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ABSTRACT 
Magnetic oscillations with multiple periods are discovered as natural solutions of the dynamo 

equation as a direct consequence of the assumption that a time-delay mechanism is intrinsic 
to the feedback action of a magnetic field on the dynamo process. This phenomenon can be 
regarded as a hysteretic effect of a nonlinear system. Numerical experiments are performed to 
study the excitation characteristics of the oscillatory modulations and the internal structure 
and behavior of the system. The observed long-term modulations of the solar cycle with their two 
principal characteristics, (i) the occasional occurrence of anomalous eras of no surface activity 
and (ii) periodicity of the modulations, are discussed and simulated as a guiding example of 
multiple-period oscillations. The multiplicity of periods of the magnetic oscillations may be 
universal and may be found in various magnetic phenomena of other astrophysical bodies. 
Subject headings: hydromagnetics — Sun: activity 

I. INTRODUCTION 

In this series of studies of astrophysical dynamos, 
the solar cycle has been regarded as a typical example 
of the magnetic oscillations of rotating astrophysical 
bodies. The basic characteristics of one 22 year cycle 
can now be understood in terms of the linear proper- 
ties of dynamo waves in the context of the mean 
magnetohydrodynamics (Parker 1955Ô, 1957, 1971; 
Lerche and Parker 1972; Babcock 1961; Leighton 
1969; Steenbeck and Krause 1969; Yoshimura 1972, 
1975tf, è, 1976; see also review papers by Krause 
1976; Stix 1976; and Parker 1977). Recently it was 
found that the nonlinear properties of the waves are 
evident in the observed long-term behavior of the 
solar cycle and that these can be studied within the 
same context of the mean magnetohydrodynamics 
(Yoshimura 1978a). 

From the earliest study of sunspot statistics, it was 
noted that the envelope of the solar cycle has under- 
gone a long-term modulation (Wolf 1856, 1862, 1868; 
Waldmeier 1961). Wolf had already noticed its two 
basic properties : (i) the existence of an anomalous 
era of extremely low activity during the 17th-18th 
centuries and (ii) a periodicity in the long-term 
modulation after that era (the 80 year modulation). 
These two properties constitute the basic problems for 
our understanding of the long-term variations of solar 
activity. The first property was studied later by 
Spörer and Maunder and was recently confirmed by 
Eddy (1976a). The second property has been studied 
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by many subsequent researchers using various indices 
of solar activity (e.g., Gleissberg 1939, 1940, 1971; 
Hartmann 1971; Henkel 1972; Link 1963, 1977; 
Waldmeier 1957) and has remained a problem. Recent 
reanalysis of the sunspot frequency curve using the 
concepts developed in the present study suggests that 
the period of the modulation is not 80 years but rather 
55 years, which is more regular than previously 
thought (Yoshimura 1978c). We call this modulation 
the second-period modulation whether its period is 
80 years or 55 years. Besides this modulation, other 
longer-time-scale modulations have also been sus- 
pected (Schove 1955, 1962; Bray 1967, 1968; Henkel 
1972; Eddy 1976è, 1977). In particular, the analysis 
of 14C data over 7500 years by Eddy (1977) strongly 
suggests that there may be a regular and periodic 
modulation with a period on the order of 2500 years. 

In the first formulation of the nonlinear dynamo to 
study these long-term behaviors, the suppressive effect 
of the magnetic field on the fluid motions and on their 
dynamo action was found to be the dominant mechan- 
ism which determines the amplitude of the oscillation 
(Yoshimura 1978a). The alternative mechanism of 
magnetic field eruption was thought to play a minor 
role in the process. It was assumed then that the 
dynamics of the fluid motions would not change if 
there were no magnetic field. It was expected initially 
that the nonlinearity of the dynamo wave, due solely 
to the magnetic influence on the dynamics, could 
bring about long-term modulations. However, it was 
found that stationary oscillatory states are achieved 
quickly for any oscillatory solutions. This was under- 
stood as an infinitesimal tendency of the solutions to 
limit cycles. This concept was developed in general 
theories of nonlinear oscillations (e.g., Lefschetz 1957; 
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Yoshimura 1978a, 6). According to this, the oscilla- 
tion has an infinitesimal tendency toward a cyclic 
orbit (limit cycle) with one period. In other words, its 
amplitude should not undergo any periodic modula- 
tion. Thus there is an apparent incompatibility 
between the theory and the observed long-term 
modulations. The stationarity of oscillations is a 
consequence of the assumption that the modification 
of the dynamics of the fluid motions is strictly due to 
the oscillating magnetic field. Hence, in order to 
explain the occasional occurrence of an anomalous 
era of low surface activity, fluctuations of the dy- 
namics due to its own cause were assumed and the 
consequences of this assumption were studied 
(Yoshimura 1978a). 

However, the second property of the long-term 
modulation, the periodicity, is difficult to explain by 
a similar mechanism. If this is the case, there must be 
some long-term periodicity in the dynamics of the 
flow which is caused by its own (nonmagnetic) 
mechanism. Although we cannot rule out this pos- 
sibility at present, the possibility of periodic modula- 
tions by some magnetic mechanism should be 
examined thoroughly since the magnetic influence on 
the dynamo process is now regarded as an important 
factor in determining the level of the solar cycle 
oscillation. 

The purpose of the present paper is to investigate 
this possibility thoroughly and to demonstrate that 
multiple-period modulations naturally result in oscilla- 
tory solutions if a certain mechanism, the time-delayed 
process, is included in the feedback mechanism. The 
same mechanism can provide an explanation even for 
the first property, the occasional occurrence of an 
anomalous era, when more than one periodicity appears 
in the modulations (§ IV). 

II. THE TIME-DELAYED FEEDBACK ACTION OF THE 
MAGNETIC FIELD ON THE DYNAMO PROCESS 

Before we proceed to describe the results of the 
numerical simulation, it is heuristically worthwhile to 
examine the feedback process in order to understand 
the diverse and complex aspects of the interaction 
between the magnetic and velocity fields. This is 
especially important in understanding why we need 
more than one delay-time parameter to represent the 
feedback process, as will be discussed later. The first 
and primary part of the interaction, the action of the 
velocity field on the magnetic field, is termed the 
dynamo process. The reverse process, the magnetic 
influence on the velocity field, is termed the magnetic 
reaction. The magnetic influence on the first and 
primary dynamo process is called the feedback. We 
should notice that there is a distinct difference 
between the last two concepts. 

There are two aspects of the feedback process 
which were ignored in the previous formulation 
(Yoshimura 1978a). One is that the magnitude of the 
feedback process is a function not only of the mag- 
netic field strength but also of its configuration. The 
other is that the presence of the magnetic field does 

not affect the dynamo process directly, but rather 
indirectly, through modifying various factors of the 
dynamics which determine the velocity field. First of 
all, the Lorentz force of the magnetic field can work 
on the fluid motions as an acceleration (deceleration) 
without any time delay. This is why the feedback 
process was assumed to take place instantaneously in 
the first formulation. The dynamo process, however, 
is a function of the velocity field and not of the 
acceleration. To provide the dependence of the 
dynamo process on the magnetic field in the frame- 
work of mean magnetohydrodynamics, one step of 
integration to get the velocity field is necessary. 
During this integration, which corresponds to adjust- 
ment of the velocity field to the presence of the mag- 
netic field, some time lapse is necessary. For example, 
when some magnetic field is put into the system, the 
dynamo process can begin to adjust itself instan- 
taneously, but it cannot be modulated instantly to 
the level at which the system is expected to be ad- 
justed. The feedback process is in fact a time-delayed 
process. This mechanism could be represented by one 
delay-time parameter. 

Second, the modification of the velocity field not 
only affects the dynamo process but also changes the 
basic thermal field since the velocity field transports 
heat. The convective instability of this basic thermal 
field is the driving force of the velocity field. Thus the 
modification of the thermal field by the magnetic field 
can eventually affect the dynamo process. The thermal 
adjustment of the system to the presence of the mag- 
netic field and the velocity field adjustment associated 
with the modified thermal field also need some time 
lapse. This mechanism is also a time-delayed process, 
which should require a different delay-time parameter 
from the first one. 

Moreover, the first aspect of the feedback process 
—that it is also a function of the magnetic configura- 
tion—can bring about time-delayed interaction be- 
tween the velocity and magnetic fields. The magnetic 
field in the dynamo system behaves as dynamo waves 
propagating along isorotation surfaces (Yoshimura 
1975a, 6). The dynamo waves in the deep part can 
affect the dynamo process of the upper part after the 
field in the deep part propagates to the upper part. 
This time-delayed interaction would also require 
another delay-time parameter. 

Thus the feedback process is not a simple function 
of the magnetic field in the past. It takes place through 
at least three channels in the dynamics of the system. 
Hence it should require at least three distinctive 
delay-time parameters. This would be important in 
relation to higher-order modulations of the magnetic 
oscillations (§ IV). 

In order to study these complex phenomena, we 
start from a simple formulation of the dynamo process 
with one delay-time parameter. After we understand 
the implication and behavior of the simple dynamo 
models fully and after we reexamine the observed 
behavior of the Sun with concepts developed in the 
theory in mind, we can proceed to much finer models. 
An advantage of the present formulation of the 
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dynamo problem is that it can be used as a diagnostic 
tool to explore the dynamics of the interior, revealing 
what kinds of mechanisms or parameters of the 
mechanisms are important in the dynamics. Even in 
a much finer model, some parametrization of basic 
processes is necessary since fluid motions and mag- 
netic fields of greatly different scales play roles in 
complex phenomena in nature. We can reveal and 
clarify each process step by step by such a parametriza- 
tion technique. 

III. MULTIPLE-PERIOD NONLINEAR OSCILLATIONS 

Figure 1 shows a typical example of the multiple- 
period dynamo-wave magnetic oscillations which 
were studied extensively by solving the nonlinear 
dynamo equation numerically. The dynamo equation 
governing the oscillations is the same as in Yoshimura 
(1972, 1975a, 1978a, 6), except that the feedback 
action of the magnetic field is a function of the field 
intensity at an earlier time, td: 

ar 
dt 

ao 
dt 

(1 - fT 

(1 - 

!) 02 02] 
" 0/42 + dr*] 
!) 02 021 
" dy? + dr2] 

'F + NrRQ> , (III-l) 

<t + NaGW , (III-2) 

Nb = Nr° exp (-aw|<D(i - > (HI-3) 

Na = Nq° exp (-aN|4>(í - íá)!^x) , (IH-4) 

where Y = Ar cos 0 and O = Z?r cos 6 represent the 
poloidal and toroidal fields, respectively; A is the 
longitudinal component of the vector potential of 

the general magnetic field, and B is the longitudinal 
component of the field itself; (t, <£,/* = sin 6, r) are 
coordinates of the spherical system; R and G = 
(1 — /x2)[(aO/a/x)a/ar — (aQ/ar)a/a/¿] are the regen- 
eration and generation operators describing the MHD 
induction processes in three-dimensional space due 
to the flows of the differential rotation and the non- 
axisymmetric global convective waves (Yoshimura 
1972); Nr and NG represent the strength of the 
regeneration and generation processes, which are 
suppressed by the presence of the magnetic field to 
the expected level, corresponding to the field under 
consideration as described in equations (III-3) and 
(III-4) after delay time td\ |^>|maX is the maximum 
value of the toroidal field at a fixed time as an index 
of the strength of the magnetic field. The nonlinear 
process is now described by three parameters: aN9 Nf, 
and td. 

The structure of the differential rotation and the 
regeneration factor, which is related to the structure 
of global convection (Yoshimura 1972; 1976), for this 
case (Fig. 1) are the same as those of the standard 
case of a deeper upper zone (Fig. 3b of Yoshimura 
1978a). The parameters which describe the structure 
of rotation and convection determine the behavior of 
the dynamo waves in the linear domain, which was 
studied in detail by Yoshimura (1975a), and the 
parameter aN determines the amplitude of the non- 
linear oscillation (Yoshimura 1978a); aN = 0.001. The 
multiple-period behavior of the oscillation is con- 
trolled by the parameters Nf and td;Nf = 5, td = 0.03 
(29 years for the case of the Sun [Yoshimura 1975a]). 
The period of the long-term modulation (second 
period) depends on td: the larger td is, the longer the 
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Fig. 1.—The evolution of the energy indices of the nonlinear magnetic oscillation with a second-period modulation which 
results from the delayed nonlinear reaction process. The basic period of the oscillation corresponds to 22 years of the solar cycle, 
and the second period corresponds to its 80 year modulation. The integration time span is approximately 670 years. The meanings 
of the energy indices described at the head of the curves are explained in Yoshimura (1978*0. Each peak has its own spatial struc- 
ture corresponding to the 11 year solar cycle (Fig. 4). The values of the nonlinear parameters are: aN = 0.001, Nf = 5, and 
td = 0.03. Notice the possibility of double peaks during one (11 year) cycle around step 6300. 
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Fig. 2.—Six cases of the nonlinear magnetic oscillation with various values of the delay time parameter /d, showing the de- 
pendence of the length of the second-period modulation on td. From top to bottom, td = 0.005 (5 year), 0.01 (10 year), 0.015 
(15 year), 0.02 (20 year), 0.025 (25 year), and 0.03 (30 year). The larger the value of tdi the longer the period of the modulation. 
The values of Nf are, from top to bottom, Nf = 15, 8.25, 8, 7, 6, and 5. These are chosen since the effects of Nf become strong as 
td increases. Other parameters are the same as in Fig. 1. 

period (Fig. 2). If we assume a null time delay, no 
long-term modulation can appear. The value of 
td = 0.03 was chosen so that the second period is 
seven cycles (~ 80 years for the case of the Sun). If 
we assume a smaller value of td, a 55 year modulation 
can be reproduced (Yoshimura 1978c). The value of 
Nf = 5 makes the degree of modulation of the oscil- 
lation of the internal field similar to that of the 
observed sunspot relative number curve; the larger 
the value of Nf, the greater the depth of the grand 
minimum of the long-term modulation. However, 
this makes the modulation of differential rotation and 
global convection too large, as the lowermost curve 
of Figure 1 shows. This is inevitable as long as we 
regard the sunspot relative number curve as a true 
(and proportional) indicator of the magnetic field in 
the interior of the Sun. 

Figure 3 shows a case of magnetic oscillation 
similar to the case of Figure 1, except that Nf = 3 
and eruption of the magnetic field from the upper 
dynamo zone is taken into account (Parker 1955a; 
Yoshimura 1975a). As was studied by Yoshimura 
(1978a), this does not affect the behavior of the non- 
linear oscillation of the internal field very much. 
However, the amount of erupted energy is so sensitive 
to a slight degree of modulation of the internal field 
that the degree of modulation of the erupted energy 
curve is more pronounced than that of the internal 
field. If we regard the erupted energy curve as corre- 
sponding to the sunspot frequency curve, then the 
frequency curve can show a conspicuous long-term 

modulation while the internal magnetic field does not 
undergo a drastic modulation. For case A of Figure 3, 
Berit = 2.0; for case B, £crlt = 1.5, where i?crlt is the 
critical strength of the magnetic field above which the 
eruption of the internal magnetic field takes place. 

As case A of Figure 3 demonstrates, if Bcrlt is high, 
there can be extended eras when there is no eruption 
of the internal magnetic field in the form of active 
regions and sunspots while the internal magnetic field 
is undergoing ordinary dynamo wave oscillations. If 
i?crlt is low, field eruption can take place even in the 
grand minima of the long-term modulation, as case B 
shows. If this is the case, a slight change in the struc- 
ture of the convection zone, which changes the value 
of i?crit slightly, could be the cause of the deeper 
grand minimum of the 80 year modulation. We 
should keep in mind that this could be a partial 
explanation of the anomalous era of no surface 
activity (§ I). 

In order to study how the second-period modulation 
takes place in the basic-period oscillation, the evolu- 
tion of the general magnetic field was investigated. 
Figure 4 shows the evolution of the field in the in- 
terior (Fig. 4a) and near the surface (Fig. 4b) for the 
case of Figure 1. Notice, especially, the role of the 
lower dynamo zone. Substantial concentration of 
magnetic field takes place in some phases of the solar 
cycle. This phenomenon is characteristic of the non- 
linear oscillation with delayed feedback process and 
is not seen in the oscillation without it (Fig. 8 of 
Yoshimura 1978a). The delayed feedback process 
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Fig. 3.—Case A (Upper diagram), the evolution of the indices of the nonlinear oscillation with a second-period modulation 
similar to Fig. 1, but with magnetic field eruption process from the upper layer (J5crit = 2.0, Ex = 0.001) and with Nf = 3. Notice 
that there is no surface eruption during grand minima of the 80 year modulation, although internal fields are undergoing normal 
oscillations corresponding to the 22 year solar cycle. Case B (Lower diagram), similar to case A but with BGTi% = 1-5. The erupted 
energy index, amplifying slight changes of the internal field, shows a conspicuous second-period modulation. This should be a 
better index of the surface magnetic activity including sunspots. 

causes an interaction between the lower and the upper 
zones. Since there is only one growing mode in the 
solution of the dynamo equation in the linear domain, 
these two waves could not be independent linear 
modes of the dynamo system. But they should be due 
to the delayed interaction between different parts of 
the same nonlinear wave trains, which have periods 
slightly different from each other depending on the 
position within the wave trains. Thus long-term 
modulation can be understood as a beat phenomenon 
between different parts of the same wave trains (the 
self-beat). 

The structure of magnetic fields such as those shown 
in Figure 4 is especially important from an observa- 
tional point of view. Active regions whose bipolar 
axes did not obey Hale’s polarity rule were sometimes 
observed. These active regions may have originated 
within a deeper part, where toroidal flux tubes, 
progenitors of active regions, have a polarity opposite 
to that of the main toroidal flux tubes near the surface. 

IV. EXCITATION AND THE HYSTERETIC NATURE 
OF THE SECOND-PERIOD MODULATION 

In order to study how the second-period modulation 
of the nonlinear oscillation is excited, some numerical 
experiments were performed. In a case shown in 
Figure 5, the value of td was set at 0.03 from step 1 to 
step 5000 and then at 0 after step 5000 (other param- 
eters are the same as in Fig. 1). The second-period 
modulation is established quickly after structural 
adjustment from a given initial condition. Then, 
immediately after step 5000, the normal nonlinear 
oscillation with one period takes place, reaching a 
limit cycle. This shows that the second-period 
modulation is not a transient phenomenon, charac- 
teristic of the field structural adjustment phase, but 
rather is a phenomenon entirely due to the time- 
delayed nature of the feedback process. 

Figure 6 shows an opposite case ; td was set to be 0 
from step 1 to step ts around 5000 and then to be 
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6125 615Û 6175 6200 6225 6250 6275 6300 6325 6350 6375 6400 

6426 6450 6475 6500 6525 6550 6575 6600 6625 6650 6675 6700 

6725 6750 6775 6800 6825 6850 6875 6900 6925 6950 6975 7000 

Fig. 4a.—The evolution of the internal magnetic field of the multiple-period nonlinear oscillation for the case of Fig. 1. The 
upper diagram shows field lines of the general (axisymmetric) poloidal field; the lower diagram, the contours of the general toroidal 
field. The structure of the differential rotation and convection (the regeneration factor) driving the dynamo for this case is the 
same as for the deeper upper zone case (Fig. 3 of Yoshimura 1978ö). 

0.03. In the initial part, normal stationary nonlinear 
oscillation was achieved. This part was given as a set 
of initial conditions for the evolution after step 5000. 
Then, the second-period modulation was excited. This 
shows that the second-period modulation is a self- 
exciting phenomenon. Notice an interesting phe- 
nomenon, viz., that the amplitude of the modulation 

can depend on the initial condition. In the lowermost 
diagram of Figure 6, the delayed feedback process 
was incorporated at step 5040. The modulation is not 
as large as in other cases. Figure 7 shows another 
extreme case of this phenomenon. As the uppermost 
diagram shows, this case of td = 0.025 (250 steps) 
has a second-period modulation if the solution is 
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(Fig. 4a) magnetic field corresponding to the 11 year solar cycle. 

integrated from a negligible level of field. However, 
if a series of initial conditions of stationary oscillatory 
state with one period is given as in Figure 6, no 
conspicuous second-period modulation occurs for any 
case of recovery time. The adjustment of the system 
to the two-period oscillatory state is a delicate process 
in this case. However, even in such a system, if the 
set of initial conditions is such that the amplitude of 

the oscillation is increasing (or decreasing) as in 
Figures 1, 2, and 3, a second-period modulation can 
be excited. In this case, it could be said that the 
nonlinear system has a long memory of an initial 
phase in which the amplitude of the oscillation is 
increasing (decreasing). How the system evolves after 
a certain epoch depends not only on the physical 
conditions at the epoch but also on how the system 
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Fig. 5.—A numerical experiment of the nonlinear dynamo system with delayed feedback process showing that the second-period 
modulation is not a transient phenomenon but an intrinsic property of the nonlinear system. The value of td was set to be 0.03 
from step 0 to step 5000 and to be 0 after step 5000. Other parameters are the same as in Fig. 1. 

has evolved before that epoch (hysteretic effect). This 
is a characteristic of a system in which time-delayed 
interaction takes place. 

V. HIGHER-ORDER MODULATIONS OF THE NONLINEAR 
MAGNETIC OSCILLATIONS 

If the time-delayed feedback process is described 
by one delay-time parameter, the long-term modula- 

tion itself is periodic and has only one period no 
matter how long the integration of the nonlinear equa- 
tion is performed. Figure 8 shows such a case of 
integration over a long time span. The second-period 
modulation, as well as the 22 year basic oscillation, is 
stable, and no other long-term modulation appears. 

In order to investigate possibilities of third-order 
or higher periodic modulation, many cases of delayed 

ERUPTED ENERGY 

ERUPTED ENERGY 

Fig. 6.—Another numerical experiment to show that the second-period modulation can be excited from a series of initial 
conditions of its stationary oscillation. The excitation is autonomous, and the growth rate seems to be positive. The value of td 
was set to be 0 from step 0 to step ts around 5000 and then to be 0.03. The values of ts are, from top to bottom, 0, 4960, 4980, 
5000, 5020, and 5040. Other parameters are the same as in Fig. 3a. 
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ERUPTED ENERGY 

Fig. 7—Similar to Fig. 6, but with td = 0.025. The values of ts are, from top to bottom, 0, 4960, 4980, 5000, 5020, and 5040. 
The topmost diagram shows that the modulation can be excited from an initial condition of negligible field; but, once excited, it 
damps slowly. The excitation is a transient phenomenon, and the growth rate seems to be negative. This situation is reflected in the 
behavior of the system in the subsequent diagrams. No conspicuous modulation is excited when a series of initial conditions of 
stationary oscillation is given. 
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Fig. 8.—Integration of the nonlinear dynamo equation over a long time span (3000 years for the solar parameters of Fig. 3 
except that the tune step is now 0.0002 as in Figs. 9 and 10 and 5crlt = 1.25). The second-period modulation itself is stable, and 
no other modulation occurs if, as in this case, the delayed feedback process is described by one time parameter. 
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Fig. 9.—Examples of the magnetic oscillation with multiple (three) periods when two delay-time parameters represent the 
feedback process. A spike in the diagrams corresponds to an 11 year cycle, a mountain to an 80 year modulation, and a range of 
mountains to a higher-order (1000 year) modulation. Notice in case A that there are extended eras of a total absence of surface 
activity. The duration of a nonactive era, however, is comparable to that of an active era in the two delay-time parameter case. 
The values of parameters are: aN1 = 0.2, aN2 = 0.1, Nfi = 5, Nf2 = 5, tdl = 3000 steps, td2 = 150 steps, and Ai = 0.0002. Other 
parameters are the same as in Fig. 8. A larger value of tdl can make the period of the higher-order modulation longer. Case B is 
similar to case A, but with aN1 = 0.1, Bcrit = 0.3, and Ex = 0.0001. Three kinds of oscillation are visible even in a great-grand- 
minimum of a higher-order modulation. The rugged appearance of the curves is due to the coarse resolution of the graphic display. 
Internally, the evolutionary curves are more smooth. 

feedback process with two and three time parameters 
were studied following the arguments of § II. This is 
an attempt to simulate the actually observed long-term 
modulations of the solar cycle and their two basic 
properties (§ I). Figure 9 shows an example of 
multiple-period oscillation described by two time 
parameters, where equations (III-3) and (III-4) are 
replaced by the following: 

Na = Ngo exp [-2 aNi\<l>(t - tdi)\^ , (V-l) 
L i = i 

[N 
— 2 ~ ^di) I max í = 1 

where N = 2, each spike represents an 11 year cycle, 
each mountain represents second-period modulation, 
and a succession of mountains represents third-order 
modulation (approximately 1200-1500 years). 

One striking feature of Figure 9a is not only that 
the third-order modulation appears but that it does 
not show a simple periodic behavior. During a great- 
grand-minimum (meaning a minimum phase of the 
third-order modulation), the level of oscillation is 
suppressed to such a degree that no conspicuous 
oscillation is visible in the evolution of the internal 
fields or of the erupted fields at the surface. This is 
typical of a nonlinear system. Even for the basic- 
period oscillation, the profile of one cycle can be 
deformed to such a degree that no activity can be 
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seen at the surface at its minimum phase when the 
nonlinear process is strong. The nonlinear process 
related to the third-order modulation is rather strong 
in this case of Figure 9a. When it is not so strong, as 
in Figure 9b, however, three kinds of oscillation 
(11 year or 22 year oscillation, 80 year modulation, 
1000 year modulation) become visible. Thus, if we 
assume two discrete time parameters, we can re- 
produce nonlinear oscillations with three periods. 

When we try to simulate the observed long-term 
modulation of solar activity (especially the occasional 
occurrence of an era without sunspots, like the 

Maunder minimum) by a nonlinear dynamo model 
with two delay-time parameters, we have the basic 
difficulty that the length of a maximum phase is 
comparable to that of a minimum phase. As the work 
of Eddy (1976a, 1977) suggests, the length of an 
anomalous era is somewhat shorter than that of a 
phase of high activity. In order to describe this 
phenomenon, we need at least three delay-time 
parameters. This means there must be at least three 
channels of time-delayed feedback process (§ II). 

Case A of Figure 10 represents a category of the 
general behavior of the nonlinear dynamo system 

CASE A 

GENERAII0N 0R REGENERATI0N NUMBER ( F0R DIFFERENTIAL R0TATI0N 0R C0NVECTI0N ) 

CASE B 

GENERATI0N 0R REGENERATI0N NUMBER ( F0R DIFFERENTIAL R0TATI0N 0R C0NVECTI0N ) 

Fig. 10.—Multiple-period magnetic oscillations when three delay-time parameters represent the feedback process. These are 
examples of numerical simulations of the actually observed long-term modulations of the solar cycle. In order to describe the 
phenomenon that the nonactive phase is shorter than the active phase and an especially anomalous era like the 17th century 
(Maunder minimum), we need at least three delay-time parameters corresponding to three channels in the time-delayed feedback 
process. The three delay-time parameters are: tdl = 6000 steps (1200 years), id2 = 2000 steps (300 years), and id3 = 100 steps 
(19 years). For case A, aN1 = 0.22, aN2 = 0.1, aN3 = 0.1, Nfl = 6.0, Nf2 = 4.1, V/3 = 8.5, Æcrlt = 1.0, and Ex = 0.0001. For 
case B, = 0.1, = 0.05, = 0.1, Nn = 5.0, Nf2 = 4.0, V/3 = 5, Bcrit = 0.3, and Ex = 0.0001. Integration was done 
over 13,440 years (70,000 steps) and the time span displayed in the diagram is 9600 years (50,000 steps). Case A is a typical example 
of the cases in which the first (55 year) and third (2300 year) kinds of modulations dominate the oscillation. Each spike consists 
of approximately five basic-period (11 year) cycles. Indicators of the surface energy densities in the upper two diagrams are cal- 
culated at one level below the surface. Internal fields are thus shown to be in an oscillating state even in such an era without 
sunspots. Case B is a typical example of the cases in which the second (1000 year) and the third (2300 year) kinds of modulations 
dominate the oscillations beside the basic-period (11 year) cycle. 
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with a time-delayed feedback process described by 
three time parameters. The oscillation is characterized 
by three kinds of modulation beside the basic-period 
(11 year) cycle, i.e., (i) second-period modulation, on 
the order of 55 years; (ii) third-period modulation, 
on the order of 1000 years; and (iii) fourth-period 
modulation, on the order of 2300 years. Each spike 
in this diagram represents the first kind of modulation. 
The 11 year cycle cannot be resolved in this diagram 
though it is the basic component in the solution. In 
case A, the first (55 year) and the third (2300 year) 
kinds of modulation dominate the evolution of the 
envelope of solar activity, and the second kind (1000 
year) of modulation is only slightly visible. However, 
the interplay of the second and third kinds of modula- 
tion determines the evolution of the envelope. When 
a minimum of the second kind coincides with a 
minimum of the third kind, the level of activity be- 
comes so low that no magnetic activity can erupt up 
to the surface. Notice the minima between 20,000 
steps and 40,000 steps. The anomalous era of the 17th 
century (Maunder minimum, Eddy 1976a) could well 
be such a case. As the cycle progresses, the depth of 
a minimum becomes shallow and activity can appear 
even in a great-grand-minimum. Another no-activity 
minimum era would soon appear again after 70,000 
steps, as the minima of the second and third kinds of 
modulation coincide with each other like a beat 
phenomenon. 

Case B of Figure 10 represents another category of 
the three-parameter nonlinear oscillation. Here only 
the second and third kinds of modulations are 
evident. (The width of the broad black band corre- 
sponds to the width between the maxima and minima 
of the basic 11 year cycle oscillation.) An important 
property of the nonlinear dynamo system which this 
diagram demonstrates is that the long-term (1000 year 
and 2300 year) modulations do not need any large 
degree of modification of the dynamo-driving dif- 
ferential rotation and convection (second diagram 
from the bottom). This is not the case for the 55 year 
modulation (case A). This suggests that only a slight 
(time-delayed) modification of thermal structure which 
drives the global convection (and eventually the 
differential rotation) in association with the oscillating 
magnetic field can significantly cause long-term 
modulations. The longer the period of the modula- 
tion, the smaller the degree of modification of the 
feedback process that can cause a sufficiently large 
modulation. In case B of Figure 10, the second kind 
of modulation (1000 year) is still large. Hence, the 
degree of modification of the dynamo numbers is still 
fairly large. However, other cases, in which only the 
third kind of modulation is evident, show a much 
smaller degree of modification of the feedback 
process. 

VI. DISCUSSION 

The present study has attempted to understand the 
long-term modulations of the solar cycle (especially 
the second-period modulation) as a regular and in- 

trinsic property of the nonlinear oscillation, caused by 
the time-delayed feedback action of the oscillating 
magnetic field. If this understanding is correct, we 
will be able to use the present model as a diagnostic 
tool to study the dynamics of the interior of the Sun 
by examining the mechanisms responsible for this 
process and their time scales. The extended era of low 
solar activity in the 17th-18th centuries may not 
necessarily be a truly anomalous period, but could 
well be a part of the second-period modulation 
(Yoshimura 1975a; Link 1977 and Wittman 1978 
recently studied it from the observational point of 
view). Notice especially that the length of the period is 
similar to that of the modulation. If the extended 
period is a truly anomalous era and there is no 
maximum or minimum of magnetic activity (or field), 
then a drastic change should have taken place in the 
dynamics of the dynamo system driving the magnetic 
oscillation of the solar cycle (Yoshimura 1978a). 
Although this possibility cannot, at present, be denied 
totally, it may be rather reasonable to regard the era 
as a part of the secoad-period modulation suppressed 
below the critical level by higher order modulations 
(Fig. 10) or by a slight modification in the dynamics 
of the dynamo. Since fluctuations in the dynamics of 
the convection system responsible for the dynamo are 
also common phenomena in large-scale fluid systems, 
it is difficult to separate the two possible causes. Both 
could at least partially contribute to the mechanism 
of the phenomenon. 

With regard to the thermal effects of the long-term 
modulation, the suppressive effects of the magnetic 
field on convection should be more prominent in 
longer-time-scale phenomena than in 22 year (or 
11 year) phenomena. In a previous study (Yoshimura 
1978a), it was suggested that the modulation of global 
convection by the magnetic field, oscillating with a 
period of 22 years, can well result in a 22 year cyclic 
modulation of the solar energy output (solar constant) 
because the convection zone can work as a heat 
reservoir. At the same time, however, the convection 
zone can smear out or lessen the short-time-scale 
modulation of energy flow in the interior. Even in this 
case, long-time-scale modulation should remain more 
conspicuous (see the locus of the envelope of the 
80 year modulation in Fig. 8). In this regard, it is 
interesting to note that modulation with a time scale 
longer than 11 years has been found to be more likely 
to have taken place (Öpik 1968). It should be stressed 
here, however, that the 11 year cycle modulation is 
not ruled out and may well actually take place, as the 
first part of the solar constant measurements of solar 
cycle No. 20 from space suggest (Fröhlich 1977; 
Fig. 5), though some ambiguity remains in the last 
part of cycle No. 20 (Willson and Hickey 1977). 

The present model of the nonlinear dynamo de- 
scribes the nonlinear feedback process by the three 
parameters aN, Nf, and td (§ III). The parameter aN 
is related mainly to the relative strength of the 
thermal driving force of the fluid motions and the 
Lorentz force of the magnetic field. The parameters 
Nf and td are mainly related to the configuration of 
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the magnetic and velocity fields and to the behavior 
of the fields in three-dimensional space and in time. 
In order to deduce the values of aN, Nf, and td in the 
interiors of the Sun and other stars and planets from 
the basic equations of physics, it is necessary to know 
the actual structure of the magnetic field. It is 
especially important to know whether the magnetic 
field lines are bundled even in the deep interior of the 
convection zone. Since simple integration of the 
equation of motion under the influence of the (global) 
magnetic field cannot answer this question and an 
understanding of other local physics concerning the 
state of the local magnetic field is necessary, the 
present approach from the opposite direction (as- 
suming aN, Nf, and td, thus assuming a nonlinear 
mechanism, and examining the resulting solutions to 
compare them with observed facts) can be an impor- 
tant tool for understanding the physics of the interior 
of the Sun, the other stars, and the planets. 

One particular aspect of the nonlinear oscillation 
with long-term modulations which we should discuss 
here is the fact that the time-delayed feedback process 
is not a function of the magnetic field of a discrete 
time lag but rather a function of the magnetic field 
over the wide range of time in the past. In other words, 
the delay time td should be regarded as representing a 
contribution function of time prior to the epoch under 
consideration. However, in order to reproduce the 
80 year modulation, for example, the function td must 
have a peak at around 29 years. (Various cases in 
which the function td has a broad profile were tested. 
The results, however, were not much different from 
the case in which td has a single discrete value as far 
as the function has a peak around 29 years.) Although 
it is assumed in this study that the nonlinear interaction 
is a function of the overall state of the magnetic field 
and does not depend on the spatial distribution of the 
field, it is, in reality, a function of the spatial distribu- 
tion, so the time-delayed feedback could be an inter- 
action of the magnetic fields of different parts 
(different layers) which originate from the fields 
generated at different periods. (See the evolution of 
internal structure of the field in Yoshimura 1975a, 
1978a, and in Fig. 4a.) Thus the mechanism repre- 
sented by the delay time td has more profound 
meaning in studying the magnetohydrodynamics of 
the deep interior of the Sun. It represents not only 
delayed interactions between different parts of the 
same wave trains (timelike delay) but also delayed 
interactions between different parts of the system 
(spacelike delay). The concept of limit cycle has been 
developed in theories of ordinary (nonlinear) dif- 
ferential equations. If a physical system, extended in 
space and described by a partial differential equation, 
behaves in unison like one entity, then the concept of 
limit cycle with one period should apply to it 
(Yoshimura 1978a). However, if different parts of 
the system interact with each other with a time delay, 
the concept of limit cycle with one cycle is not neces- 
sarily valid and should be modified according to the 
intrinsic properties of the system. Thus, the trajectory 
of the solution does not cross itself as it appeared to 

do when the trajectory was drawn in the actual 
multidimensional phase space which completely de- 
scribes the system. In this multidimensional phase 
space, a different limit cycle with a much longer time 
scale might exist. In that limit cycle, short-time-scale 
oscillations may be contained as pseudoperiodic 

' components. 
When some regular oscillatory phenomena are 

found in astrophysical bodies such as pulsars, only 
the rotation and pulsation of the bodies have usually 
been taken into account to explain them. However, if 
field-generating material motions are constantly avail- 
able, the magnetic oscillations can be remarkably 
regular and can display remarkably various behavior, 
as this study has demonstrated. Thus magnetic oscil- 
lations should be considered a possible candidate for 
a mechanism responsible for regular pulsating phe- 
nomena even in such objects as white dwarfs, pulsars, 
and X-ray bursters (see Figs. 8 and 9). If only some 
material motions are available, the magnetic oscilla- 
tions can be driven easily in such rapidly rotating 
objects and various magnetic activities in their 
atmospheres can provide a regular, periodic radiating 
mechanism. Since the period of magnetic oscillations 
of small-scale, rapidly rotating objects should be 
much shorter than our life span, it may be more 
appropriate to study these objects in order to test the 
present theory and to understand the long-term 
evolution of the nonlinear wave system in our lifetime. 

To summarize, the present simple parametrization 
of the nonlinear interaction between the magnetic 
field and fluid motions seems to describe some 
important intrinsic properties of the nonlinear oscil- 
lation resulting from the interaction. It also presents 
useful abstract concepts, the limit cyclic nature of 
the oscillation and the time-delayed feedback process, 
which help us to understand physical processes in 
nature and in more complicated models, which can 
describe the Sun and other rotating astrophysical 
bodies more closely. 

This study is the answer to the question “Is it 
possible to understand long-term modulations of the 
solar cycle as a natural behavior of the nonlinear 
oscillation of the general magnetic field?” which was 
raised when the author discovered a book entitled 
Studies in Nonlinear Vibration Theory, edited by 
R. Courant (1946, Institute for Mathematics and 
Mechanics, New York University) in the library of 
the Department of Astronomy, University of Tokyo, 
in the summer of 1976. Drs. Bernard R. Durney, 
Robert F. Howard, John A. Eddy, Peter A. Gilman, 
and Edward R. Benton read the original manuscript 
before publication and made helpful comments on the 
presentation of the paper. The author wishes to thank 
Dr. Gordon A. Newkirk for giving him the oppor- 
tunity to visit the High Altitude Observatory, where 
most of the computational work was done. The 
computational part of this work was performed on 
the HITAC 8800/8700 of the Computer Center of the 
University of Tokyo and on the CDC 7600/CRAY-1 
of the National Center for Atmospheric Research. 
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