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ABSTRACT 

We present an exact cosmological solution of Einstein’s equation which has expansion, shear, 
and rotation. The source of this geometry is a fluid which has not been thermalized. The model 
tends asymptotically to Gödel’s cosmos—thus making our solution a previous era of Gödel’s 
universe. 

Subject headings: cosmology — relativity — rotation 

I. INTRODUCTION 

The great majority of relativistic cosmological models treat the energy content of the Universe as an idealized 
perfect fluid with density p and pressure p. More realistic attempts to investigate the galactic fluid near the un- 
avoidable singularity have tried to incorporate viscous effects by assuming some ad hoc forms of dissipative 
processes (Murphy 1973; Misner 1968). Recent investigations (Belinskii and Khalatnikov 1976) have shown 
that the ultimate behavior of such models is a very sensitive function of the viscosity coefficients and f on the 
energy density. Thus, by assuming a large spectrum of the functions ^(p) and £(/>) one deals with a variety of 
universes, some of which may more closely conform to reality than the idealized Friedmann-like cosmologies. 
Such generalization from the usually accepted highly symmetric cosmological models is intimately related to a 
suggestion by means of which global properties of our universe may vary with time. From a somehow arbitrary 
initial stage, in which the arbitrarily inhomogeneous galactic fluid may have shear and/or rotation, the cosmos 
could evolve toward our present almost homogeneous and isotropic era through some dissipative processes 
(Misner 1968). Although there is no strong observational support to this speculation, it has the advantage of 
limiting the need for an explanation of the initial conditions. Consequently one could hope to avoid completely 
any discussion of initial conditions, and this would place cosmology on a much sounder base. 

In the same vein one should study off-equilibrium configurations of the galactic matter. In the present paper we 
intend to start a systematic study of some special models in which the thermal equilibrium of the galactic fluid 
has not been attained and so a stage occurs in which there is heat exchange between parts of the fluid. The model 
we study here represents an expanding universe which has shear and rotation. As the universe expands, the total 
amount of heat exchanged decreases and finally vanishes for very large values of the time. The galactic content 
tends toward a perfect fluid configuration. The expansion and the shear also tend to zero at i -> oo, but the 
vorticity remains constant along the whole history of our universe. As for the gravitational energy content, it is 
an admixture of constant electric part and a magnetic part which decreases as the universe expands 
and finally vanishes after an infinite lapse of time. Thus, our model can represent a “previous” nonstationary 
stage of Gödel’s cosmos. 

II. THE MATTER CONTENT 

Let V» represent the velocity of the matter, and let us select a coordinate system comoving with the fluid. We 
set = So". The most general expression for the energy-momentum tensor can be set into the form 

= pVßVv - phuv + q(tlvv) + 7T„V (1) 

in which huv = gßV — F„FV, is the anisotropic pressure, and qu is the heat flux (four-vector). These quantities 
obey the conditions 

* John Simon Guggenheim Fellow. 

<7„F" = 0, (2a) 

7r»vgßV = 0, (2b) 

7ruvV
u = 0, (2c) 

^uv = ^vu • (2d) 
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The cosmic fluid will have, in general, an expansion 6 = Va\\a, a shear 

°Vv == P(A||e) ? 
a rotation 

and an acceleration aa = Va
uVK, where the double bar (||) means covariant derivative. 

In order to generate cosmological models, phenomenological relations between the dynamical and kinematical 
quantities have been proposed through extrapolation of the behavior of certain experimentally accessible fluids. 
For instance, an expression relating the anisotropic pressure to the shear through a viscosity coefficient, 
7TWV = Ao^y has been (Misner 1968) widely used as a phenomenological description of a gas of neutrinos, for 
instance, in certain models of the universe. Use of expressions p' = p + BÔ borrowed from fluid mechanics, 
which has the consequence of changing the pressure p by adding to it a term proportional (through a viscosity 
coefficient B) to the expansion 0, has been made (Murphy 1973; Belinskii and Khalatnikov 1976). Finally a 
relation has been proposed which involves the heat flux qu and the acceleration aß by means of a temperature-like 
function, although very few (if any) explicit cosmological models have been developed which use this hypothesis. 
Here, instead of assuming any type of such ad hoc relations, we try to follow another method which we will 
explain next. 

From the acceleration aß and the vorticity vector wx = \'qclßp'lojaßVp we construct the vector rf = 
The vector 17a is not only orthogonal to the velocity Va, it is also orthogonal to both the acceleration and the 
vorticity vectors. Using these three vectors aa, wa, and 77a, we can construct a basis in the local 3-dimensional 
rest space orthogonal to Va. We will call this set the kinematical basis (K-basis, for short). Due to property (2a) 
we can develop the current qa in the K-basis and write 

q» = ^ + t/jco* + qyrj^ß^a^V^ . (3) 

This decomposition, when the K-basis is available, has the advantage that it does not assume any phenomeno- 
logical relation. Furthermore, one is still free to impose extra conditions on qa. For instance, if we set as usual 
qß = Kh^ÇT^ + 7hA), then a direct inspection relates the coefficients of the qu expansion on the K-basis to the 
temperature T. If the temperature is constant in the 3-dimensional rest space orthogonal to Va, then we can identify 
the coefficient 77 of the expansion to the temperature T, in which case 0 = 9 = 0. 

Here we will try to exploit this decomposition and present a specific way to generate off-equilibrium models. 
Let us make a final remark on the K-basis. Unless one knows some properties of the geometry, one cannot 

justify the possibility of the construction of such basis. 
It is worthwhile, however, to mention some example in which one can deal with such basis. The simplest case 

occurs when the vorticity vector (x)a is a Killing vector. In this case, 

WccWß + MßWa — 0 , 

and thus the vorticity vector is divergence-free: cüa|ia = 0. 
Now, from the definition of the Riemann tensor we have 

Fa||0||À “ ^a||A||/5 = RaußhV11 • 

Antisymmetrizing in the indices a, ß, y and using the identity 

R?aß\ + ß\a + R^Kaß = 0 , 

we obtain the so-called constraint equation (Ellis 1971) 

• 

Thus, if the vorticity vector generates an isometry, we have o>aaa = 0. 
In the case we present here we will take the vorticity vector in the z-axis, that is, a>a = (0, 0, 0, Q), where, as 

we will see, Q does not depend on the Z-coordinate. 
Besides this, our metric does not depend on the Z-coordinate, too. Thus we obtain (—g)-1/2[(—g)1'2^])« = 0, 

and thus by means of the constraint equation, the vorticity and the acceleration vectors are orthogonal. 

III. THE GEOMETRY 

In 1949 K. Gödel published the first cosmological model generated by a solution of the modified Einstein 
equations in which a cosmological repulsive term (AgMV) has been added. The congruence of the geodesics 
Va = S0

a has no shear, no expansion, no acceleration but presents a constant rotation of the matter relative to the 
compass of inertia. After this discovery, many attempts have been made to construct more general solutions which, 
besides rotation, should present expansion and/or shear. 
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Let us describe our model by setting 

ds2 = dt2 + 2A(x, t)dydt + 2M(x, t)dzdt — B(x, t)dy2 — C(x, t)dz2 — F2{t)dx2 . (4) 

Choosing a comoving frame we can set the fluid velocity Va to have the values Vo — 1, = 0 (/ = 1, 2, 3). 
In the present paper we limit our discussion to the case in which the rotation is in the z-direction by assuming 
M = 0. Our perturbations of the rotating Gödel model leaves the vorticity vector in the z-direction. We will make 
some comments on this later on. Further, we set C(x, t) = H\t) in which C depends only on the /-parameter. 
The acceleration vector aa is given by 

‘î‘-{Jt-b'0-ÏFTb'0)’ 

and the components of the vorticity vector are œa = (0, 0, 0, Q) where 

Q = 
A’ 1 

2FH (A2 + B)1/2 

and A' = dA/dx, À = dA/dt. From formula (3) we obtain the covariant components of the heat flux in the 
kinematical basis : 

Vcc = 0,1 
ÂA’ 

2A2 + B 
BÂ 

A2 + B’ 

The total amount of heat is given by the norm L = qaqa. We analyze the case in which there is no anisotropic 
pressure ; that is, we set 7r(iV = 0. 

Let us choose a class of locally stationary observers represented by the tetrad vectors eA
(B) in which (a) signifies 

the tensor indices and A (= 1, 2, 3, 4) signifies the tetrad indices given by 

e°(0) = 1 ; eV) = F; e2(2) = (A2 + B)1/2 ; e3
(3) = H ; e% = A . 

A straightforward calculation gives, for the contracted Riemann tensor Bab, in the tetrad frame, the values: 

F : H \ A12 FAÀ , lÿ 1 y2 A / A\ ■ J* 1A^ ÛaA 
Ko° F + H 4yF2 F y + 2y 4y2 yll2\y112) y 4 F2y H y 1 

_ 1 y' I ÿy' I ÂA’ I AA' F lAÄ' \ F ÿ 1 AA'ÿ 1 ñ AA' 
01 2F y 4F y2 F y + 2 y F2 2 Fy 2 F2 y + 4 y2 2 H Fy ’ 

l_ (A' X A H ] \ ÿ FA AF \ H Ay 
K°2 2F2 \y112 ) y112 H + 2 y312 F y112 F + 2H y312 ’ 

Ro3 ~ 0 > 

Rl2 = ~Hÿ Jt (f ^'y1'2) +^FHlt ’ 

1 y'2 A2 P Ñ \Pÿ 1 A2F ÿ 
4F2 y2 + y FH 2F y 2 F y2 

PÑ' 
F H ’’ 

Ris — 0 ; 

R + dá -iéáZ-L. él 1 y" 1 r2 , l/ÿ , ^iF . A2 H 22 2y + 4y2+ y 2 y2 + y 2 F2y + 2F2 y 4F2 y2 + y F 2Fy + y F + y H 

-Idïi _lÑy. 
2 y2 F + y H 2A H y2 2 H y’ 

R + 
33 H +H y H F+ y F H+yll2\Hyil2) + yH2 2yH’ 

in which y = A2 + B. 
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The fact that R03 vanishes implies T03 
In the tetrad frame we have 

= 0. 

T03 = q3V0 = = 0; 

and thus we conclude that the heat flux qa rests in the plane orthogonal to the vorticity vector. 
The non-null components of the energy-momentum tensor in the tetrad frame are given by 

T°o T\ = 9> ÀA' 
T\ = v 

BÀ 
T\ = T\ = T\ = -p. 

2FA2 + B’ " 2 'l(A2 + B)312’ 

Now, the above energy-momentum tensor and Einstein’s equations imply the condition R12 = 0. This gives 

If we set 

+ *>"’] - v¡rrw¿ j a ^ -0 • 

B = (m- l)A2, 

(5) 

(6) 

where m is a constant, we obtain from equation (5) 

A 
A (7) 

in which m* is an arbitrary constant. 
A remarkable property of geometry (4) is that the condition of proportionality (6) [and, for the general case, 

the additional requirement C(x, t) = txM2(x, /)] ensures separability of the variable A(x9 t) [correspondingly also 
for C(x, i)]- We will call Gödel-like any geometry of form (4) in which condition (6) (and its generalization form) 
applies. 

Writing A(x, t) = A1(x)A2{t), we can integrate equation (7) immediately to obtain 

A{x, t) = A0ecxA2(t) (8) 

in which A0 and C are arbitrary constants. Furthermore, we obtain the result that the product HFis a constant: 

HF = m*c. 

The conditions Tii — T22 — T33 imply Ru = R22 = R33. These give rise to the equations 

_ , JF F2] 
2(m - 1)^ + F _ - - 

(2m - 1) C2 A 

2 F2 ’ 

(m 
+ F2 A F fJ + (2w F2 2 F2 “ ° • 

(9) 

(10) 

A solution of this set of equations can be found by setting F = 1. Then the value of the constant m is ^ and 
the function A2(t) is given by A2 = 0ot + 1, where 90 is a constant. The diagonal Einstein equations are 

P + A = iC2, (11) 

p-A = iC2. (12) 

We remark that we can have solution in which the cosmological constant A vanishes. In this case we have 

P = P = iC2 . (13) 

If A does not vanish but pressure is null, we obtain 

P = —2A = C2 . (14) 

For the general case, with an equation of state p = ep, we have 

2 . 
P = 1 - e 

A = g2 1 - g 

2 1 -|- € 

(15) 

(16) 
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Finally, the off-diagonal components relates the coefficients <p, rj with geometry. One finds 

9=1, (17) 

77 = 0 . (18) 

This completes the set of Einstein’s equations. The heat flux qa is in the direction orthogonal to the plane 
generated by the vorticity and the acceleration. The total amount of heat and the expansion 6 are given by 

L = 

e = 

Lo 
(0o*+ l)2 

0Q # 

00* + 1 

(19) 

(20) 

We can now recognize the constant 0O as the value assumed by the expansion at the origin of time. The constant 
C which appears in the expression for A-^x) can be written in terms of the ratio of the total amount of flux to the 
initial value of the expansion, that is, C2 = —L060~

2. 
A simple inspection of these results shows that, as time goes on* our model evolves in the direction of more 

equilibrium by slowing down the heat exchanged among its parts. Asymptotically the fluid tends to eliminate its 
irregularities and move in the direction of a perfect fluid behavior. Correspondingly, anisotropy also tends to 
disappear. Indeed the tetrad components of the shear <jab are 

or1! = o-33 = -i<72 0Q 
3(0O* + 1)' 

Thus, the above properties show that the ultimate fate of our model is a static rotating configuration, that is, 
GödePs model. The very fact that Gödel’s model is a limiting situation which our model can have, shows that 
GödePs model is stable for a given set of perturbation in the direction of the vorticity. It is interesting to compare 
this result with that obtained by Silk (1970) some years ago. Silk has shown that GödePs model is stable for 
perturbations in the plane orthogonal to the vorticity ooa and unstable for perturbations in the direction of œa. 
However, Silk obtained this result by limiting the perturbations of the matter to those which do not change the 
perfect fluid conditions, that is, to fluctuations only of the density and the pressure. The result obtained by Silk 
does not hold if the perturbations include a small change of the perfect fluid behavior. 

Let us turn now to the gravitational energy, that is, to the term %{EßVEßV + The unique non-null 
components of the conformal Weyl tensor are (in the tetrad frame). 

Coioi == C0202 = — i^0303 == ÍC1212 = “^^1313 = — i^2323 == 

and 

C — —2C — • '-'1220 ¿'-'1330 — J 

From this we obtain the electric and magnetic parts 

Euv = - C^V'V*; Haß = barCp<rß*V»V* 

which have the following nonzero components : 

E\ = E2
2 =-iE\ = iC2, 

COo 
0O* + 1 

The magnetic gravitational energy slows down as time goes on. Only the stable (constant) electric part survives, 
which appears as a typical Gödel-like behavior. 

IV. CONCLUSION 

In the present paper we have exhibited an exact cosmological solution of Einstein’s equation which has ex- 
pansion, shear, and rotation. The energy content is represented by a fluid in an off-equilibrium situation which 
has not been thermalized. As the future of our model is GödePs solution, it may be thought of as a previous stage 
of GödePs universe. This shows that there are perturbations in the direction of the vorticity of the Gödel cosmos 
which are stable. This contradicts a general feeling on perturbations of rotating cosmological models^—suggested 
by a work of Silk which says that the effect of rotation is to stabilize the model only in the plane of rotation. 
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724 NOVELLO AND REBOUÇAS 

The apparent contradiction is solved once one recognizes the limitation of Silk’s analysis which assumes, as is 
usual, that the energy content does not change its perfect fluid behavior during the perturbation era. This, of course, 
is a limitation on the spectra of perturbations, so one cannot generalize Silk’s results. Indeed, this is made clear 
by the solution we have exhibited in the present paper. 

APPENDIX 

THE EFFECT OF NONTHERMAL EQUILIBRIUM IN EINSTEIN’S COSMOS 

We have shown in this paper that the stability condition is a sensitive function of the perfect fluid condition of 
matter in a Gödel universe. In order to gain some insight of the general behavior, we will give here a short 
analysis of situation in Einstein’s static and homogeneous model. The perturbation of the equation of conservation 
of energy implies 

(Sp)* + pS6 + &7a||a = 0; (Al) 

and for the perturbed expansion factor S6 we find 

W- - (^)lla = -iâp . (A2) 

From the spatial components of the energy-momentum conservation law we obtain 

pH, ä; 8qa (A3) 

in which p is the density of energy of the background (p = constant). From these equations we obtain 

(8p)'' + p(89)’ + (&7a||a)* ~ 0. (A4) 

Now 

(Vil«)* = Ma\\a • 

This last step depends on the diagonal character of Einstein’s geometry and on the conditions 8q° = 0. We obtain 

(8p)‘ • — %p8p ^ 0 . 

Thus we conclude that, contrary to Gödel’s model, the instability property of the density of matter in Einstein’s 
universe is not altered by the introduction in the perturbation fluid of a small quantity of heat flux—although 
in this case the presence of off-diagonal terms in the energy-momentum tensor drastically changes the basic 
properties of the model. 
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