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FLUCTUATION THEORY OF THE MASS FLUX FROM THE STARS
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(Received 14 October, 1978)

Abstract. The mass flux from a star is adopted to result from a fluctuation of the photosphere,
which is not in complete thermal equilibrium. Because of the large difference between the dynam-
ical and thermal relaxation times, its state can be approximated by a partial equilibrium. Using a
theory of thermodynamic fluctuations, the mass flux is expressed in a correlation function of
gravitational perturbations of the photosphere. A hypothesis is proposed that the susceptibility to
these perturbations, if normalized to the available thermal energy, is the same for all stars. Its value
is obtained by considering the upper limit to the mass flux. This results in a mean mass loss of L¥/?2
(R/M)®*/G"'* where the symbols have their common meaning. The result is compared to empirical
data on the mass flux from some 50 stars of various luminosities and luminosity classes. With a
possible exception for late-type (super) giants the agreement is good, in many cases within a factor 2.

1. Introduction

Mass fluxes from stars may well be a general phenomenon. Early type supergiants
have mass losses up to 107® Mgy ! (Barlow and Cohen, 1977) and a main-sequence
B-star like = Sco loses almost 1078 Mgy ~* (Lamers and Rogerson, 1978). Red giants
and supergiants have typical mass losses of 1078 Myy~! and 1076 Mgy, respectively
(Reimers, 1975). These values clearly correlate with the luminosity of the stars. For
luminosities below 10% L, the evidence for mass fluxes is indirect only, except in the
case of the sun with its loss of some 10~ ** Myy~! (Hundhausen, 1972). The evidence
consists of a temperature inversion above the photosphere, which points to dissipation
in an outward stream of particles.

If mass fluxes are a general phenomenon, they may well have a common origin.
There is an intriguing scaling of the loss from red (super) giants to that from the Sun
(Fusi-Pecci and Renzini, 1976). The process may not even depend on whether or not
there is an outer convective zone producing acoustic waves, as an M- and A-super-
giant have similar luminosities and mass losses [¢ Ori: 5 x 10* L, and 1 x 10-¢
Myy~1, Reimers (1975); « Cyg: 1 x 10* Lyand 7 x 1077 Mgy ™1, Barlow and Cohen
(1977)]. Significantly, Cannon and Thomas (1977) have shown that any stellar atmos-
phere is unstable to gravitational (acoustic or pulsational) perturbations and that these
perturbations lead to an outward flux of matter, which is fed by the thermal energy of
the photosphere. Also, it may not depend on the steady acceleration mechanism of this
flux, either by radiation pressure (e.g., Lucy and Solomon, 1970; Castor et al., 1975)
or by expansion of a corona (e.g., Hearn, 1975). Significantly again, Zytkow (1974) has
noted that one encounters serious problems in explaining the mass flux as a stationary
phenomenon.
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206 C. D. ANDRIESSE

In this paper the idea is worked out that the process originates in a fluctuation
about the quasi-equilibrium reached in the stellar atmosphere. ‘For the few cases
which have been observed in detail, the evidence is strong that the fluctuations in mass
flow are as significant as the very fact of flow existing at all’*. These cases comprise the
Sun (e.g., Hundhausen, 1972) and some hot stars (York et al., 1977; Lamers et al.,
1978). On top of a ‘stationary’ wind one observes irregularly enhanced emissions
(‘puffs’) on time scales of an hour, typically. In the case of the solar wind, the latter
appear to be associated with high-speed streams, whereas the ‘stationary’ wind in
reality undergoes large variations on a time scale of a week. The stochastic nature of
the mass flux stresses that it is due to non-equilibrium processes and this certainly
complicates the theory of the phenomenon.

Actually a mass flux in itself proves the absence of thermal equilibrium in the
photosphere. Likewise the generality of mass fluxes proves the generality of non-
equilibrium at the interface star—interstellar medium, which underlies the scheme
discussed by Pecker er al. (1973). This state of non-equilibrium, however, can be
approximated by a partial equilibrium, if there is a relaxationtime much less than
the time to reach equilibrium itself (e.g., Landau and Lifshitz, 1969). In that case
equilibrium methods (thermodynamics) may be used to describe the factual non-
equilibrium, which of course is an important advantage. Fortunately this happens to
be the case, as the time determining the dynamics at the stellar surface

= (L) )

is in general much less than the thermal (Kelvin—Helmholtz) time for reaching equi-
librium, given by

GM?
RL’ @

Ty —

where, as usual, G is the gravitational constant and L, M and R are the luminosity,
mass and radius of the star, respectively.

In what follows we first integrate elements from the thermodynamic fluctuation
theory, as given by Becker (1961), in the problem of mass fluxes (Section 2). This will
allow us to express the mass flux in a correlation function of perturbations of the quasi
equilibrium in the photosphere. The advantage gained by this formal restatement of
the problem is the clear physical meaning of the correlation function, which gives a
hold for the heuristic treatment of the perturbation in Section 3. We conclude with a
discussion of the theory in the light of empirical data on the mass flux (Section 4).

2. Thermodynamic Fluctuations

We have to define a thermodynamic function, which we denote by A, to describe the
state of partial equilibrium associated with a certain mass flux M. We choose the

* Quotation from a letter by A. B. Underhill to the author.
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FLUCTUATION THEORY OF THE MASS FLUX FROM THE STARS 207
dimensionless parameter (cf. Williams, 1967)

GM ..

A= TR M. 3)
If P is the total power generated in the stellar interior, one obtains from the energy
balance that A = (P — L)/L. This makes it clear that A is the excess (P — L) in non-
thermal (gravitational) power, associated with the mass flux, normalized to the
thermal power L. Complete thermalization implies L 4+ P and thus A | 0; incomplete
thermalization about partial equilibrium implies A | A. For a fluctuating quantity x
(like A or M or any other), we denote by X its r.m.s. value

% = e, @

where the brackets denote a time average. Obviously, our problem is to calculate A
rather than A.

Following Landau and Lifshitz (1969), or Becker (1961), we propose that M, and
thus A, varies erratically in time according to the Langevin equation

A= —Nm + AQ), )

which defines a stochastic perturbation function 4(¢) with the dimension of a frequency.
One recalls that the Langevin equation is useful in describing fluctuation phenomena
in the absence of equilibrium, like the brownian motion. In the absence of A(?), A
would decay to zero according to exp (—t/7,) — with the thermal relaxation time, as it
should. However, the presence of perturbations prevents such a decay to zero and stops
it at the level A. A(?) oscillates around zero with an extremely unsteady amplitude but
with a rather steady time constant of the order of 7,. This corresponds to gas motions
in the (sub)photosphere, which all develop on the dynamical time scale, but for which
the strength depends on randomly varying circumstances. As A is a normalized power
fluctuation, A is the normalized strength of the gravitational perturbations, which
represent an average power of 4 units of gravitational energy or A(GM?2/R). We recall
that these perturbations are fed by the thermal power L of the star. As long as the
perturbations are small, one may adopt that the response is linear, so that

A(GM?|R) = L or A= y7. 6)

For stars, where the physical cause of the mass flux is the same, the susceptibility y
may be the same. This leads to the Aypothesis that

for all stars ¥ has the same value. ©))

We shall return to the behaviour of A(¢) and the value of y in the next section.
In integrating (5) we follow a method developed by Einstein and Hopf (cf. Becker,
1961). We take a time = such that

Ty K 7KL Ty, ®)
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within which A has changed its value many times but A has hardly changed. With the
abbreviation

| drao - B, ©)
0
we have for the change of A after such a time =

Al _— AO - —T/TtAo + Bo. (10)
More in general, with

G+ Dz

f dr A(t) = B, (11)

jt
where j is an integer, we can write

Aj+1 — Aj - —'T/TtAj + B]; (12)
or, using

y=1- 1/, (13)

The last equation is a recursion formula relating the final value A, to the initial value
Aq through the intermediate values Ay, A, ..., A,_;. We can eliminate these inter-
mediate values by multiplying the equation for A; with v~/ and then adding the newly
found equations as

A =92+ @G By + 9y 2B, + -+ B,_1). (15)

If we square A, and consider the time average, we have (A2) = {AZ> = {A%), whereas
{B;B;) = (B?% if i = j and 0 if i # j, since the B; are assumed to be statistically
independent. This results in

1 2n

L, (16)

(A = ) = (B T

which after substitution of 2 = 1 — 27/, leads to

o = 7 B2, a7

It should be noted, that B as given by (11) depends on 7. In the following section we
shall relate (B2>/(27) to the stochastic perturbation function A(z) using the definition

(B> = f: dr fo "dr CA AR (18)

3. Photospheric Perturbations

Because of the stochastic nature of A(¢z), one expects that the time correlation
{A(t)A(t")> depends only on the time difference u = ¢’ — ¢. Moreover, this function
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FLUCTUATION THEORY OF THE MASS FLUX FROM THE STARS 209

{A(t)A(t + u)> will have an appreciable value only for time differences « of the order
of 74, whereas for larger values of u it will tend to zero. If the perturbations can be
studied as individual events (‘puffs”), {A(#)A(t + u)> gives the time evolution of the
associated mass flux. In Figure 1 we show the mass flux in a solar wind perturbation
as given by the product of flow speed and density observed by a satellite. One ‘puff’
stands out clearly and its time evolution can be followed during 3 days before another
event takes over to determine the flux: the decay seems to be exponential. Taking into
account that some velocity dispersion will cause a broadening of the phenomenon in
time when observed at 1 a.u., this is empirical evidence for a functional behaviour like

CADAQ + u)y = {42 exp (—uf7,). (19)

Our calculation will not depend much on the adopted functional form of the decay.
As shown by Becker (1961), any decay of the autocorrelation of A(¢) with the

6 0 50 u 10Ty,
i I I | T

<A(t)A
4L

0 | A 1 1 1 |

0 2 A 6 days

Fig. 1. Sketch of the correlation <A(¢)A(¢* + u))> of photospheric perturbations A() in the Sun

as a function of the time difference u (full line; the abscissa is in arbitrary units). This correlation is

proportional to the flux in a single event of mass loss. The data are the product of the average flow

speed 7 and density n in a transient solar wind disturbance measured by the Vela 3 satellite (adapted

from Hundhausen, 1972; his Figure 5.16). There is an intrinsic broadening of the peak due to

differences in the time of flight of particles to the Earth, suggested by the dotted lines. The probable
half time of <A(t)A(t + u)) is a few 7,0 and the decay seems to be exponential.
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characteristic time 7, will yield the result below. To make the simple form (19) invari-
ant for time reversal (v — —u), we replace u by |u|.

In evaluating (18) we introduce, besides the time difference u = ¢’ — ¢, the time
sum v = t’ + t. We can then write

-1+l -9}

T t—lz—-v
(B = %f: dvf | du <A()A(t + u)>

~ f du <A exp (= |ul/7a)
= 2rr (42, (20)

The replacement of the integration limits by +oo is justified by the fact that
CA(t)A(t + u)) is virtually zero at u = 7> 74, Combining (20) with (17) and (6) we
obtain

A = x(7afm)"2. 1)

Let us now consider the case that r; 1 7. In this situation any dynamical perturbation
becomes resonant with its thermal accommodation, i.e., the photosphere is practically
released from the star and the mass flux reaches its maximum possible value. The
upper limit to the mass flux for any star is given by A ~ 1 (Williams, 1967; Thomas,
1973). Note that this A refers to a physical (normal) average and not to the r.m.s.
value A. As derived from the Langevin equation (5), the normal average of A differs
from A and decays with the thermal time scale; the author is indebted to R. J. Takens
for his analysis of this point. This formal inconsistency can possibly be removed by
starting from a mathematically different but physically similar proposition. By
identifying A with the physical average A, we adopt the scaling (21) to hold for A also.
The upper limit A ~ 1 implies that the susceptibility

x~1, (22)

entirely in agreement with hypothesis (7). It should be noted, that by having 7, 1 7,
we violate the linearity of the response adopted in (6) and the integration condition
(8). The validity of (21) in the neighbourhood of this limit may thus be questioned.
Our final result is of an extreme simplicity: namely,

A (rqfT)". (23)

In order to facilitate a comparison with empirical data on mass fluxes, we substitute
in (23) the definitions of A, 7, and 7, given by the first three equations to obtain

M =~ LY(RIM)*4|G"". (24)

In this last equation we have left out the factor (4/37)'%, which like y is close to 1.
As one can define 74 and 7, also with other numerical constants of the order of unity
than we have done, we expect (24) to be uncertain by a factor 2.
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4. Discussion

Let us first calculate the r.m.s. mass flux from the Sun: (24) yields 2.547 x 10°kgs™*!
or 4.06 x 107'* Myy~1. In the normal (low-speed) wind of 3.2 x 10° ms~! at I a.u.
from the Sun, one counts on the average 9 x 10° protons m~2 (Hundhausen, 1972).
This amounts to a flux of 1.4 x 10° kg s~1, which should be increased by the flux in
high-speed streams. Thus the theoretical value is fairly close to the actual flux.

Using ]l_'lo = 4.06 x 1071* Myy~*! as a unit, we calculate the mass flux from stars,
for which the luminosity, mass and radius are known. Table I lists log (A?/Aj'fo) = 3/2
log (L/Ly) — 9/4log (M[My) + 9/4 1og (R/Ry) with values according to Allen (1973).
In Figure 2 we show the dependence on the luminosity of the stars, which, as remarked
in the Introduction, should clearly correlate with the mass flux. The dependence is not
linear and it is different for different luminosity classes. On the main sequence (label V),
where M oc L°2°° and R oc L °-2°8  the mass flux scales according to

MMy = (L/Lo)*%2, (25)

as can be verified by inserting these power laws in (24). For giants (label III) one has a
stronger dependence, roughly with L2. For supergiants (label I) the temperature ap-
pears to be an important parameter: if it is below 5000 K, the dependence for giants is
roughly followed, and if it is above 10000 K, the mass flux is roughly independent of
L.

We now compare these theoretical results with the data, also shown in Figure 2,
derived from various observations. We distinguish between the flux from (i)

TABLE 1

Log (J\_'l/]\?o) derived from (24) and Allen’s (1973)
table on L, M and R with spectral class; I = super-
giant, III = giant, V = Main Sequence

Sp I II1 v

05 7.76
BO 7.20 5.60
B5 7.43 3.83
A0 7.35 2.60
A5 7.35 1.77
FO 7.43 0.98
F5 7.73 0.53
GO 7.95 2.40 0.11
G5 7.95 2.83 —0.15
KO 8.55 3.25 —-0.51
K35 9.45 3.88 —1.13
MO 10.13 —1.51
M2 10.65 —2.00
Ms5 -2.77
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Fig. 2. Mass flux as a function of the luminosity as predicted by (24) (full lines). The labels I, 11X

and V refer to supergiants, giants and main-sequence stars, respectively ; in the latter case the straight

line foliows (25). Markings are given for the different spectral types. The data are due to the follow-

ing authors: @: Barlow and Cohen (1977), ll: Lamers and Morton (1976) and Lamers and

Rogerson (1978), + : Reimers (1975), + with error bar: Reimers (1977), (O (BO to B6-stars) and

O (B7 to A5-stars): Barlow and Cohen (1977), vertical error bar: Lamers et al. (1978), A: Gehrz
and Woolf (1971). They are discussed in the text.

main-sequence stars, including O-supergiants, (ii) giants, (iii) BA-supergiants and (iv)
late-type supergiants, and will discuss these in turn.

(1) The pertinent data points in Figure 2 have black symbols and they are fitted,
within a factor of about 2, by relation (25). The BO V-star = Sco has been extensively
studied by Lamers and Rogerson (1978), who derived a mass flux of (7.0 + 1.6) x
107° Myy~1, which amounts to log (A_'J/ATJO) = 5.24 + 0.11. The corresponding value
in Table I is 5.60 and the discrepancy is a factor 2.3. Part of this discrepancy can be
due to the observational fact that the star is seen on its pole, so that there is less than
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average gas in the line of sight contributing to the spectral lines, from which the mass
flux is inferred. Lamers and Rogerson noted that =~ Sco misses by far the empirical law,
derived by Barlow and Cohen (1977), for B-supergiants. This underlines our result that
the luminosity class is important. As O-supergiants have not yet evolved far from the
main sequence, however, we may include them in class V. Indeed there is a good agree-
ment of our main-sequence result with the data by Barlow and Cohen for these stars.
This is also true for the value of log (M/MQ) = 8.26 + 0.15 for the O4-star { Pup,
derived by Lamers and Morton (1976), where we have, extrapolating in Table I, a
value of about 8.0.

Thus, result (25) seems to hold over a luminosity range of 10°. This contrasts with
earlier attempts to scale the loss from stars similar to the Sun to that from the Sun.
For instance, de Loore (1977) refers to old calculations of his giving log (A—Z /]TZ_@) =1.34
and 0.64 for FO V- and AS V-stars, respectively (cf. Table I). This expected turning
down of the mass flux with the luminosity, based on the reduction of acoustic flux from
the outer convective zone, probably does not take place. Otherwise the mass flux from
7 Sco would be many orders of magnitude below its above, empirical value. There will
be forms of gravitational energy different from that in acoustic waves, which perturb
the state of partial equilibrium in the photosphere of those hotter stars.

(i1) The pertinent data points in Figure 2, which refer to M-giants (Reimers, 1975),
are indicated by crosses. They lie quite precisely in the extension of the values calcu-
lated for GK-giants. The mass flux from the M5 Il-star «! Her, which may not differ
much from that of an M5 IIl-star, has been thoroughly studied by Reimers (1977). He
finds log (M /A—'le) = 5.82 + 0.3 and this value is represented in Figure 2 by a cross with
error bar. Extrapolating our line III to the luminosity of this star we predict 6.0, which
is within the error. As for M-giants A, defined by (3), is of the order of 10~° (Reimers,
1975), we have, by equating (23) to this value, the estimate that M/R ~ L2®°[(A**G?/%)

1022 kgm~* or 3 My/R,. For K-giants this quantity is thought to be about 0.2
Ms/Ro (Allen, 1973). Our result raises the question whether giants of the size pre-
scribed by their luminosity and temperature are an order of magnitude heavier than
presently thought, or that our mass loss equation is not applicable to these stars.

(iii)) B-A supergiants are indicated in Figure 2 by open squares and circles; these
data are due to Barlow and Cohen (1977). Furthermore there is an error bar for the
A2 I-star  Cyg due to Lamers et al. (1978). The data cluster along the main-sequence
result, all being somewhat higher. This is in the direction suggested by curve I. How-
ever, the points scatter much around the constant level log (M /Mo) ~ 7.4 predicted
by (24). It should be noted, that the results of Barlow and Cohen are based on a hardly
justified scaling of velocity fields to that of P Cyg, which may cause part of this scatter.
Furthermore these stars do not exactly belong to the same luminosity class. It can be
inferred from (24) that differences in Ia, Ia—-ab, Iab and Ib give significant differences
in the theoretical mass flux. Physically this means that of stars of the same temperature
the heavier ones lose more mass. If this explanation is accepted, the early-type super-
giants seem to obey (24).
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(iv) The data on late-type supergiants in Figure 2, due to Gehrz and Woolf (1971),
are indicated by open triangles. It is here that we meet really serious discrepancies
between our theory and the mass flux derived from observations. In this case we have
to do with infrared observations of dust shells around the cool supergiants; the various
assumptions in the derivation of mass fluxes from such infrared data (in particular
about the dust- and gas-distributions) may cause an error of one order of magnitude,
but not more. However, only for the G8 I-star AX Sgr, which with its log (M IMg) =
8.2 falls right on the calculated curve, there is no discrepancy. In the other cases the
fluxes are up to 3 orders of magnitude below the calculated value. The M4 I-star S Per
has with log (]\—'4 /]\7@) = 8.8 the largest mass flux of our sample, whereas Table I
suggests that this value ought to be about 11. [An even larger discrepancy exists for
the M2 I-star o Ori, which has a loss of 7.25 against, theoretically, 10.65. However,
more recently Bernat (1977) has derived the higher value 8.9; for u Cep, which is also
M21, he found 10.0]. An intermediate case is offered by the K5 I-star RW Cep with
8.10 and 9.45, respectively. As the discrepancy seems to increase when the temper-
ature decreases, a correlation is suggested with the evolution time from the main
sequence.

Does (24) not apply to red supergiants, or are they lighter than expected ? De Loore
et al. (1977) have argued that the evolution of heavy, luminous stars off the Main
Sequence is drastically changed if mass loss is taken into account. While losing much
of their mass, the luminosity is only little reduced, so that these stars are too bright
for their mass or too light for their luminosity. This means that the values we used
for L, M and R of late-type supergiants, based on computations of the evolution with-
out mass loss, probably are in error. Explanation of the above discrepancy in mass flux
of 3 orders of magnitude at a given L, would imply that the error in log (R/Ry) — log
(M/My) is 4/9 x 3 = 1.33. As an example we note that for a K5-star the change of
log (M/M) by 1.36 corresponds to a change of log (R/R,) by 2.73 (Allen, 1973),
where the net difference is 1.37. Thus it seems that a loss of, e.g., 95% of the initial
mass might explain the largest discrepancy; and the loss of a smaller fraction of the
mass might explain the smaller discrepancies. This would fit in the above-mentioned
correlation with the evolution. However, because of a lack of more accurate data on
L, M and R, we cannot quantitatively prove or disprove the validity of (24).

Having compared the predictions of our theory with empirical data on the mass
flux, we conclude that the overall agreement is good, with a possible exception for ‘
late-type (super) giants. In many significant cases the agreement is within a factor of 2.
Thus we find a good deal of truth in the idea that the mass-loss process is nothing
but a fluctuation about the quasi equilibrium in the stellar atmosphere. Furthermore,
the agreement sheds a strong light on the validity of hypothesis (7). That the solar
wind and the mass flux from all other stars are, to quote Fusi-Pecci and Renzini
(1975), ‘basically governed by the same type of physical process, is extremely
fascinating’.
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