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ABSTRACT 

We describe a method for recovering the brightness distributions of compact radio sources 
from VLBI observations of closure phase and fringe amplitude. Our approach is to deduce the 
visibility phase from these data. We show that reliable “hybrid” maps of complexity comparable 
with that of early synthesis results on extended sources can be obtained with networks of four or 
more existing telescopes. 
Subject headings: instruments — interferometry — radio sources : general 

I. INTRODUCTION 

The determination of the structure of extragalactic 
radio sources on a scale 10“4to 10-1 arcsec is crucial 
to our understanding of the physical processes which 
produce and sustain these objects. Such resolution is 
obtainable only in very long baseline interferometry 
(VLBI), and this technique has provided valuable 
clues to the nature and behavior of the energy sources 
in the nuclei of galaxies. However, the astrophysical 
knowledge which has been gained thus far has been 
limited, not only because of the logistic difficulty of 
making and analyzing the observations, but also by 
uncertainties in the interpretation of interferometric 
data when only a small range of baselines are used with 
no phase information. If VLBI is to achieve its full 
potential, it is necessary to demonstrate the feasibility 
of making reliable maps of compact radio sources and 
to delineate those areas in which uncertainties arise. 
These are the purposes of this paper. We describe a 
new technique for reconstructing brightness distribu- 
tions which makes use of closure phase (see § II) and 
the extent of the («, v) coverage in addition to the 
fringe amplitudes. 

Our approach, described in § III, is to infer the 
visibility phase from the observed fringe amplitude and 
closure phase, and we demonstrate in § IV that this 
can be done provided there is sufficient (w, v) coverage. 
We can never obtain all of the complex visibility data 
or completely sample the (w, i;)-plane, and the complex 
visibility function can vary in an unsampled region of 
the (w, t;)-plane in a manner which cannot be deduced 
from the data. That this is not the case in all un- 
sampled regions results (i) from the requirement that 
the source brightness be greater thàn or equal to zero 
at all points on the sky, and (ii) from a knowledge of 
the total extent of the source. Multistation VLBI 
observations are now made routinely, in many cases 
with (w, v) coverage which would be sufficient for 
mapping the sources if the interferometers were phase- 
stable. We therefore assume throughout this paper 
that the (w, v) coverage is adequate for recovering the 
brightness distribution from the amplitude and phase 

data which would be obtained with phase-stable 
interferometers. We use the CLEAN restoration 
technique (Högbom 1974; Schwarz \911a,b) and in 
§ V we discuss the limitation which this imposes on 
our method. 

We have investigated the reliability of our procedure 
by performing a series of blind tests on simulated 
VLBI data. As a result of this study we have become 
convinced that one can deduce radio structure 
accurately even if the individual interferometers in an 
array are not phase-stable. The closure phase disposes 
of the 180° position-angle ambiguity which is present 
when amplitude data alone are used, but a basic 
limitation is that the position of the source is still not 
recoverable. The claim that we are actually “ mapping” 
sources needs some justification because we do not 
measure the visibility phase directly but only the closure 
phase. Our justification is that, although we do indeed 
begin with models of the sources, the closure phases of 
the final maps agree, to within the noise, with the 
observations. This method has proved foolproof in all 
tests thus far. A more detailed discussion of this point 
will be given elsewhere. Following Baldwin and 
Warner (1977), we will refer to maps constructed from 
incomplete phase data as “hybrid” maps. 

II. THE CLOSURE PHASE AND ITS USE 

The technique of deriving visibility phase informa- 
tion from interferometry by summing the observed 
phases around closed loops of interferometer baselines 
was first suggested by Jennison (1958). Consider two 
telescopes denoted by i and j. The visibility phase, 
ifrij, on this baseline is related to the observed phase, 
(frij, by the equation 

<t>ij = tv + 9 (1) 

where 0i; is the sum of phase perturbations due to 
propagation effects along the line of sight, oscillator 
drifts, and uncertainties in the source position and the 
baseline. When is summed around a closed loop 
of three telescopes i,j, and k, thus forming the closure 
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phase Cijk) the 6 cancel almost exactly; thus 

Cijk = tfrij + ÿjk — <l>ik ^ + 0yfc “ 0ifc • (2) 

The cancellation of the 6tj has been discussed by 
Jennison (1958), and its application to VLBI by Rogers 
et al. (1974). Rogers et al. express equation (2) as an 
equality. We note, in passing, that this is not exact 
if the rate errors of the clocks at each station are 
nonzero. However, since the rate errors are typically 
less than ~ 1 part in 1011, the phase error introduced 
by assuming an equality in equation (2) may be 
neglected. When equation (2) is used the closure 
phase is formed at a given time, and allowance must 
be made for the delay between the arrival of the wave 
front at the different antennas. The explicit form of this 
correction depends on how the delay is implemented 
in a given VLBI processor (e.g., Clark 1973). 

Visibility phase information can be obtained via the 
closure phase for any source which produces detectable 
fringes on an interferometer array of at least three 
telescopes. Each closure phase contains as much 
information about the shape of the source as each 
visibility amplitude and should therefore be included 
when attempting to reconstruct the brightness distri- 
bution. This can be done in a variety of ways; the 
simplest is to incorporate the closure phase into 
standard model-fitting procedures. The success of 
Purcell’s model of 3C 147 (Wilkinson et al. 1977), 
derived from amplitudes alone, leaves us in little 
doubt that this would work reliably even for relatively 
complex sources. However, for such sources the model- 
fitting process can be long and tedious, and therefore 
quicker, more automated methods of arriving at a 
final answer are desirable. Wittels et al. (1976) have 
used truncated two-dimensional Fourier series, con- 
strained to fit the amplitude and closure phase data, 
to approximate the source brightness distribution. 
The method works satisfactorily for simple sources, 
but no examples of its use on complex sources have yet 
been presented. Fort and Yee (1976) use the observed 
amplitudes with phases calculated from an initial 
source model. The closure phase is used to correct the 
estimated visibility phase, and a hybrid map is pro- 
duced. All negative regions are set to zero, and this 
map provides a new model. The processes repeated 
until a stable solution is reached. In the relatively 
simple examples which they show, the maps converge 
to give a stable solution which is a good representation 
of the true brightness distribution. 

Our approach is similar to this. We also attempt to 
derive the visibility phases on all baselines in order to 
produce a hybrid map by the Fourier transformation 
of complex visibility data. Where we differ from Fort 
and Yee is in a more direct use of the observed closure 
phases at each iteration and in our use of the 
known position of sidelobes in successive maps. 
Results have already been published (Wilkinson et al. 
1977) for 3C 147. The method works particularly well 
for this source because it contains a barely resolved 
component which can be used as a phase reference. 
We shall show in § IV that more general brightness 

Vol. 223 

distributions can also be reconstructed by using our 
method. 

III. RECOVERING THE VISIBILITY PHASE 
FROM THE CLOSURE PHASE 

Consider interferometer observations with N tele- 
scopes. There are N(N — l)/2 combinations of 
telescope pairs and at most (N — l)(N — 2)/2 inde- 
pendent closure phase relations. There are therefore 
N — l too few linear combinations of the closure 
phases to solve for all the visibility phases, and it is 
necessary to obtain an independent estimate of the 
phase on V — 1 baselines. If there were sufficient 
redundancy and if the visibility phase on at least one 
baseline were known, all the visibility phases could be 
derived directly (Jennison 1958). However, this is 
never the case in present-day VLBI observations. 

The procedure we use is outlined in Figure 1. We 
begin by examining the visibility amplitudes and the 
closure phases and marking the positions of maximum 
and minimum amplitudes in the (w, i;)-plane. We then 
attempt to construct a simple model which reproduces 
the principal maxima and minima over a limited range 
in the (w, tf)-plane. In practice a crude fit to the data on 
a few of the baselines is usually adequate, and more 
detailed modelling procedures were not used in the 
tests discussed in § IV. Note here that we are assuming 
that if the amplitudes predicted by the model fit the 
observed amplitudes well, then, apart from the usual 
ambiguity in orientation of 180°, the phases will also 
be a reasonable fit to the observed phases. Our ex- 
perience with Purcell’s model of 3C 147 (Wilkinson 
et al. 1977) and the tests described below support this 
assumption. 

To dispose of the 180° ambiguity in the orientation 
of the source, we calculate the closure phases of the 
model for one orientation and compare this with the 
observations. The alternative orientation simply 
produces closure phases with the opposite sign; it is 
therefore easy to see which of the two possibilities is 
correct, and this is chosen as the initial model. We set 
the visibility phase equal to the model phase on V — 1 
baselines and use the (N — l)(N — 2)/2 closure phase 
relations to deduce phases on the remaining baselines. 
We then have enough amplitudes and phases to make 
the complex Fourier transformation, as follows. 

The observed fringe amplitudes and the derived 
visibility phases are convolved onto a regular grid in 
(w, v) space by using a Gaussian convolution function. 
The point at the origin is assigned the fringe amplitude 
appropriate to the total flux of the source and con- 
volved by the same function. Zero values are assigned 
to grid points not filled by this procedure. This array 
is then transformed into the sky plane, resulting in the 
so-called dirty map of the source which is disturbed by 
the errors in the derived phases and by sidelobes due 
to the incomplete (w, v) coverage. The next step takes 
account of our knowledge of the (w, v) coverage by 
using the CLEAN procedure to reduce the amplitude 
of these sidelobes. We choose the area of the dirty 
map to be cleaned on the basis of our knowledge of 
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Fig. 1.—Flow diagram of the image reconstruction 
procedure. 

the angular extent of the source from other observa- 
tions and from direct inspection of the visibility ampli- 
tudes. In our experience any gross errors in the original 
model, and hence in the calculated phases, become 
apparent at this stage through the appearance of large 
negative regions in the CLEAN map; if this happens 
it is usually better to make a new start with a different 
model. Conversely, we find that if the negative areas 

are small, the model is a fair approximation to the 
true brightness distribution, and we return to the first 
step and replace the original model with the array of 
point sources produced by CLEAN. We then repeat 
the whole procedure and continue to iterate until a 
stable or near-stable solution is reached. For simple 
sources we find that the convergence is rapid, and only 
three or four iterations are needed to reach a stable 
map. For more complex sources, or for poorer (w, v) 
coverage, we find that, after an initial rapid con- 
vergence in the first three or four iterations, the map 
does not stabilize completely but continues to vary 
slightly between one iteration and the next. Thus it is 
possible to produce a number of very similar maps 
which have low sidelobe levels and fit the data reason- 
ably well, but which differ from each other in small 
details. 

Why does convergence occur at all? In the early 
stages the brightness distributions used to calculate 
the phases at each iteration do not fit the data per- 
fectly. These can therefore be regarded as the sum of 
the true brightness distribution, which is everywhere 
positive, and an error distribution, which can have 
positive and negative regions. The error distribution 
produces errors in the derived phases. When the 
derived phases are coupled with the observed ampli- 
tudes and Fourier transformed, the phase errors tend 
to scatter brightness components over a larger area of 
sky than is occupied by the real source (see Fig. 3û). A 
similar effect has been noted by Walther (1963). If 
we cleaned over the total area occupied by both real 
and spurious components, we would produce an array 
of point sources which, when Fourier transformed, 
would fit the observed amplitudes and the derived 
phases very closely. This would be so regardless of 
what the phases were, since the point source array is 
produced by a linear process. In this case the hybrid 
map would not change between iterations. However, in 
accordance with the original basis of CLEAN, we 
suspect that most of the sky is empty and therefore 
restrict our search to a small area, or “window,” 
which we believe includes the true source. We also 
stop the source subtraction in intermediate iterations 
when the flux density of the last point source is still 
well above the noise of the residual map. As a further 
filter against nonphysical brightness distributions, we 
do not return any negative point source if its amplitude 
is at least 10% of the strongest point source. Note that 
small negative point sources should be admitted in 
CLEAN if the “loop gain” (Högbom 1974) is not 
infinitesimal. Thus, since we return only those plausible 
components of the brightness distribution which lie 
within the chosen window at each iteration, we 
systematically erase the error distribution. The cal- 
culated phases therefore tend toward the correct ones 
(e.g., Fig. 3b) and the map converges toward the true 
distribution. In general, of course, some parts of the 
error distribution always lie within the window and may 
not be rejected by this process. Whether or not these 
errors are completely erased depends on the («, v) 
coverage, and we have found that the speed of con- 
vergence depends on the number of independent 
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picture elements in the window compared with the 
number of independent observed data points. For 
simple sources the error distribution is reduced to an 
insignificant level, and convergence is fast. For large 
complex sources the amount of rejection per iteration 
is smaller, convergence is slower, and the final hybrid 
maps may still contain significant errors. 

Since the most subjective step in this procedure is 
the choice of the initial source model, it is advisable 
to begin with more than one model and to check that 
they converge to similar hybrid maps. As we show in 
§ IV, the starting model is not critical for simple 
sources, but for more complex sources different start- 
ing models can lead to hybrid maps which differ in 
small details. It is always possible to reduce these 
discrepancies by increasing the amount of (w, v) 
coverage, but, although this is the most desirable way 
of resolving minor uncertainties, in practice it may not 
be easy to do. To make the technique more useful, 
we have therefore examined three ways of discriminat- 
ing among the different hybrid maps and thereby 
picking the best solution. 

a) Compare the rms noise left on the residual dirty 
maps after the subtraction of the point sources; in the 
initial rapid convergence it decreases by about a 
factor of 10 to a value close to that estimated from the 
observed scatter on the fringe amplitudes and closure 
phases. We have found that the better maps have the 
least noise. 

b) Compare the data with the amplitudes and closure 
phases predicted by the final array of point sources. 

c) Use the array of point sources to calculate phases 
on a different set of V — 1 baselines, and hence make 
a new hybrid map. Comparing this with the old map 
provides a simple test, in the map domain, of whether 
all the phases predicted by the array of point sources 
are consistent with the observed closure phases. 

Are these tests sufficient to ensure that the derived 
phases are the same, to within the noise level, as the 
true visibility phases? We will first address the 
problem, well known in physics, of phase recovery 
from the intensity distribution alone. In the one- 
dimensional case some progress has been made toward 
deriving the phases from the amplitudes (e.g., Walther 
1963; Bates 1969). In general there is not a unique 
solution, but for Fourier transforms of band-limited 
functions, such as we are considering here, there are a 
finite number of solutions that need be considered 
(Burge et al. 1976). Many of these solutions can be 
rejected because they give rise to negative brightness 
regions. No complete theory has been developed for 
the two-dimensional case, but the requirement that 
the brightness distribution be positive appears to be 
more restrictive in two dimensions than in one. In a 
series of tests Napier and Bates (1974) found that for 
two-dimensional brightness distributions only one 
solution gave a wholly positive brightness distribution 
in each case. Similarly, recent tests on real data by 
Baldwin and Warner (1977) support the assumption, 
implicit in their work, that the correct visibility phases 
(barring the usual 180° ambiguity) can be deduced 
from amplitude data alone. 

In the present case we are not limited to amplitude 
data since we also use the closure phases. These place 
very strong constraints on the visibility phases, and 
our experience with the blind tests, described in § IV, 
suggests that the information contained in the visi- 
bility amplitudes and closure phases is sufficient to 
determine correctly the visibility phases. Since we 
assume that there is sufficient (u,v) coverage for 
CLEAN to produce a reliable map (see § V), we believe 
that the hybrid map will be the same as the true map 
if the above tests are satisfied. This problem will be 
discussed in more detail elsewhere. 

To summarize, the chosen hybrid map satisfies the 
following criteria: (i) the brightness distribution is 
everywhere positive or zero within the noise level; 
(ii) the visibility amplitudes derived from the map fit the 
observed data to within the noise level; (iii) the closure 
phases derived from the map fit the observed closure 
phases to within the noise level. 

IV. TESTS OF THE IMAGE-RECONSTRUCTION PROCEDURE 

A rigorous theory of what constitutes sufficient (w, v) 
coverage for this method to work must incorporate 
the signal-to-noise ratio at all sampled points in the 
(w, i;)-plane and also allow for the unequal spatial 
frequency sampling in two dimensions which always 
obtains in VLBI observations. Rather than attempt 
to develop such a theory, we have tested the method 
by making a series of reconstructions from simulated 
VLBI data. The (w, v) coverage assumed for tests 1 
through 4, shown in Figure 2a, is that available for a 
source at declination 50° on the baselines formed by 
telescopes at Owens Valley, California; Fort Davis, 
Texas; Green Bank, West Virginia; and Jodrell Bank, 
UK. For the assumed observing frequency of 610 MHz 
(À £ 49 cm) this gives a dirty beam whose principal 
response is nearly circular and has a FWHM of 
10 milli-arcsec; we therefore used a sidelobe-free 
restoring beam which was a circular Gaussian of the 
same dimensions. In this case the grid spacing was set 
at 4 milli-arcsec. For the fifth test the source was taken 
to be at declination 5°, and the Haystack, Massa- 
chusetts, telescope was assumed rather than Jodrell 
Bank. The (w, v) coverage is shown in Figure 2b. Here 
the maximum resolution is about 18 milli-arcsec, and 
the grid spacing was 8 milli-arcsec. A computer 
program calculated the expected fringe amplitudes 
and closure phases for test sources consisting of 
Gaussian components. Random noise (5% rms fringe 
amplitude and 10° rms closure phase) was added to 
these simulated data; the amplitudes and phase 
noises were uncorrelated. This is a relatively high 
signal-to-noise ratio to assume, but such data have 
been obtained in 3C 147 at 610 MHz (Wilkinson et al. 
1977). 

It is important to stress that the test sources, which 
were devised by M. H. Cohen, were not revealed to us 
until we had decided upon a final interpretation of the 
simulated data. Thus, as in the real situation, at the 
start of each reconstruction we knew only the cal- 
culated fringe amplitudes, the closure phases, and the 
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Fig. 2.—{a) The (w, v) coverage obtained at 610 MHz for a source at S = 50° using telescopes at Owens Valley, California; Fort 
Davis, Texas; Green Bank, West Virginia; and Jodrell Bank, UK. (6) The («, v) coverage at 610 MHz for a source at 8 = 5° using 
the same telescopes as in {a) except that Haystack, Massachusetts replaces Jodrell Bank. 

Fig. 3a. Test 1 [(a, v) coverage Fig. 2a]. Top left, CLEAN solution assuming full phase data. Others, various iterations using 
closure phase. (Contours —5%, 5%, 10%, 20%,..., 90% of the peak brightness). In tests 1-5 the arms of the L each represent 
30 milli-arcsec. 
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Fig. 36.—A comparison of the phase calculated from the 

model with the true visibility phase (sofid line) on the NRAO- 
Fort Davis baseline. Dots, first iteration; dashes, 2d iteration; 
dash-dot curve, 4th iteration. The 12th iteration is indistinguish- 
able from the solid line. 

total flux density of the source. We did ask that the 
test sources fall within a square 150 milli-arcsec on a 
side (i.e., ~15 times the FWHM diameter of the 
synthesized main beam), but as the calculated ampli- 
tudes and closure phases produced by several of these 
models varied in a more complex manner than any- 
thing actually observed to date, we do not regard this 
as a major restriction. 

a) Test L 2:1 Point Double 

For this example only, we had prior knowledge of the 
test source, and no noise was added to the data. The 
source was chosen to be very simple so that it would 
be easy to make a detailed comparison of the maps 
and derived phases at each iteration and to illustrate 
the convergence to the true distribution. 

At the top left of Figure 3a we show, not the test 
source, but the “ CLEAN solution” which comes from 
assuming full visibility phase and amplitude data, 
throughout the interval in which the source can be 
observed at all four stations, and therefore represents 
the best result we could have obtained given the (w, v) 
coverage and the effectiveness of the CLEAN process. 
In the rest of Figure 3a we show successive iterations 
during the reconstruction from amplitude and closure 
phase data (the particular iteration is indicated at the 
bottom left-hand corner of each map); note that we 
cleaned over the whole area of each map. The first 
iteration is the result of setting all the visibility phases 
on three of the baselines to zero, equivalent to starting 
with a point source at the center of the map. This 
produces a fairly good map, in spite of the fact that 
the derived phases differ by up to ± 60° from the true 
ones. By the fourth iteration the reconstructed map is 

good, while excellent agreement with the CLEAN 
solution comes around the seventh iteration. By the 
twelfth the map is virtually indistinguishable from the 
CLEAN solution. In Figure 3è are shown the phases 
derived from the model, on the Green Bank-Fort 
Davis baseline, at three stages of the procedure. 

In order to test our ideas about the convergence 
mechanism we repeated this test, restricting the 
window to include only the true source. In this case, 
with the area of the window about 5 times smaller than 
before, convergence was roughly twice as fast. We also 
tested the effect of having more visibility data by 
assuming an extra telescope (Haystack) in the array, 
thus giving 10 baselines and six closure phases. In this 
case, again with the smaller window, convergence was 
roughly 3 times as fast as in Figure 3a. In practice, of 
course, one would never start from a point-source 
model because the double nature of the source is 
obvious from a cursory glance at the visibility data. 
However, this example does show that for simple 
sources no initial interpretation of the data is required 
to obtain the correct solution. 

We now discuss the results of four “blind” tests. 
In Figures 4-7, (a) shows the test source, and {b) shows 
the CLEAN solution, i.e., the solution which is ob- 
tained by assuming full visibility phase and amplitude 
data with the (w, v) coverage shown in either Figure 2a 
or Figure 2b. Subsequent hybrid maps were obtained 
by using closure phase data. In each case the true 
distribution (a) has not been convolved with the 
restoring beam used in CLEAN. 

b) Test 2 

Figure 4c shows the preferred hybrid map which is a 
fairly accurate representation of the test source given 
that its maximum extent is ~15 beam diameters. 
There are some significant errors, but this was the first 
source to be tried, and we had therefore not developed 
all the “tricks of the trade” which came with subse- 
quent experience. In particular we did not use the test 
of changing the baselines on which the phases were 
calculated (test [c]). We are confident that a result 
much closer to that of Figure Ab would have been 
achieved had we tackled this source later in the series. 

c) Test 3 

Figure 5c shows our peferred solution. The only 
significant error is that the “leading edge” of the 
southern component is somewhat broadened. This was 
a feature of all the maps we made on this source and 
demonstrates that our method will not converge 
absolutely when the source covers a large number of 
picture elements. However, test (c) did show that 
Figure 5c still contained significant errors. 

d) Test 4 

Figure 6c shows the preferred hybrid map assuming 
data from six baselines. The main features are well 
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MAPPING OF COMPACT RADIO SOURCES 33 

Fig. 6.—Test 4 [(w, i?) coverage, Fig. 2a]. (a) True distribution, {b) CLEAN solution, (c) Hybrid map using closure phase. 
(d) Hybrid map assuming a further station (Haystack) in the array. (Contours as in Fig. 3a.) 

reproduced, but the presence of the weak component 
in the SW was not clearly established. On this source 
we tried having the grid spacing (to 2 milli-arcsec), but 
the improvements in the map were barely significant. 
We again tested the effect of having more visibility data 
by including the Haystack telescope in the array. 
Figure 6d shows the result of three further iterations; 
the marked improvement in the quality of the map is 
clear. 

e) Test 5. A Source at a Low Declination 

The clean beam is elongated here because of the low 
declination, which restricts the (w, v) coverage as 
shown in Figure \b. The preferred map, shown in 
Figure 1c, is satisfyingly similar to the CLEAN 
solution. Figure Id was obtained from the same point 
source array as Figure 1c but here we have used a 
circular restoring beam (FWHM = 20 milli-arcsec). 

V. LIMITS TO THE PROCESS 

We now try to give some practical rules of thumb 
for the complexity of sources that can reliably be 
recovered from VLBI observations with four or more 
telescopes. The fundamental limits to the process we 
have outlined are clearly set by the performance of 
CLEAN with full phase data. Since it is difficult to 
obtain a feeling for these limits from the literature, we 
have made additional tests assuming the (w, v) coverage 
of Figure \a and the same signal-to-noise ratio as in 
the tests discussed in § IV. 

Any reconstruction process is basically limited by 
the size of the largest “holes” in the (w, p)-plane; 
conventionally the maximum extent of sky which can 
be synthesized is 1/Am by 1/Ap, where Am and Ap 
define the size of the hole. When the baselines are 
irregularly spaced the holes are of varying sizes, and it 
is difficult to characterize Am and Ap. However, for an 
N station network, the largest holes have dimensions 
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34 READHEAD AND WILKINSON 

Fig. 7.—Test 5 [(«, v) coverage, Fig. 2b\. (a) True distribution, (b) CLEAN solution, (c) Hybrid map using closure phase. 
(d) same as (c) except for the shape of the clean beam. (Contours as in Fig. 3a.) 

^2¡N{N — 1) of the maximum excursions in the 
(w, p)-plane. Thus we might expect to be limited to a 
map with ^ [N(N — l)/2]2 picture elements, where a 
picture element has area (FWHM of beam)2. 

In order to test this limit we constructed the source 
shown in Figure 8a, which covers ~100 picture 
elements, and attempted to recover it from the full 
amplitude and phase data assuming the (w, v) coverage 
shown in Figure la. The result for this four-station 
network is shown in Figure 8c. It is clear that the 
coverage is not sufficient, but adding one more station 
(Haystack) to the network yields the improved map 
shown in Figure 86. Such tests support the results of 
Rogstad (private communication) that arbitrary 
brightness distributions of area equal to the conven- 
tional limit, discussed in the previous paragraph, can 
reliably be recovered by CLEAN if the signal-to-noise 
ratio is high (~20:1). If instead the source consists 
of a small number of regions of high surface bright- 
ness, as in the tests discussed in the last section, 
considerably larger regions of sky can be cleaned; for 
example, the CLEAN map in test 2 covers ~260 beam 
areas. Many extragalactic sources are also consider- 
ably more extended in one dimension than the other, 

and in this case sources resembling 3C 147 (Wilkinson 
et al. 1977) can be reconstructed out to ~25 beam 
diameters (i.e., ~75 beam areas) with full amplitude 
and phase data from only six baselines. With more 
baselines the limiting areas increase in proportion to 
the amount of visibility data available. 

A practical limitation of any image reconstruction 
process is the time required to reach an acceptable 
solution. In the simulations of § IV we allowed our- 
selves only ~ 2 days, and ~ 20 jobs, on a batch process- 
ing system. Thus our method is considerably faster 
than conventional model fitting. However, there are 
probably some compact radio sources which are diffi- 
cult to model on V — 1 baselines, but which could, 
nevertheless, be mapped with full amplitude and phase 
information on N(N — l)/2 baselines (e.g., Fig. 8a). 
In such cases more time is required to derive an ade- 
quate starting model, but it should be emphasized 
that this map is recoverable from amplitude and 
closure phase data, since the number of unknown phase 
data is finite, and incorrect hybrid maps can be 
eliminated by means of the tests discussed in § III. 

We have considered mainly the case of four tele- 
scopes, the minimum for our process to be useful. 
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36 READHEAD AND WILKINSON 

With more telescopes the ratio of the number of 
independent closure phase relations to the number of 
baselines increases. Thus the fraction of missing phase 
information decreases, and one may expect to see a 
corresponding increase in the effectiveness of the 
process. 

How could our method be improved ? First, there 
may be more effective ways of deriving phases from 
the amplitude data on iV — 1 baselines (e.g., Napier 
and Bates 1974). Second, one might use a method of 
image reconstruction other than CLEAN. A funda- 
mental criticism of CLEAN is that, by setting the 
visibility amplitude equal to zero for unsampled regions 
of the (w, t;)-plane, one is supplying data which are 
known to be incorrect. The maximum entropy 
approach (Abies 1974; Ponsonby 1973; Gull and 
Daniell 1977) is more sensible in this respect, since it 
attempts to introduce the minimum amount of in- 
formation and hence a minimum of false information 
in the unsampled areas. Tests have shown (Rogers 1976) 
that this method does indeed reproduce source 
structures more reliably than CLEAN but at the 
expense of considerably more computer time. 

VI. CONCLUSIONS 

We have shown that reliable hybrid maps can be 
made by using data which are easy to obtain in present 
day VLBI observations. The solution is derived in a 
more objective way, and more rapidly, than is the case 
with conventional model fitting. This is particularly 
so for sources of complexity similar to those simulated 
in §IV and for most, if not all, sources actually 
observed by VLBI thus far, since adequate starting 
models can easily be constructed on V — 1 baselines. 
VLBI arrays of four to six telescopes are now common, 
and our simulations show that brightness distributions 
of complexity comparable with many of the Cambridge 

One-Mile telescope maps (Macdonald, Kenderdine, 
and Neville 1968 ; Mackay 1969) can be obtained. With 
rms noise of 5% in amplitude and 10° in closure 
phase, a dynamic range of ~20:1 can be achieved in 
the map. 

At present, the only way of obtaining full phase 
information from VLBI is by using a nearby unresolved 
source as a phase reference. In the future such data 
will become increasingly available, and thereby relative 
positions can be determined with the full accuracy of 
VLBI. However, given the sensitivity of present-day 
VLBI systems, there are too few phase reference 
sources for this method to be generally useful. Even 
with improved sensitivity, phase referencing will be 
difficult at both low and high frequencies, due to 
irregularities in the ionosphere and atmosphere, 
respectively. Since the closure phase does not suffer 
from these disadvantages and is easy to obtain as long 
as fringe amplitudes can be measured on closed loops 
of baselines, it will be used increasingly in observations 
at these frequencies. 

We have discussed the use of the closure phase in 
VLBI. However, this method is generally applicable 
to any interferometer array which is not phase-stable. 
It could therefore be used to extend the capabilities of 
existing aperture synthesis arrays to both lower and 
higher frequencies. 
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