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Abstract—Abundances of 20 siderophile elements in the upper mantle of the earth have been
estimated using available data on basalts and ultramafic rocks. The CI chondrite-normalized
siderophile element/Ir ratios in the upper mantle show a large range of variation, and can be divided
into two groups. The first group, consisting of eight noble metals (Ru, Rh, Pd, Re, Os, Ir, Pt, and
Au), has nearly chondritic ratios (within a factor of 4). The noble metal group is interpreted as
derived from meteoritic influx during late heavy bombardment after the formation of the core. Their
concentrations can be explained by about 1% of ClI-like material in the upper mantle. The second
group, consisting of Ni, Co, Ge and others, has high element/Ir ratios (8—120X chondrites). The
abundances of the Ni-Co-Ge group in the upper mantle appear to be related to the indigenous
mechanisms invoking high oxygen fugacity and effects of high temperature and pressure at the core-
mantle boundary region. The influx of meteoritic material could have increased the indigenous
abundance by 30% for Ge and less than 10% for other elements of this group.

INTRODUCTION

Siderophile elements (Pt, Os, Ir, Pd, Ru, Rh, Ni, Re, Co, Ge, etc.) are those
which are highly concentrated in the metallic phases of meteorites. These
elements would either have condensed in the metal phases during nebular
condensation stage or preferentially partitioned into the metal phases during
metal-silicate equilibration in planetary bodies, as the siderophiles are thermo-
chemically easily reduced to the metallic state. The knowledge of siderophile
abundances in the earth’s upper mantle is of great interest because these data are
closely related to several fundamental planetary problems.

Ringwood (1966) and Ringwood and Kesson (1977) have shown that the
abundances of siderophile elements in the upper mantle are remarkably higher
than the values indicated by low-pressure partitioning experiments of these
elements between metal and silicate phases. Several hypotheses have been
proposed to explain the phenomenon (Ringwood, 1966, 1975; Turekian and
Clark, 1969; Brett, 1971; Mao, 1974). Two most viable mechanisms are: 1)
Effects of pressure and temperature. It is suggested that distribution coefficients
of some elements between metal and silicate phases can be changed under high
temperature and pressure conditions in the lower mantle (Brett, 1971; Mao,
1974; Ringwood, 1977). Therefore the silicate material in the lower mantle may
contain an appreciable amount of siderophiles. Convection in the mantle after
core formation may have brought the siderophile-rich material up to the upper
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mantle. 2) Meteoritic influx after core formation. This hypothesis is supported
by recent studies of lunar highland rocks of impact origin. Pristine crustal rocks
contain very low concentrations of siderophiles. Lunar highlands breccias contain
an excess amount of siderophile elements, which have been attributed to
meteoritic influx after the formation of lunar crust (e.g., Hertogen et al., 1977;
Wasson et al., 1975). On the earth, geochemical evidence for a similar bombard-
ment during the early history of the earth is obscured in crustal rocks because of
geological fractionation processes. However, excess siderophile contents may be
preserved in the upper mantle, reflecting the extraterrestrial influx after the core
formation that failed to equilibrate with the core because of the mantle barrier
(e.g., Kimura et al., 1974).

The relative effects of these processes can be assessed using siderophile
abundance patterns. The high T and P mechanism in the lower mantle predicts a
planetary pattern because of different crystallo-chemical properties of the
elements. The meteoritic bombardment mechanism produces a chondritic
pattern, assuming the projectiles are chondritic in composition. In this paper
siderophile abundance pattern in the upper mantle is compiled following critical
evaluation of all available data. The siderophile element/Ir ratios relative to CI
chondrites are used to measure the enrichment of these elements, which may
have bearings on the earth’s upper mantle. Iridium is used for normalization
because it is an immobile refractory siderophile element and has been accurately
determined.

SIDEROPHILE ABUNDANCES IN THE EARTH’S UPPER MANTLE

There is no direct sample from the upper mantle. However, geophysical and
geochemical evidence indicates that it is ultramafic in composition, perhaps close
to garnet peridotite. Since basalt is derived from ultramafic rocks in the upper
mantle by partial melting, the composition of the undepleted upper mantle can be
estimated using a simple mixing model with basalts and ultramafic rocks as two
components.

Table 1 shows concentrations of 20 elements in CI chondrites, basalts,
ultramafic rocks and a model upper mantle. The sources for data and criteria for
obtaining the mean values are listed in footnote of Table 1. In estimating the
mean abundances in basalts, preference has been given to ocean floor tholeiites
when data on these samples are available, since they are the least contaminated
partial melt from the mantle. Palladium, Ir and Au show a remarkable difference
between ocean floor and ocean island basalts; mean abundances in both types are
listed.

Abundances in the ultramafic rocks can be estimated from various kinds of
peridotites, including Alpine-type bodies, komatiites and inclusions in alkali
basalts. Peridotitic komatiites are particularly important because they were
formed by a large degree of partial melting of the mantle (e.g., Green, 1975).
Possibly all phases except olivine have been melted. Abundances of Co, Ni, Pd,
Pt, Au and Ir in komatiites have been determined by a number of authors (Arndt
et al., 1977; Nesbitt and Sun, 1976, MacRae and Crocket, 1977; Villaume and
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Rose, 1977; Kuo and Wilson, 1976). Mean concentrations are listed in Table 1.
The siderophile element/Ir ratios normalized to CI chondrites are Co, 97; Ni, 58;
Pd, 7.7; Pt, 3.9; and Au, 3.5. These data indicate two interesting features of
peridotitic komatiites: (1) Pt: Pd: Au ratios in komatiites are quite close to
chondrites. However, Ir is low. Probably Ir is partly retained in the residual
phases during partial melting; and (2) Co and Ni contents are higher by an order
of magnitude than noble metals. This is discussed in later sections as such
features appear to hold for ultramafic rocks and the upper mantle.

Alpine-type peridotites from the Mount Albert pluton have been analyzed for
Pd, Os, Au and Ir by Crocket and Chyi (1972). Some noble metal data of
Alpine-peridotites from Urals also have been reported by Fominykh and Khvos-
tova (1970). The CI-normalized Pd/Ir, Os/Ir, and Au/Ir ratios for Alpine-type
peridotites from Mount Albert are 3.1, 2.6, and 1.1, respectively. Yushko-
Zakarova and Ilupin (1973) reported Pt and Pd contents in some garnet
peridotite inclusions in kimberlite pipes. The CI-normalized Pd/Pt ratio has a
range of 0.2 to 2.2 and averages 0.65.

Comparison of basalts with peridotites shows that some elements such as Ge,
As and Ag have similar abundances in both types of rocks, whereas other
elements are either enriched or depleted in basalts relative to peridotites. Hence,
when the upper mantle undergoes partial melting, its abundances of siderophile
elements are fractionated. The upper mantle abundances listed in Table 1 are
calculated using 5:1 mix of ultramafic rocks and basalts based on a pyrolite
model of Ringwood (1975).

In order to investigate the fractionation of siderophile elements I have
calculated the siderophile element/Ir ratios, normalized to CI chondrites. These
values are listed as (SE/Ir)c; in Table 1, and are plotted in Fig. 1. The
CI-normalized siderophile element/Ir ratios vary over two orders of magnitude,
indicating the siderophile element ratios in the upper mantle of the earth are
highly fractionated. It shows an important feature that siderophile elements in
the upper mantle can be classified into two groups. The first group has
siderophile element ratios within a factor of 4 of that in chondrites. This group,
comprising eight noble metals (Ru, Rh, Pd, Re, Os, Ir, Pt and Au), has the
highest siderophile affinity. The remaining elements in Fig. 1, having siderophile
element/Ir ratios much higher than that of CI chondrites, are generally only
moderately siderophile. This pattern can be interpreted by a model involving two
steps in the early history of the earth (Table 2):

1) During the core formation, highly siderophile elements were efficiently
extracted into the core and severely depleted in the mantle; however, the
efficiency of extraction of moderately siderophile elements was significantly
lower and maintained approximately present levels in the mantle.

2) The meteoritic influx during the late heavy bombardment enhanced the
concentrations of highly siderophile noble metals in the upper mantle, but caused
insignificant changes on the moderately siderophile elements because of high
indigenous background concentrations.

These mechanisms are discussed in the following sections.
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Table 1. Abundances of 20 siderophile elements in CI chondrites, basalts, ultramafic rocks and the

pyrolitic upper mantle of the earth, as well as the siderophile element/Ir ratios in the upper mantle

relative to CI chondrites. Data on PCC-1, the most frequently analyzed peridotite, are also listed.

Means are calculated following critical evaluation of all published results. Concentrations are in ng/g
except Co, Ni, Cu, Ga and Ge in ug/g, and Fe in %.*

Ele Alpine Mean Upper (SE/Ir)a i
m. CI Basalt PCC-1 Komatiite peridotite ultramafic mantle
Fe 18.4 — — 8.37 — — 6.1 75.1
Co 480 41 112 104 — 110 98 46
Ni 1180uL 200 2500 1530 — 2000 1700 33
Cu 127 100 11.3 — — 30 42 74
Ga 10.5 20 0.68 — — 2.5 5.5 120
Ge 32.7 1.6 1.0 — — 1.0 1.1 7.6
As 1800 1000 54 — — 1000 1000 100
Mo 1400 1000 25 — — 25 190 31
Ru 690 1 9.5 — — 9.5 8.1 2.7
Rh 240 0.2 1.0 — — 2.0 1.7 1.6
Pd 490 0.6* 54 8.4 7.9 8.2 7.0 3.2
1.9+
Ag 390 30 9.7 — — 50 47 27
Sn 1600 1600 840 — — 350 560 79
Sb 170 29 1500 — — 100 88 120
W 140 150 60 — — 60 75 120
Re 35.2 1.0 0.05 — — 0.1 0.2 1.3
Os 510 0.1 7.2 —_ 6.7 6.0 5.0 2.2
Ir 450 0.05* 5.1 1.0 2.5 2.4 2.0 1.0
0.34+
Pt 1060 2.3 8 9.3 — 10 8.7 1.8
Au 180 0.3* 0.77 2.0 1.1 3.0 2.7 3.5
2.5+

*QOcean floor basalts. +Ocean island tholeiites.
}Siderophile element/Ir ratios relative to CI chondrites.

+The sources of data and some criteria in compiling Table 1 are as follows.
CI chondrites: Chou et al. (1976a), Krihenbiihl ez al. (1973) and Mason (1971).
PCC-1: Flanagan (1976).

Basalts and peridotites:

Fe: Upper mantle abundance from Ringwood (1975). Peridotitic komatiite abundance from
Arndt et al. (1977) and Nesbitt and Sun (1976).

Co: Arndt et al. (1977), Engel et al. (1965), Frey et al. (1974), and Nesbitt and Sun (1976).

Ni: Arndt et al. (1977), Fisher et al. (1969), Kay et al. (1970) and Nesbitt and Sun (1976). High
Ni values in basalts with the least olivine fractionation were chosen.

Cu: Frey et al. (1974) and Goles (1967).

Ga: Baedecker et al. (1971) and Rhodes and Dawson (1975).

Ge: Baedecker et al. (1971) and Wedepohl (1974).

As: Onishi (1974).

Mo: Kuroda and Sandell (1954).

Ru: BCR-1 and PCC-1 values compiled by Flanagan (1976).

Rh: BCR-1 and PCC-1 values compiled by Flanagan (1976).
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Pd: Ocean floor basalts from Crocket and Teruta (1977), ocean island tholeiites from Crocket
and Skippen (1966), and peridotites from Crocket and Chyi (1972), MacRae and Crocket (1977),
Fominykh and Khvostova (1970) and Yushko-Zakarova and Ilupin (1973).

Ag: Keays and Scott (1976), Laul et al. (1972) and Wedepohl (1974).

Sn: Hamaguchi et al. (1964), and data on standard basalts compiled by Flanagan (1973).

Sb: Tanner and Ehmann (1967) and Onishi and Sandell (1955).

W: Helsen and Shaw (1973) and Vinogradov (1962).

Re: BCR-1 from Morgan and Lovering (1967), Ganapathy et al. (1973), and data on two ocean
ridge basalts cited by Kay and Hubbard (1978), and PCC-1 data by Lovering and Hughes (1971)
and Morgan and Lovering (1967).

Os: W-1 and BCR-1 data by Crocket et al. (1968), Morgan (1965), and Bate and Huizenga
(1963), PCC-1 by Lovering and Hughes (1971) and Morgan and Lovering (1967) and ultramafic
rocks by Crocket and Chyi (1972) and Fominykh and Khvostova (1970).

Ir:  Ocean floor basalts and Hawaiian tholeiites have different Ir contents. Thirty-four ocean
floor basalts analyzed by Baedecker et al. (1971), Keays and Scott (1976) and Crocket and Teruta
(1977) have 0.05 + 0.08 ng/g Ir (1¢). Mean concentration of Ir in Hawaiian tholeiites is 0.34 + 0.14
(10) ng/g based on data of 16 samples analyzed by Baedecker et al. (1971) and Gottfried and
Greenland (1972), about a factor of 7 higher than ocean floor basalts. The Ir contents in ultramafic
rocks were obtained using data on komatiites (MacRae and Crocket, 1977), alpine peridotites from
Mount Albert pluton (Crocket and Chyi, 1972) and Urals (Fominykh and Khvostova, 1970) as well
as those analyzed by Crocket and Teruta (1977) and Baedecker et al. (1971).

Pt: Basalt BCR-1 has 2.3 ng/g Pt (Rowe and Simon, 1971). Data on ultramafic rocks is
estimated from komatiites (MacRae and Crocket, 1977), PCC-1 (Flanagan, 1976) and ultramafic
rocks analyzed by Das Sarma et al. (1966).

Au: Gottfried et al. (1972) showed that ocean floor basalts are lower in Au than ocean island
tholeiites. Their data along with Laul et al. (1972), Wasson and Baedecker (1970) and Ehmann et al.
(1970) give 0.3 ng/g Au in ocean floor basalts and 2.5 ng/g Au in ocean ridge tholeiites. Data of
Crocket and Teruta (1977) on DSDP Leg 37 are significantly higher in Au than other ocean ridge
basalts. It is likely that their samples have been enriched in Au by secondary processes, since
anomalies as high as 30-70 ng/g Au are found in some samples among the suite. Au in ultramafic
rocks is estimated from Komatiites (MacRae and Crocket, 1977; Villaume and Rose, 1977; Kuo and
Wilson, 1976; Anhaeusser et al., 1975), and peridotites (Crocket and Chyi, 1972; Crocket, 1974).

ORIGIN OF HIGHLY SIDEROPHILE ELEMENTS (NOBLE METALS)
IN THE UPPER MANTLE

This group consisting of eight noble metals is characterized by (1) much lower
CI-normalized abundances in the upper mantle than the moderately siderophiles
(e.g. Ni, Co, Ge); and (2) chondritic compositions. Noble metals have a strong
siderophile affinity. Kimura et al. (1974) suggested that Au would be more
siderophile under higher P and T based on limited thermodynamic data.
Therefore it is very likely that noble metals were efficiently scavenged by the
sinking metal phase during core formation. Core formation probably occurred
very early in the earth’s history. Oversby and Ringwood (1971) indicated that
formation of the core occurred within 10® years following rapid accretion. After
the accretion of terrestrial planets the intensive meteoritic bombardment contin-
ued for hundreds of million years (Wetherill, 1975). On the moon, there is ample
evidence that this “late heavy bombardment” had occurred until 3.9 Ga ago and
may well be episodic (Tera et al., 1974). It is proposed here that the noble metal
abundances in the upper mantle are related to the meteoritic influx associated
with the late heavy bombardment.
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Concentration. Let us first consider the amount of chondritic material required
for explaining the abundances of noble metals. Fig. 1(A) shows that the
concentrations are equivalent to 1.0 + 0.4 % CI chondrite component (error of 1
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Fig. 1. (A) Abundances of siderophile elements in the upper mantle are normalized to
CI chondrites, clearly indicating two groups—the noble metal group and the Ni-Co-Ge
group. The abundances of noble metals can be interpreted by 1.0 + 0.4% CI component
in the upper mantle. The abundances of the Ni-Co-Ge group are related to the oxygen
fugacity and effects of temperature and pressure in the core-mantle boundary region.
Data are from Table 1. (B) Cl-normalized siderophile element/Ir ratios in the upper
mantle, indicating the noble metal group has ratios within a factor of 4 of CI chondrites,
remarkably uniform considering the large sampling error. It is therefore suggested that
noble metals in the upper mantle were acquired during the late heavy bombardment
(until about 3.9 Ga) after the formation of the core (about 4.5 Ga). The ratios of the
Ni-Co-Ge group are too high to be explained by meteoritic influx, but are indigenous to
processes during formation of the mantle.
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Table 2. Fractionation of siderophile elements in the upper mantle.

Highly siderophile Moderately siderophile
Group (Noble metals) (Ni-Co-Ge group)
Elements Ru, Rh, Pd, Re, Os, Ir, Pt, Au Co, Ni, Cu, Ga, Ge, As, Mo,
Ag, Sn, Sb, W
Element/Ir ratio 14 8-120
relative to CI
chondrites
Explanation Chondritic composition indicating Low efficiency of extraction by
a meteoritic source during the the core, controlled by the
late heavy bombardment follow- oxygen fugacity in the mantle,
ing the core formation. and high pressure and temper-

ature equilibration between
the lower mantle and the core.

standard deviation). This value is close to the amount of the extralunar
component in lunar mare regoliths, such as 1.18% at the Apollo 12 site and
1.33% at the Apollo 11 site, but lower than that at lunar highlands regoliths,
2.69% at the Apollo 14 site and 3.69% at the Apollo 16 site (Wasson et al.,
1975). The accretion rate per unit area is higher by a factor of 22 on the earth
than on the moon (Ganapathy et al., 1970; Singer and Bandermann, 1970), but
the siderophile-rich layer on the earth is probably much thicker, implying that
the concentration of the chondritic component doesn’t have to be much higher in
the earth’s upper mantle than the lunar regolith.

Composition. The strongest evidence for the chondritic origin of noble metals
in the upper mantle is their chondritic composition. No chondritic ratios are
found in fractionated meteorites, such as eucrites (Morgan et al., 1978; Chou et
al., 1976b) or silicate portions of ordinary chondrites (Chou et al., 1973).

The siderophile element ratios could also reflect the mean composition of
impacting planetesimals. It is of interest to compare these ratios to those of the
lunar regolith. Some of the ratios in the upper mantle are compared to lunar
highlands breccias (Table 3). It is found that the Au/Ir and Re/Ir ratios of the
upper mantle are within the ranges of highlands breccias, and are close to group
1H, the most populated group of meteoritic components at the Apollo 16 site
(Hertogen et al., 1977). The Ge/Ir and Ni/Ir ratios in the upper mantle are
considerably higher than highlands breccias. High Ge and Ni contents in the

Table 3. Comparison of some CI chondrite-normalized siderophile element ratios in highlands
breccias with the upper mantle of the earth. Lunar data were taken from Hertogen et al. (1977) and
Wasson et al. (1975).

Au/Ir Re/Ir Ge/Ir Ni/Ir
Highlands breccias 0.2-6.6 0.6-1.5 0.1-2.4 0.7-2.6
Upper mantle 3.5 1.3 7.6 26
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upper mantle are probably related to the oxygen fugacity and high T and P in the
mantle as explained below.

ORIGIN OF MODERATELY SIDEROPHILE ELEMENTS (N1-Co-GE GROUP)
IN THE UPPER MANTLE

Nickel, Co, and Ge, and a few other elements, are traditionally regarded as
siderophile elements because of their partitioning into the metal phases in
meteorites (Goldschmidt, 1954). Yet their concentrations in the upper mantle are
rather high (Table 1). Figure 1 shows that the element/Ir ratios of this group of
elements are 8—120X those of chondrites. I propose that this group of siderophile
elements should be considered separately from the noble metals because their
abundances are related to indigenous processes rather than meteoritic influx.
This group of elements is called moderately siderophile elements or Ni-Co-Ge
group since these three elements are the most frequently investigated. Their
abundances are most likely to be related to oxygen fugacity in the mantle and
high pressure and temperature effects in the lower mantle. Dubretsev and Pankov
(1972) indicated that FeO would transform to the metallic state under high
pressure, and the metallic FeO could be an important constituent of the outer
core. Ringwood (1977) pointed out the significance of solubility of FeO in the
metal, which may be accompanied by a large increase of oxygen fugacity in the
core-mantle boundary region. Mao (1974), on the basis of his high-pressure
experiments, suggested that FeO disproportionates into Fe® and Fe?**. This
explains the presence of a considerable amount of Fe** in the mantle. The oxygen
fugacity, as a function of the amount of Fe**, would accordingly increase in the
lower mantle by this mechanism. Therefore some siderophile elements can be
favorably incorporated in the silicate part of the earth because of oxygen
fugacity. Thermodynamic calculations indicate that high pressure favors the
incorporation of Ni in the silicate phase in the metal-silicate partition reaction
(e.g. Brett, 1971). There are not enough thermodynamic data to show that all
elements in the Ni-Co-Ge group behave similarly under high pressure and
temperature conditions, but the possibility remains.

If the abundances of the Ni-Co-Ge group in the upper mantle are controlled by
high T and P and maintained moderately high abundances during core-mantle
segregation and thereafter, addition of 1% chondritic material during late heavy
bombardment will only change the abundances of these elements to a limited
extent. The chondritic influx after core formation would have enhanced indige-
nous abundances by 30% for Ge, 8.6% for Ni, and about 2-8% for all other
elements of this group.

DISCUSSION OF THE MODEL

The model outlined in this paper differs from the inhomogeneous-accretion
model of Turekian and Clark (1969) and Anders (1971) in using high P and T
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planetary processes to explain the abundances of the Ni-Co-Ge group in the
upper mantle while maintaining that noble metals were derived from meteoritic
influx. Hence, the question of Ringwood and Kesson (1977) regarding the
non-chondritic ratios of Ni/Ge and Ni/Au in the upper mantle can be
explained.

Ringwood and Kesson (1977) pointed out an interesting question about the
nature of uniform distribution of some siderophile elements (e.g., Ni, Co, and
Ge) in the upper mantle as indicated by experimental results. The answer may be
related to global mechanisms in the upper mantle, such as strong convection in
the early history of the earth. However, noble metals do show large dispersions.
For example, Pd, Ir and Au contents show a remarkable difference between
ocean floor and ocean island tholeiites (Table 1), possibly indicating the
heterogeneous nature of their source regions.
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