2eBz/Rm} (see Appendix B and § III b below). However, because of the dominance of the 
convective time dependence at any point, our steady state calculation really itself provides the nonlinear, fundamen- 
tal mode of the jet. These calculations show that the pinch is stopped by thermal and magnetic pressure and the 
beam “bounces” on about the above spatial scale. We have not investigated nonaxisymmetric instabilities (e.g., kink 
and helical modes), but these can be expected to have comparable or slightly larger growth scales. Consequently, in 
the absence of external disturbances, we feel that our model will be reasonably stable over at least several pinching 
scales. 

Equations, (21) and (25) describe the behavior of the azimuthal variables when interactions between the magnetic 
field and the mechanical angular momentum are included. We observe first that since the flow we are considering 
has low magnetic energy (i.e., lower than thermal), MA (ccp-1/2) is larger than unity in the supersonic region, so that 
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the supersonic flow is also super-Alfvénic (i.e., zA<zs or a “hot” jet). (We shall consider a “cool” jet, zA>zs, 
elsewhere.) If MA becomes equal to unity somewhere inside the subsonic region, the denominators in both equations 
(21) and (25) vanish. In that case, singularities can be avoided only if R = RA when MA=1, and we would be 
restricted to the critical curve that passes smoothly through RA. However, this may never happen in reality, since the 
present to-similar description of the flow certainly breaks down near the central source because of the complicated 
geometry needed to account for mass and energy conservation there, and it may even break down well above that 
region due to the existence of serious turbulence in the subsonic region. Thus, we shall normally not have the critical 
curve restriction on our parameters. It develops, however, that there are physical restrictions on RA. 

We introduce a new parameter 

Ri = Wzoo/&, (31) 

in terms of which equations (21) and (25) can be conveniently written as 

(r»ra,ma-
2«1) (32) 

and 

Wç RA
2 (c _2 RA

2 A /oox 
W^~R^R (forMA (33) 

respectively. The requirement that MA~
2<^RA

2/R2 is essentially that there should be substantial acceleration 
between zA and z, which is certainly true if zA<zs. From equation (32), one can see that when R = Rl. 
This point is therefore close to the location where the transition of the field orientation from parallel to perpendicular 
takes place, and it can be determined observationally. Since W<t>/W2O0 in our model must be small everywhere, the 
following constraint must be imposed on RA: 

ÄA<(/?1ÄJ)
1/2 (34) 

(Rs is the minimum radius). Another constraint can be found by arguing that should not change its sign in the 
flow (at least in the supersonic region where the flow is assumed to be laminar); then a necessary condition is that 
(using eq. [25]) 

RA>RsMAs-\ (35) 

In summary, the jet flow can be divided into two regions: an inner region where variables are changing rapidly, 
and an outer region where asymptotic conditions are reached (wzæWzoo and eqs. [32], [33] hold). In the outer region, 
it is possible to describe the jet using some analytical approximations (see Appendix B). However, for the inner 
region, numerical methods have to be used to solve the full system of differential equations. This is the principal task 
of the next section, but comparisons will also be made there between the approximate analytical results and 
numerical results, for the outer region. 

III. NUMERICAL CALCULATION OF THE SUPERSONIC REGION 

For ease in numerical calculation, equations (20)-(26) are made dimensionless by introducing Rs and Wzs as the 
constant length and velocity scales of the problem. Defining fi=Wz/Wzs9 \=z/Rs, 
t^Ri/R,, iix = [(y+1)/(y — l)]l/2, f=pe/pes, and ^={Pj/p)/{Pj/p)s, one can write the three dynamical equa- 
tions (18), (24), and (26) in the following forms: 

dH 
lld\=V’ 

(l-MA-
2)p^=±[2p + Fc-2F^-Fnz], 

(36) 

(37) 

p2 + — if 2 
-T = /X (38) 
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where 

(pressure balance) P = ^ - Ce/( \ ) r 1/(Y 1}, 

(centrifugal force) Fc = ^ | 

(pi„chmg)f„-I±i(l) 

o _9 / 3u2 —T \ (magnetic surface tension) F1Sz = v MA I —  I, 
\ M -t / 

(effective temperature) T=(ß$2)(I~y\ 

(39) 

(40) 

(41) 

(42) 

(43) 

(44) 

and Ce is an arbitrary constant to be identified with (pes/yPjS). The -A/a
-2 term on the left-hand side of equation 

(37) comes from the F^z term in equation (24) (eq. [26] is used). Also note that even though the denominator in the 
expression for F^z vanishes at the sonic point, v also vanishes at the sonic point (eq. [28]); therefore F-az actually 
goes to zero at this point with v. 

In the above system, there are five constant parameters: Ce, y, MAs, £A> £i, and one arbitrary function/(X). By 
assuming that transverse dynamical balance (i.e., pdv/dX=0) is satisfied at the sonic point, we can set Ce=l/y 
-1 ^»r(S) + î Fcs-F^(S) since tsJs=1 by definition which gives Ce(y, MAs, |A, ê,). In our numerical experiments, 
y is fixed to be 4/3 (radiation-like) while the form of /(A) is restricted to be 

/(M=/i/[l+(V^)m(/i-!)] (power law) (45a) 

=/i exP (Gaussian), (45b) 

where/i =[(y+1)/2]y/(y_1) [see eq. (29) and note that/i=/(A = 0)=/c; transverse pressure balance at \<XS is also 
assumed], m is the exponent for a power law distribution of the external gas pressure, and \s (=zs/Rs) is another free 
parameter which specifies the distance of the sonic point from the center. Since Fccc^~2 and ^^[(7+ 1)/(y- 1)] 
( Ma£ i /£ )- 2~constant in the outer jet region, F^ is secularly much more important than Fc. Similarly, the terms 
— Ma

2 and F1Sz are not very important in (37) compared to Noting equation (44), we may observe that MAs and 
appear in the form in the asymptotic expression for F+f, and thus one can replace them by a single 

parameter, 

b*2 

4iTpWzl 
2 ’ (46) 

which has the physical meaning of being the ratio of magnetic energy to kinetic energy in the outer jet region. 
Therefore, aside from the freedom in the external pressure distribution, the problem is essentially determined by a 
single parameter tB and we have made use of this numerically. (Some cases with MA and ^ varying and tB fixed 
have been calculated to test this statement; the perturbations in the results are small for eB < 2%.) In the asymptotic 
jet region where bothPj andpe are negligible, an analytic solution can be found which depends only on (Appendix 
B). 

To restrict our parameter space for this paper we set MAs 
2 arbitrarily as [2/(y+ 1)]1/(Y 1)?«0.63. Inasmuch as 

equation (29) may be written as (recall, e.g., [A16]) MAs~
2 = [2/{y+ 1)]1/y-1MAc

-2, and recalling that our assumed 
form will not continue to the actual center, this choice allows MA to become < in the subsonic region, as is 
physically likely. Equations (34) and (35) now become RA/Rs<ix/2 and RA/R5>0.79, respectively, the first of 
which is RA/Rs<MAs~2iiO0-*€b~*~€b~*~32 for e5~l%. We see therefore that ^A=RA/RS is constrained to be 
0(1), and we fixed it to be 1 in the calculations. This leaves us only cÄ(i.e., Ii), A, and any other parameters 
introduced through /(X) to vary. We consider the following particular cases. 
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TABLE 1 
Asymptotic Cone Angles With B=0 

541 

m 5 10 30 90 

m = 3  21,7.6(2) 13,5.2(3) 5,4.2(4) 
m = 4  31,6.5(2) 18,5.6(3) 10,3.5(4) 
m = $  41,2.0(2) 27,1.4(3) 17,7.8(3) 
m = 6   47,1.0(2) 33,5.8(2) 22,3.2(3) 

Gaussian.. .  53,7.2(1) 43,2.2(1) 36,6.7(2) 

TABLE 2 
Results of Pinching by External Pressure 

m=4,Xi = 20 m = 5,XJ=30 m-6,XJ=40 
Parameter 300a 1500a 9000a 300a 1500a 9000a 300a 1500a 9000a 

A,  2.3(2) 1.8(3) 2.4(4) 2.8(2) 3.2(3) 8.5(4) 4.1(2) 8.3(3) 4.2(5) 
í,  1.6(1) 2.6(2) 4.3(3) 2.5(1) 6.5(2) 2.0(4) 5.1(1) 2.0(3) 1.1(5) 
(dí/d\),... 0.09 0.16 0.19 0.13 0.22 0.24 0.19 0.26 0.27 
Xmaxi...... 5.3(2) 8.4(3) 3.1(5) 6.7(2) 2.6(4) 2.3(6) 1.1(3) 1.0(5) 2.2(7) 
ímax,   3.4(1) 9.4(2) 3.5(4) 5.8(1) 3.8(3) 3.4(5) 1.3(2) 1.8(4) 3.9(6) 
€,*  2.2(1) 4.0(2) 4.3(3) 4.0(1) 9.2(2) 2.1(4) 3.0(1) 2.0(3) 1.3(5) 
fe  4.3(-5) 6.9(—8) 5.3(—11) 2.2(-5) 6.9(-9) 8.9(-13) 6.1(-6) 3.9(-10) 8.4(-14) 
fí-  l-7(—4) 9.9(—8) 5.6(—11) 5.1(-5) 8.6(-9) 9.3(-13) 7.6(-6) 4.3(-10) 9.8(-15) 

a) No Magnetic Pinching 

If €*->0 or if B has a force-free configuration, then Flaz, M^2 can be set to zero, and Fc can also be taken 
small (rotation generates b^). Then the transverse behavior of the jet depends only on the variation of the external 
pressure with z. Asymptotically, the problem can be treated analytically for constant pe (Appendix B), but we present 
the numerical integration here. 

For simple pe distributions (eqs. 45a,b]), the instantaneous cone angle 2 tan_1(^/¿/X) of a jet increases 
monotonically in the inner region and approaches a constant asymptotic value in the outer jet region. In Table 1, the 
first number in each slot is the asymptotic cone angle in degrees and the second number gives the distance at 
which d£/d\ reaches 90% of its asymptotic value. We find is larger the slower the drop in the external pressure. 
Moreover, the smaller the required opening angle, the longer the scale length in pe must be. From this table, one can 
see that to produce jets with very small cone angles (say <5°) by pressure confinement alone requires unrealistically 
extreme extensions of the atmosphere beyond the sonic point. Indeed for such small angles, pe must not drop faster 
than A-3 in a region ~103 times the length of the subsonic region. The asymptotic cone angles produced by 
Gaussian variations of external pressure are usually too large for reasonable zs/Rs ratios. 

Next, the possibility of subsequently reducing the cone angle by flattening the pressure distribution in the outer 
region is studied. Numerically, a term of the form g(A) = [(A-Ai)/A](/2/Am/), where m'<m, is added to equation 
(45a). In this expression, f2 = [fi/(f\- l)](Ai/Ae)

mA7', where Ae is a length which specifies the location at which 
g(Ae)«¿/(Ae) (i.e., the location of the break in the power-law external pressure distribution). It was found that if 
Ac > Aasym and m'>2.5, the effects due to a break in the external pressure distribution are extremely small 
(independent of the initial m). This fact can be readily understood by inspecting the expression for P. For 
confinement will occur only if P<0 beyond A^A^. But/(A)ocA“m' here, and toc^-^-OocA-2^-^ so that the 
first term in (39) varies as A_2y+'w' times the magnitude of the second (negative) term. Therefore, only if 
/w'<2y = 8/3, can the negative part of P come to dominate at large A. 

In the case where such external pressure pinching is effective, d£/d\ starts decreasing when the jet reaches Ae; 
sometimes it becomes negative. Table 2 summarizes the results of some cases with m' = 0; the subscript t is used to 
denote quantities at the location where d2£/d\2 = 0 (d2£/d\2 changes from >0 to <0), and the subscript “maxi” is 
used to denote quantities at the location where £ reaches its first maximum (d£/d\ = 0 at this point). After this point 
the jet width recollapses and will undergo a series of periodic oscillations similar to the one depicted in curve {a) of 
Figure 1. These oscillations are characteristic of m' <2y, and will not occur otherwise. 
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Fig. 1.—Typical behavior of a magnetically pinched jet: (a) £; (b) (y- 1) \b\2/(Strpj) in percent; (c) tan x{b^/bz) in degrees; {d) r in 
percent. The parameters are Xy = 8, ^ = 3.2 (eB—2.3%), m = 6,1^ = 1, and Af^s

2 = 0.63. 

Since/(X) approaches a constant (plateau inpe) as X becomes larger than Xe, the behavior of the jet in this region 
can be described by the analytical approximation discussed in Appendix B. In Table 2, the values of and f? as 
computed by equations (B8) and (B5) are tabulated for comparison. One can see that the agreement is quite good, 
especially for larger values of X,, as the residual effects of the initial external pressure (eq. [45a]) become smaller. The 
possible applications of equations (B5) and (B8) will be discussed in § IV. 

b) Magnetic Pinching 

If the pinching effect will eventually be able to recollapse the jet width no matter how small eBis (see 
Appendix B). The typical behavior of a magnetically pinched jet is depicted in Figure 1. Curves a, b, c, and d plot 
respectively £, (y-l)|£|2/(87rP/)> tan-1 {b^/bz\ and r versus X; for a case with X5 = 8, £! = 3.2 (c^2.3%), m = 6, 
£A= 1, and MAj

2 = 0.63. Many similar cases with different parameters have been examined, and the following general 
properties have been observed: (i) The jet undergoes quasi-periodic oscillations in which the magnetic force and the 
internal pressure dominate in turn. At the nodes in the jet width, peaks in r occur. The average width of the jet stays 
almost constant (in fact, a very small increase in amplitude and period exists from period to period) so that the 
averaged jet behaves like a tunnel and the adiabatic losses are avoided. The presence of a shoulder in the external 
pressure variation together with the appropriate parameter choices can cause the amplitude of the oscillation to be 
smaller than the indicated in Figure 1 (and in Fig. 2b). (ii) The ratio of the organized field energy to the internal 
energy oscillates generally through a few tens of percent near unity but can reach an order of magnitude in 
amplitude when €*<0.2%. Observationally,2 polarization percentages (sensitive to the organized field component) 
oscillate through a few tens of percent near 50%. Thus lower limits may be set for c* (few %), and quasi-equipartition 
probably applies in such jets if the internal pressure is largely due to relativistic particles, (iii) Starting with a value 
less than 45°, tan-1 {b^/bz) increases above 45° and subsequently oscillates but normally stays above 45° (observed 
B vector changes from parallel to perpendicular to the jet axis, but it does not subsequently revert to the parallel 
direction except possible at the nodes). The distance z, at which this transition occurs, is one of the quantities fitted 
to the observations. These properties are illustrated in Figure 1. 

Moreover, in Appendix B, we show that, when only magnetic pinching operates (“cold” jet), 

eB=^w«2, (47) 

where a=^max/(zmax-zmin)» the jet radius at maxima divided by the semiperiod, where a period is from node to 
node or antinode to antinode. Table 3 lists the actual c*/a2 found in various cases (including pressure and other 
nonmagnetic effects), and it is approximately constant. Empirically, the constant to be used in (47) is closer to 2, but 
decreases as X, increases. 

2A. H. Bridle, private communication 
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TABLE 3 
Results of Pinching by Magnetic Field 

543 

m = 3, \s = 5 m = 5,\s = 30 Gaussian A= 30 
Parameter 10a 3a 10a 10a 

a,   
£(  
(di/dX),.... 
x„ maxi • 
^maxi • 
Period 
a.... 

9.3(0) 
1.2(0) 
0.08 
2.3(2) 
5.2(0) 
1.1(2) 
0.093 
3.1 

2.5(1) 
2.7(0) 
0.11 
6.0(2) 
3.0(1) 
1.1(3) 
0.055 
3.1 

1.9(2) 
2.5(1) 
0.13 
4.1(4) 
2.0(3) 
8.8(4) 
0.045 
1.2 

6.3(1) 
1.7(0) 
0.05 
2.2(2) 
5.1(0) 
1.1(2) 
0.093 
2.8 

1.8(2) 
9.5(0) 
0.08 
7.9(2) 
3.5(1) 
1.2(3) 
0.058 
2.8 

1.1(3) 
1.5(2) 
0.16 
1.9(5) 
1.0(4) 
5.0(5) 
0.040 
1.5 

1.1(2) 
4.6(0) 
0.09 
1.7(2) 
7.5(0) 
1.4(2) 
0.107 
2.3 

1.7(2) 
1.9(1) 
0.23 
2.9(3) 
2.8(2) 
7.4(3) 
0.076 
1.6 

6.1(2) 
1.7(2) 
0.34 
2.0(9) 
1.1(8) 
4.0(9) 
0.055 
0.79 

ali. 

c) An Example 

To demonstrate how the present model of jet flows can be applied specifically, a case study on the northern jet of 
3C 449 is presented here. Recent observations have made available some detailed information on the structure of this 
jet (see Perley, Willis, and Scott 1979 and references therein). For simplicity, we assume that the jet axis is 
perpendicular to the line of sight. This may well be wrong, but our purpose here is only to illustrate the application of 
the model. 

In Figure 2, the developement of the jet width is fitted by two models. For curve (a), the forms related to the 
magnetic field are suppressed in equation (37) but an extra term of the form [(À—ÀJ)/À]/3/[l+(A///)m ] is added 
to equation (45a) to create a shoulder in the external pressure distribution [/3 = (AJ/Xe)

m/1/(/1 — 1)]. The fitted 
values of the parameters are: m = 5, m' = 3, XS=15, Xe= 105, and 77=200, corresponding to (H0=10 km s“1 Mpc-1), 
7^0.058" (20 pc), ZJ = 0.87" (300 pc), ze^6" (2 kpc), and T/~12" (4 kpc). 

It turns out that the development of the jet width can also be fitted by a magnetic pinching model as in curve (b). 
For this model, the values of the parameters are: m=5, AJ = 12, ^ = 5, and eÄ~l%, corresponding to 7?J«0".035 (12 
pc) and zsæO”A2 (140 pc). The point where b^ = bz is located at À1 = 45 (æl".6) and has not been observed in this 
source. Fits of this type with the shoulder term can reduce the subsequent oscillations in amplitude. 

IV. DISCUSSION 

In this paper, we have outlined a rather general method for treating MHD “jet” flows. In § II, however, we 
restricted our detailed discussion to the “transverse” or tü self-similar model. This model requires for its justification 
a number of physical restrictions that we have already discussed, but we comment here on the choice of the 
transverse self-similarity itself. 

By setting p = p(z), we are assuming transverse “incompressibility” at least at some initial cross-section. The forms 
assumed in equations (14), (15) are just such as to be consistent with this transverse incompressiblity, for they imply 
that a poloidal field-line or streamline is given by the equation 7cr(z) = const. X7?(z) (where the constant labels a 

Fig. 2.—Fits for the northern jet of 3C 449: vertical, jet width in arcsec; horizontal, distance along the jet axis. 
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given streamline). This therefore permits radially only a homologous dilation or compression with the jet boundary, 
which is consistent with p = p(z) provided p is independent of radius at some initial cross section. The parabolic 
temperature or pressure profile assumed in equation (17) is also the only variation consistent with transverse 
incompressiblity, as it prevents the streamline label from appearing in the transverse equation of motion, (37). The 
choice (16) is the only one that maintains the homologous form for and V^, while allowing their mutual 
interaction. We emphasize that the form of the longitudinal variations is not restricted except by the equations 
themselves. 

Physically, the local transverse “incompressibility” should not be too unreahstic at any cross section if magneto- 
sonic waves can traverse the beam diameter in a time, R/Wms, short compared to z/Wz, at that cross section. This 
amounts to {Wz/Wms){R/z)<^\, which again holds for a well collimated “paraxial” or “jetlike” flow in the subsonic 
region and inner supersonic region. Once such transverse self-similarity is established at any section, it can propagate 
itself in z. 

The form for the magnetic field (14) also propagates itself in z with the flow (this statement is in fact what we 
mean when we say that the steady MHD equation admits the self-similar form [14]). We need only assure ourselves 
that such a field distribution can arise naturally at some cross section before the onset of the steady state. Thus 
consider, for example, the radially confined ( = 0) uniformly rotating, hot “atmosphere” of a magnetic dipole 
spinar. Then near the axis at i = 0, ^octct/z4; Bzcc\/z3, and moreover i?z(z, t\ Vz{z, t), B^ccwb^z, t), 
(z, t), J/o02(z, tY&s are self-similar forms of the time-dependent MHD equation. Thus they can arise naturally in the 
transition to an eventual steady state from the initial dipole atmosphere. 

In § III and with the asymptotic form of Appendix B, we have presented our specific conclusions. When the 
magnetic field is not dynamically important (e^^-0), the result of Table 1 apply. We can conclude that a single 
power-law external pressure can produce the very small cone angles (5o-10°) observed in some sources only if it 
does not decline more rapidly than over —TO3 times the length of the subsonic region. A single Gaussian 
component is quite unable to produce such small cone angles for any reasonable values of \s (when \s is large, the 
subsonic region is more likely to be unstable). Table 1 thus summarizes neatly the collimation ability of a smoothly 
varying external pressure in the post-nozzle region. 

Table 2 summarizes our results when the external pressure was taken to have two power-law components, together 
producing a transition to the flatter law at X€. We found that with sufficiently flat outer regions the cone angle 
declines and even becomes negative (the beam reconverges), which leads to a series of oscillations as discussed in 
Appendix B and illustrated in Figure la. For steeper outer pressure laws the oscillations degenerate to the “one 
swing” case of Table 1 and curve (a) of Figure 2. 

When €5 = 0 and the external pressure is asymptotically flat (e.g., extended halo or cluster atmosphere), we have 
found some relations in Appendix B which should allow ready estimates of and pe (fe) from simple geometrical 
observations. Thus from (B8) ([B7] if y ^4/3) we have 

«(0.061) 
(dR/dzf, 

13/2 

Consequently, observing Rm, Rt, and (dR/dz)t will yield Rs, the scale of the sonic nozzle. Equation (B5) then gives 
fe as 0.273 (Rt/Rs)~s/3 =pe/pjs. From Table 2, one can see that a very small value of fe can pinch the jet. Finally 
(B9) yields 

as a prediction or as a consistency check if Rn is observed. 
The magnetic field continues to be given by equations (20)-(22) even when dynamically weak, and in particular 

equations (31) and (32) apply in the appropriate regime. The quantities Rx and z{ are directly observable in some 
sources (allowing for projection effects) and together define a cone angle that must be fitted by the model. With 

determined, equation (46) gives an upper limit for €b: 

€b=_2£r2 < 0.238| ^ j2 (y=4/3)A/Aí-
2<0.63). 

We note also that oscillations in R must produce oscillations in the pitch angle of the field by (32), so that this type 
of variation shown in Figure 1 is not peculiar to the case where the magnetic field is dynamically important. 
However, as we have already remarked, this requires an unrealistically flat outer pressure variation (w'<2y). 
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When the magnetic field is dynamically important (e5 at the few % level), Table 3 applies. Although the external 
pressure was supposed to have the simple power law form of equation (45a) throughout these calculations, such 
beams always oscillate (Appendix B), and the period is given in Table 3. When £A and MAs are fixed by the 
approximate considerations given in the text, the only arbitrary parameters occurring are eB, Xs, and m (the pressure 
power law). Figure 1 illustrates the general behavior for such a beam. The oscillations in radius, position angle, and 
internal energy are clear. It is noteworthy that the magnetic energy is within a factor 3-4 of the internal thermal 
energy in this regime, and this factor is not very different from that in the fitted region of 3C 449 (Fig. 2). Adiabatic 
losses are minimized (except on initial expansion) by the averaged cylindircal character of the oscillating beam. 

When the general behavior is adequately fitted by a magnetically pinched beam, Appendix B supplies some simple 
relations analogous to those of the pressure case above. First, the approximate value of eB can be estimated by 
equation (47) when Rm and the half-period are determined. Then, with equation (B6), the size of the sonic radius can 
be estimated by 

Rs~47eB
3/2R„ 

while (B12) is 

Rn/Rs~0.04/[eBln(RjRn)]3/2 

which may be used to test consistency. When in addition Äj is observed, then by (46) 

MAs-
2^te*BRx2/Rs2, 

which may be tested by the model fit (varying MAs). However, we remark that the above estimates are very 
inaccurate in a region where the external pressure is still significant (as in the examples of Table 3). 

We may note that the magnetic fit to the “first swing” of 3C 449 requires e^ælO-2. Taking (Perley, Willis, and 
Scott 1979) «,^0.02 cm-3, JJ^ — IOOO km s-1 with this e.B yields ¿>^6 microgauss, which value is not untypical of 
the “equipartition” fields in this source. Our point, however, is that this strength of magnetic field is already 
dynamically significant. Should magnetic pinching be definitely not observed despite ordered fields of this strength, 
then we must conclude either that (i) the gas density and/or its velocity are significantly larger than those estimated 
by Perley, Willis, and Scott (1979), (ii) does not have a pinching configuration, or (iii) significant deviations from 
the pY law for the internal pressure occur. This latest possibility is consistent with other indications of internal 
“heating” or particle reacceleration. We suggest below that such heating may occur in a “core-jet” along the axis of 
the visible beam. 

Once again we note that a combination of an external pressure shoulder with magnetic pinching can remove the 
violent oscillations. The previous analysis (for pe = Q) does not apply to this case, and full calculations must be done. 

It appears3 that the field transition point will be readily observable in some sources; and may show an important 
systematic variation. Thus, let us recall that ÇIRX = Wzoo. Using equation (26) of the text, we may write this as 

/ 2 \!/2 

ß*. = (:pT) WW;'/2, (48) 

where fVc is the central sound speed and Tc is the central temperature. If £2 does not vary much from object to object 
[ÇI—(Gpc)

1/2 on simple-minded arguments], then Rx will vary as the square root of the central temperature. However, 
the radiated intensity from an optically thick relativistic Maxwellian distribution of electrons [N0E

2e~E/kT=N(E); 
e.g., Pacholczyk 1970] is proportional to T. Hence we may expect (co is a frequency at which the core is optically 
thick) the length of the parallel field region to be 

Zi^cot^j)/?! 5,
w
1/2cot^1. (49) 

Thus, if the cone angle is constant from source to source, we expect zxa:S„05 (core). If, however (as might be 
expected if the beam cools rapidly beyond the nozzle), tanByCcl / WzooccT~05 cc S^-0’5, then zxccSu L0 (core). This 
expected correlation can be checked observationally. 

3A. H. Bridle, private communication. 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
8O

A
pJ

. 
. .

24
1.

 .
53

4C
 

546 CHAN AND HENRIKSEN Vol. 241 

In a source such as 3C 449 an additional puzzle arises. Fits to the observed jets (either with eB = 0 and external 
pressure pinching, or with eB at the few percent level) tend to suggest that the sonic point occurs on a scale of order 
100 pc. However, VLBI observations have shown that in at least one case (e.g., NGC 6251, Readhead, Cohen, and 
Blandford 1978) collinear jetlike structures exist on parsec scales contemporaneously with the large-scale jets we have 
discussed in this paper. How can there be a causal relation between jets that must have nozzles of such different 
scales? We propose that in fact small-scale jets can initiate jets on a larger scale by the heating and entrainment of 
material which surrounds them. Thus, a sub-parsec scale jet may heat surrounding material on, say, a 10 pc scale, 
which then nozzles through cooler surrounding material and repeats the procedure on the next scale. The actual size 
of the steps will depend on the scale height of the cool pinching material. In this way, there may actually be many 
layers to a jet (various layers could stop at different distances however). 

Such a structure certainly cannot be described by our tv similar model. The simplest modification is to treat the jet 
as a “two-level” structure, the outer, observed, beam requiring only pressure confinement while the inner, so far 
unobserved, level might have magnetic confinement. This axial jet could serve as a conduit for high energy particles, 
or it may produce them in the course of the various pinches it will undergo. Such a picture suggests that relativistic 
particles may diffuse from the axis of the large-scale beam. Thus, it may be worth making careful observations of the 
transverse variation in spectral index, position angle and polarization as a test of this “multilevel” concept. 

This work was supported by an operating grant from the Natural Science and Engineering Research Council of 
Canada, and by various grants from Queen’s University. The authors acknowledge valuable conversations with Dr. J. 
P. Vallée and Professor A. H. Bridle of the Queen’s Astronomy Group and with Dr. G. V. Bicknell, now at Canberra. 
They also wish to thank Mrs. Brynn Green for her superb rendering of an impossible manuscript. 

APPENDIX A 

STREAMLINE FORMULATION FOR AXISYMMETRIC, ROTATING, STATIONARY, MHD FLOWS 

The present derivation is a generalization of the classical results in magnetized stellar winds and some of the 
arguments are closely parallel to those in standard treatments of this problem (e.g., Weber and Davis 1967; Mestel 
1968). The readers are referred to those papers for more detailed physical explanations. 

The basic equations are equations (l)-(5) in § II. Because of axial symmetry, it is convenient to decompose a 
vector into two components: the poloidal component which lies in a plane passing through the axis of symmetry, and 
the azimuthal component which is perpendicular to this plane. Therefore, we write 

8 = 8, + »*, (Al) 

¥ = %+%,, (A2) 

where the subscripts p and </> denote “poloidal” and “azimuthal,” respectively. The relations Bp*B1f> = BpXBp=B<f>xV 
XBp = 0 (also true for V) will prove to be useful in deriving the formulae below. 

In cylindrical coordinates, the two continuity equations (eqs. [2] and [3]) can be satisfied by defining two functions 
rj and A which satisfy 

Tx dv 
^=97’ 

vrpVz=- 
9tj 
to*’ 

vrB^~ az ’ 

vrBr — - dA 
97? ’ 

(A3) 

(A4) 

(A5) 

(A6) 

The above equations immediately yield Vp*V'q = 0 and Bp*VA = 0, so that rj and A label poloidal streamlines and field 
lines, respectively. The frozen field condition (eq. [1]) implies that VxB=V\p, where ip can be identified as the 
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electric potential (E= — Vip), and this expression can be expanded to read 

1 / drj dA 0T) 3^4 \ 1 dip 
\ 3z 3zcr 3z / or dtp’ 

_ ^> 3^4 + ^ 3i7 __ 3\// 
Vf Ziïp dix 3xcr ’ 

_V<t> dA drj _ dip 
Vf dz Vfp dz dz 

Equations (A8) and (A9) combine to yield 

drj d\p __ di) d\p __ dxp 
dz Btst dw 3z P * dtp 

547 

(A7) 

(A8) 

(A9) 

(A10) 

Consequently, if dxp/d<p = 0 [i.e., no azimuthal emf, which would be strictly inconsistent with the stationary state 
(Vxls = 0) unless there are local batteries], equation (A7) implies that A=A(rj) so that the poloidal field lines and 
stream lines are parallel: 

(All) 

(In this Appendix, a prime is used to denote differentiation with respect to rj.) Similarly, equation (A 10) implies that 
ip = ip(T]) so that the electric vector E= —ip'Vrj is perpendicular to the poloidal field lines. Therefore, if IVtjI^O, 
equations (A8) and (A9) can be recast in the following form: 

(azimuthal field equation) 
pA' + A' 

(A12) 

Now, let us study the consequences of the equation of motion (eq. [4]). With equation (5), the left-hand side can be 
written as V(K2/2+ / dp/p + 4>). The <p component is -(Vp/Tff)*V(ttV+) + (Bp/47rpra)>V('&B<f>) = (VJ,/'&)^V[-'&V<i> 

+ (A/7ffB<j>/47r)] = 09 so that the following integral of the motion exists: 

(angular momentum) — A 'vfB^=L(r})9 (A13) 

where L(t})9 the total (including the contribution from the field) angular momentum per unit mass of outflowing 
material, is constant along a streamline. Solving equations (A 12) and (A 13) for B^, gives 

B^UfpA' 
L/^+xy/yT 

1-M72 (A14) 

1 —Ml2 
(A15) 

where 

_pA '2 

47T 
B//87T 

PV//2 ’ 
(A16) 

and Ma can be identified as the poloidal Alfvénic Mach number. 
Two more equations need to be derived from the equation of motion. Along a streamline, X F)-/fX(V 

XB)/47rp\= VP*VB^VqA'/47nA-B^/4fnAp] = — Vp*V(^sB^f¡4^). Hence, the energy integral has the form 

V2 + V¿ .Ho 
(Bernoulli’s equation) p ^ h J  ^—=£(17), (^1^) 
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where £(rj), the total energy per unit mass of the outflowing material, is constant along a streamline. The magnetic 
term is S*p/pVp, where 5 is the Poynting vector and p=Vp/Vp. Along a direction transverse to the streamlines, the 
final equation can be obtained by taking the dot product of Vtj with equation (4). With the help of equations (A12), 
(A13), and (A17), the left-hand side of the resulting equation can be expressed as Vrj'V(E—'wB<j>\p'/4'7r) = (Vrj)2E' — 
(Vr])2\p"tv3^/477 —ip'(Vri)>V(tvUsing equations (A3)-(A6) for the right-hand side, one finds ultimately the 
following equation: 

(transverse equation) E' — xp 
477 Vf 477 Vf 

1 
Vfp [ 0z \ Vfp 9z / \ Vfp ctotf / 

^4' f 0 / ^4' \ _^ 0 / A' dr) \ 
47fVip[dz\Vf 0z / dvf \ Vf frVf ) 

(A18) 

When equations (A14) and (A15) are substituted for and F^, equations (A17) and (A18) are two equations for 
r)(7ffz) and p(w,z). In principle, this system of equations can be solved once A(r)), ip(rj), /(rj), and E(rj) are 
specified. In practice, it is obvious that equation (A 18) is very difficult to solve without additional simplification. 

If \p', A', and E' are assumed constants (a simple, nontrivial choice) and all variables are assumed to be separable 
in vö and z, then inspection of equations (A 14) and (A15) suggests trying (oc sign implies a multiplicative function of 
z) VfCcxf, B^ccvf, Lee zj , and p independent of Vf. These choices are consistent with the definitions of r) and A (eqs. 
[A3]-[A6]) if t)(w, z)= —p(Vz/2yvf and Vz depends only on z. Substituting these dependencies into equations (A14), 
(A 15), and (A 18), one finds that the variable Vf can be cancelled from these equations, and thus equation (A 18) can 
be transformed to an ordinary differential equation in z. However, matters are not so simple for Bernoulli’s equation 
since, as required by equation (A4), Vz is independent of Vf while F^, F^, and B^ are proportional to Vf. Equation 
(A 17) is necessarily split into two parts: one part has only z dependence and the other part has Vf as well as z 
dependence. To separate the independent variables Vf and z in the systems, it is necessary that these two parts should 
be satisfied independently. The problem would then be overdetermined. To avoid this impasse, we approximate by 
retaining only the 'W-independent part of Bernoulli’s equation and so ignore the Vf dependent terms. This procedure 
is a good approximation if the flow is highly collimated along the z-direction (paraxial flow) and if the magnetic 
energy is always much less than the sum of the kinetic and internal energies. This is made more explicit in the text 
and allows us to impose only transverse self-similarity (z dependencies are unconstrained). 

To make the physics of our particular solution more apparent, we return in § II from the stream functions to a 
more familiar set of variables. Equations (6), (7), (11), and (13) follow directly from (All), (A 14), (A 15), and (A 16), 
respectively, if we set 

Q(r))=-xP'/A'. (A19) 

The quantity is readily identified with ^•[ExB]/(Bzxö)9 the angular velocity associated with the <J> component of the 
drift velocity, perpendicular to B, and is a constant in our particular self-similar model. 

Equation (A 17) is equation (12), equation (9) is the continuity equation, equation (8) is the z component of (1), 
while equation (10) is the radial component of (4). This latter can be easily verified to follow from equations (A17) 
and (A18) by multiplying (A18) by drj/dvö, and then using (A 17) and d/dvö = (dr)/dvi) d/dr). It is of course the cut 
perpendicular to the axis rather than that perpendicular to B. 

APPENDIX B 

ANALYTICAL APPROXIMATIONS IN THE OUTER JET REGION 

In the outer jet region, as MÂ 
2, Fc, and pzæp,zoo, the development of the jet is described by the following 

single differential equation: 

(Bl) 

As r-^(ju oof2)1-7, and equation (32) holds, 

i’«I(ft00|
2)-(Y-1)[l-YCe/(X)(íl00|

2)1'] (B2) 
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(B3) 

Notice that the only place where X appears explicitly is through /(X). If yCe/(X) is approximately a constant, fe 

(may be zero), in some region, then in this region a first integral of equation (Bl) can be obtained as 

+fe^y(èm
2-e)) 

(Y-l) 
-2(y-l)_ ¿-2(7-1) 

(B4) 

in which is the maximum value of £ attained at the antinodes of the oscillations. The existence of £m is obvious if 
either of e* or fe is not equal to zero. When the internal pressure term is nonzero, there is also a minimum radius 
provided that y > 1. Thus, in general, the beam performs bounded oscillations and is confined. 

There are some useful relations between geometrical (observable) properties of the jet and the physical parameters 
that follow from (B4) and (Bl). Thus, as £" =0 at the turning radius £,, (Bl) yields 

fe=Voo-%-2y _ WootB _/n 

£r2 V ' 
273|, -8/3 _ 3.53c, 

~17r 

4) 
’Y=3j- (B5) 

As X > 0, we may observe immediately that 

^ ^ ~y
(7+ ^ I, '>= (0.077£, -V3), (B6) 

where the equality holds for zero external pressure. 
Using (B4) at £,, substituting (B5), and neglecting terms like and (£,/£m)2 compared to unity, we 

obtain 

YMc (Y+l) 

l/2(y-1) 
I2/I,2-y/(y-1) 

r,2 + 2cfl|mV$,2-4cBln(ím/¿,) 

l/2(r-i) 
(B7) 

On setting y=4/3, this becomes 

I,«(0.061) (W¿,)2~4  
(£,')2 + 2caÉm7£,2-4csln(£m/(;,) 

(B8) 

The right-hand sides of these latter two equations are scale independent (i.e., independent of Rs), and therefore they 
provide a relation between cs and £,{RS) when Rm, R„ and (dR/dz), are observed. 

Another relation follows from (B4) applied at the minimum radius, |nün(=£„) at the nodes where ¿' = 0 as (with 
similar approximations to those of [B7]) 

0«4cflln 2m«,-(i'+1) 

Y(V-l) 
I* -ztr-O-rv- Í< -2v YMoo r+lea 

a,2 
(B9) 

If Rn is also observed, then this relation provides a second relation between Rs and cB to be used with (B7). When 
y = 4/3, (B9) becomes 

0«4cfiln^^ j —0.465|n
_2/3-t-0.155|„ it -8/3. 12.9CJ 

i,2 
(B10) 

The preceding analysis is particularly simple if either /e = 0 (pure magnetic pinching) or cB = 0 (external pressure 
pinching). When efi = 0, (B7) gives an immediate value for ít(Rs) when Rm, R„ and {dR/dz), are observed. Then 
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(B5) provides an estimate of the external pressure “plateau” required (fe—Pe/Pjs)- Equation (B9) (with c5 = 0) then 
provides either a prediction for £„ or a consistency check if is observed. 

Should fe = 0, then the analog of (B7) becomes 

l/2(y-1) 

Y(Y— l)/too<T+1) 

= 0.317/[4tBln(|m/|() —(li)2]3/2, y = 4/3. 

i/2(r-i) 

(BU) 

Moreover (B9) yields 

L= 
-(Y+l) 11/2(7-1) 

Y(Y-l) 

= 0.317/ 

1/2(7-1) 

(B12) 

and the equality holds in (B6). When Rn Rn, Rm, and (dR/dz)t are observed, two of equations (Bll), (B12), and 
(B6) may be solved for €.B, Rs, and the third is a consistency check. 

We wish to urge caution in the use of these latter formulae as they are strictly asymptotic results. They do not 
agree well with the numerical results in Table 3 [which are for f(X)¥=0] showing that even an asymptotically 
vanishing external pressure has significant effects as finite X. We have verified that these formulae become valid as 

>oo, however. In particular, formula (B8) becomes 

^0.0216€5-
3/2; 

and we do find numerical agreement with this result asymptotically (see Gaussian cases in Table 3). 
When in this last case the internal pressure is also negligible, £„,/£„ is large. In this case the formal zero pressure 

limit in (B4) (fe = 0: y-^oo) may be integrated to yield the scale over which £ will collapse from £m to £„ (~0 in this 

limit). We find AA=Xm —X„ = £w V77'/(4€5) , and hence 

77 

(AX)2 

^ Rm
2 

4 (¿m-Zn)2 
(B13) 

This yields directly and replaces (Bll) and (B6). Equation (B12) will still give a rough estimate of or a 
consistency check. Equation (46) provides a restriction on Rs, MAs if is observed. 

We would like finally to consider briefly projection effects. The projected radii required will be close to their true 
values in an axisymmetric jet, while the projected AX would be (AX)^ cos A if the axis of the jet makes the angle A 
with the plane of the sky. Thus the derivative required above, (dR/dz)t, would be 

(dR/dz)true = (dR/dz)pr0jcos A, 

and 

(‘iOtrue'^WoS^A. (B14) 

Moreover, from equation (46) we infer (^oce^-1/2) 

(£l)true^COS A(£l)proj> 

and therefore 

(Rs)tru* (^^projCOsA- (^l)proj 
( £ 1 )proj 

cos A. (B15) 
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