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ABSTRACT 
Numerical experiments on continuous ejection models for symmetric double radio sources 

(constructed along the lines of Blandford and Rees) are performed. The equations for relativistic 
spherical flow and for nonrelativistic aspherical expansion are derived after a discussion of the 
physical conditions in both the internal plasma and the confining gas cloud is given. These 
coupled evolution equations are nondimensionalized, and a scaling law relating configurations 
of the same reduced luminosities is posited. Models for different values of internal luminosity, 
and for variations in the parameters of the external gas (size, density, temperature, shape), are 
computed, and the scaling law is verified. The most important variables turn out to be the dimen- 
sionless luminosity and the eccentricity of the confining cloud. Low-power models tend to form 
bubbles: the expanding blob of plasma bifurcates. Stronger sources lead to oppositely directed 
jets that sometimes attain relativistic expansion velocities. We also find that the flatter the cloud, 
the sooner bubbles form. 
Subject headings: galaxies : structure — hydromagnetics — radio sources : general 

I. INTRODUCTION 

Twin beam, or continuous ejection, models for double radio sources provide a reasonably coherent and con- 
sistent explanation of the bulk of the observations of such objects. Variants of this theory have been proposed by 
several authors over the last few years (Rees 1971 ; Longair, Ryle, and Scheuer 1973; Scheuer 1974; Blandford and 
Rees 1974 [hereafter BR]; Wiita 1976). In a previous paper (Wiita 1978, hereinafter Paper I) the steady-state 
twin exhaust model of BR was reanalyzed and extended lo new regimes. In particular, the possible existence of 
hotter, denser confining gas clouds was investigated in Paper I. Such configurations seem to provide a better 
fit to recent VLBI measurements on the alignment of small nuclear sources with the extended radio lobes (cf. 
Kellermann et al 1976). 

But the fact that a steady-state solution to a hydrodynamics problem has been shown to exist certainly does not 
guarantee that it can actually be established starting from plausible initial conditions. Thus, the demonstration 
that the twin-exhaust picture, as expounded in BR and Paper I, is a quasi-stationary final configuration for cer- 
tain reasonable physical parameters, leads us to desire to investigate the dynamics of the model more fully. It is 
the aim of this paper to start such an analysis, stressing Newtonian numerical calculations. We have not per- 
formed full two- (or three-) dimensional hydrodynamic calculations ; rather, these results refer to the integration 
of the equations of motion for the shell forming the boundary between the external confining gas and the internal 
fluid. A special-relativistic treatment which would be valid at times later than those considered here has been 
presented elsewhere (Wiita 1976). So far, however, the numerical experiments have not been extended to that 
dominantly one-dimensional, but relativistic, regime. 

In our calculations, we assume that at an initial time a source of relativistic plasma is turned on in a galactic 
nucleus, and that its power remains constant thereafter. The plasma is confined by a somewhat flattened gas 
cloud (see BR and Paper I for details on the constituents of the inner and outer fluids) which is also taken to 
reside in the nucleus, but which trails off in a bi-Gaussian fashion (eq. [6], Paper I) until a low intergalactic density 
is reached. In § II, some of the important physical assumptions and approximations employed will be discussed; 
they set a limit on the validity of this work. 

At the early stages the flow is relativistic, but nearly spherical, since the ram pressure differences between the 
polar and equatorial directions are negligible until the blob of plasma attains a radius greater than 0.1/ (/ is the 
average scale height for the confining gas). By the time asphericity rears its head, the velocity of the boundary 
is sufficiently subrelativistic that Newtonian equations of motion can be utilized. During this period, the internal 
pressure can be rather accurately treated as a function of time alone because the sound speed (c/V3) is much 
greater than boundary velocities and pressure differentials are rapidly smoothed out. However, this constant- 
pressure assumption breaks down if the boundary starts to expand too rapidly, so that the internal sound speed 
is no longer very much greater than the wall’s velocity; it also is no longer true if the changing shape of the wall 
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induces large internal velocities, regardless of the magnitude of the motion. Our Ansatz may also fail if the pinch- 
ing of the neck stresses the fact that the energy and plasma source is concentrated at the center. Clearly, the 
Newtonian wall motion approximation also fails then, and in nearly every case these failures occur with small 
separations in time between them. If the situation at that time is such that the cavity is elongated to the extent 
that the flow is predominantly longitudinal (along the channels), then the internal fluid can be described by just 
two variables : its pressure or internal energy density, and its velocity. The coupling of this space- and time-depen- 
dent internal flow to the motion of the boundary between it and the confining fluid becomes the crux of the 
problem at this later stage. 

In § IV we give the results of our numerical calculations in tabular and graphical form. We find that jets are 
formed only for fairly strong sources, and—contrary to the speculation of Rees (1976)—we obtain bubbles as 
the more likely outcome for weak ones, even if turned on abruptly. We suggest new areas for theoretical work 
and summarize our conclusions in § V. 

II. PHYSICAL ASSUMPTIONS AND APPROXIMATIONS 

We note that if a source of the luminosities considered in Paper I (L ~ 1046 ergs s-1) is suddenly turned on, 
the plasma it emits starts its expansion at high velocities, substantially supersonic with respect to the external 
medium (e.g., in the basic BR model for Cygnus A: T ~ 3 x 108 K, «o ~ 4 x 102 cm-3, / ~ 135 pc). The first 
approximation we employ is to assume an axisymmetric evolution. Although the initial velocity is determined by 
the original arbitrary overpressure in the small volume from which the plasma starts expanding, the motion is 
quickly dominated by the power of the source and the properties of the ambient gas. 

The magnetic field is not considered explicitly; rather, in this treatment, the energy it carries acts just like the 
relativistic particles in the interior fluid. (Its pressure, if the fields are roughly isotropic, is one-third its energy 
density also.) It is certain that this neglect of magnetic effects is of some importance, particularly in regard to 
the development of Kelvin-Helmholtz instabilities which may be strong near the nozzle and at the head of the 
beam. For fuller discussions of this problem, see Blake (1972), Turland and Scheuer (1976), Blandford and Pringle 
(1976), and Ferrari, Trussoni, and Zaninetti (1977). However, for computational simplicity, we provisionally 
accept the argument of BR that the streaming instabilities are limited by nonlinear effects, and act upon the 
beam only as rapid but small fluctuations in its shape and position. 

The analysis of Rayleigh-Taylor instabilities mentioned in Paper I purported to show that if the exhaust con- 
figuration is established, then it is most likely stable against such perturbations. But during the dynamical motions 
of the formation epoch such modes are almost certainly excited, as the time scales for growth of the disturbances 
are of the same order as the expansion time for the blob of ejected plasma. Such instabilities are implicitly included 
in a correct dynamical formulation, and, if at all important, ought to be excited by the inherent inaccuracies of 
a discrete, numerical code; we will see their influence on the numerical experiments displayed in § IV. 

Also, the radiation emitted by the plasma itself and by the shocked fluid it sweeps up will be ignored. Naturally, 
some of the same mechanisms proposed by BR to explain the eventual synchrotron radiation from the hot spots 
will be working even at these stages, and the losses may be significant. In the case of supernova shocks penetrating 
the interstellar medium, the energy lost by radiation is quite large (e.g., Chevalier 1974); but other relevant work 
on physical conditions more closely comparable to the ones we use indicates lesser losses (Bollea and Cavaliere 
1976). Our basic equations for the dynamics do not include radiation terms for either energy or momentum 
transport. This is a major Ansatz, already implying 10% to 20% uncertainties in the computed values; however, 
it should be noted that such effects are crudely modeled in our numerical work, which allows for variations in 
the amounts of kinetic and internal energy in the boundary region. 

Another major aspect we neglect is turbulence. While arguments can be given for the likelihood of the flow 
to be roughly “laminar” (cf. BR), they are not thoroughly convincing. But a strong reason for not trying to 
include plasma turbulence is that the manner in which it could be generated, as well as reasonable equations 
giving its evolution, are problematical. It should be noted that Gull and Northover (1973) invoke turbulence 
(qualitatively) in their giant bubble model in attempting to explain the hot spots. This neglect is a major restric- 
tion on the accuracy of our results. 

A further important approximation is that the exterior gas that is shocked by, and then swept along with, the 
expanding plasma cloud forms a relatively thin shell. This is possible as long as the shock is a strong one; i.e., 
the speed at which the boundary advances must be much greater than the sound speed of the external gas, for 
then both the density and temperature of the material are increased considerably. This shocked fluid then meets 
the internal fluid at what could be roughly described as a contact discontinuity ; however, some mixing of the 
external fluid into the relativistic plasma is expected. This phenomenon, like the entrainment of the external 
plasma BR mention, can clearly be of importance, but it is very difficult to model well and will be ignored in our 
work. Even when the shock is strong, we probably only get genuinely thin shells and the real “snowplow” effect 
if the heated material cools off fast enough to increase its density further (Spitzer 1968). This is not likely in our 
case, since the shocked gas is too hot to cool ; by this we mean that at these high temperatures and densities the 
radiation that is likely to be emitted (Cox and Tucker 1969; Cox and Daltabuit 1971) cannot drop the temperature 
quickly enough to enhance the density increase very much. While we are neglecting the explicit dynamical 
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importance of the magnetic fields, we ought to note that they will, in all probability, help keep the boundary layer 
thinner than it would otherwise be (BR). 

Related problems should also be mentioned. As the evolution proceeds, the expansion often becomes subsonic 
in some directions, especially those associated with the equatorial plane. Then the plasma is no longer sweeping 
up a shell of fluid via the shock; instead it is pushing outward like a bubble, and its influence propagates outward 
into the surrounding medium at its speed of sound, hence ahead of the actual boundary. The evolution is esti- 
mated by taking that portion of the shell to be no longer accreting mass, and by ignoring the external density wave 
which really could not be properly included except by employing a full two-dimensional hydrodynamics code. 
Further, the velocity of the actual boundary between the relativistic fluid and the shocked gas is always less than 
that of the advancing shock front; for strong nonrelativistic shocks in a monatomic gas the velocity of this dis- 
continuity lags that of the shock front by about 25% (Landau and Lifshitz 1959). Thus, we are really dealing with 
a wall that could have a substantial thickness, one on the order of one-fourth of the total dimensions of the blob. 
Zekdovich and Raizer (1966) show that an analogous thin shell approximation in the context of a spherically 
symmetric strong explosion is quite accurate. Modifications of this approach in exponential atmospheres are also 
discussed in ZePdovich and Raizer (1966). Sakashita (1971) followed an explosion-generated shock front, re- 
stricted to locally radial motion, but Bhowmick (1975) showed that in that case the shell did not stay thin for 
very long. So this probably implies nonnegligible errors for our work, which, however, may be ameliorated by 
our treatment of the energy balance at the shock, and by the magnetic field. 

III. DYNAMICAL EQUATIONS 

a) Spherical Expansion 

For the spherical geometry applicable to the earliest stages of the development we must use relativistic equa- 
tions for the boundary motion. As we have mentioned earlier, the internal pressure (or energy density) can be 
taken as a function of time alone during this time period. Under these limitations we can present the boundary 
motion equations. Let X be the radius of the blob of plasma and (in the laboratory frame) let U = dX/dt; then 
dM/dt = 47rX2

PlU and 

M^=^Y-1X2(p-p1)-A7Ty-2X2p1U
2, (1) 

where AT is the total mass swept up and Pl and px are the mass density and pressure of the external gas; p is the 
pressure of the internal plasma. 

The basic equation for the change of the pressure is determined by an input from the central energy source of 
strength L (in the laboratory frame), which is distributed between the energy of the relativistic fluid and the energy 
of the shell making up the boundary. For the case of a fully relativistic internal fluid, and as long as the motion 
of the walls is not extremely relativistic (i.e., y is not » 1, a condition we always satisfy), then the energy supplied 
to the external medium is roughly (Blandford and McKee 1976) 

iW~3¿'/(8y2). (2) 

Thus the total energy balance can be written as 

L = Tt = It\pdv + ■ (3) 

Because V = (4/3)7tX3 and P = 3p is a constant over the volume at a given time, we can insert equation (2) into 
equation (3) to obtain 

L = \2irpX2U + 4ttX3 ^ + 3LI(Sy2) - ILtU^ ■ (4) 

We solve equation (4) for dPjdt and equation (1) for dUjdt and find the following system of differential 
equations : 

^ = 4ttX*[P - Pl- p1U
2y-1](My)-i , 

dP L[\ - §y-2 + %tU(dUldt)] - \2irX2Up 
dt - 4ttX2 

(5) 

(6) 

(7) 

These equations are then integrated from the following initial conditions : a constant L is chosen, and an initial 
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radius, XQ ~ 0.01/ is also picked; an initial internal pressure is also selected (~300/?o, where pQ is the central 
pressure for the confining gas). This gas also requires, for its complete specification, a temperature (or density) 
to be given along with an equation of state. For details on such a cloud and its stability, see Paper I. The initial 
velocity is taken as (after Landau and Lifshitz 1959) 

U{tQ) = ßs 
(r - i) , (r + imío, x0) 

ITp^to, Xq) 2F 

1/2 

where ^(¿o, Z0) ä p0 and ßs is the speed of sound in the external gas, ßs = (rp1lp1)
ll2; T is the adiabatic index. 

As mentioned above, this spherical approximation is reasonable until X reaches about one-tenth of the scale 
height; when this, or some other preselected radius, is exceeded, this integration scheme is halted, and the current 
values of X, U, p, and t are used to initialize the axisymmetric integration described in the next section. The 
actual choice of p(tQ, Z0) does not greatly influence either the pressure or the time at which the desired radius is 
reached: differences of a factor of 10 in that overpressure are swamped by the energy provided by the L term 
and produce variations in /? or ¿ of around only 10%. In the same manner, the actual value of XQ is quite unim- 
portant until it gets to be about a third of the radius at which this spherical advance is terminated. The actual 
integration of equations (5)-(7) (plus the change in mass equation) is carried out using a fourth-order Runge- 
Kutta scheme with a variable step size that attempts to increase itself at every time step (Gear 1971, § 5.4) as 
long as the values computed using both the current and the increased time step agree to a certain tolerance; if 
they do not, the step size is repeatedly cut until these differing values for the results of the integration are in 
sufficiently close agreement. 

b) Axisymmetric Evolution 

Once the initial expansion has passed 0.1/, the velocity of the shock is invariably under 0.2c, and relativistic 
corrections to the boundary motion are small. We still assume that internal pressure gradients are small, and 
then we have, for a segment of the boundary of surface area da and mass m located at Z, and of radius R, this 
relation for the increase in mass of that wall segment: 

= daPl(R, Z){UR cos 6> + C/z sin 6) , (8) 

where UR = dR/dt, Uz = dZ/dt, and 6 is the angle between the Z-axis and the plane of this boundary element. 
The Newtonian equations of motion are : 

= “ K/7 ~ Pi) sin 0 — cos 6 + Uz sin 6)], 

dUR da 
— — [{p — p*d cos 6 — p1U

R{UR cos 6 + Uz sin 6)]. 

(9) 

This pair of equations is easily interpreted: is the internal fluid pressure pushing outward and tending to ac- 
celerate the boundary, p1 is the varying external thermal pressure opposing this acceleration, and the last terms 
represent the ram pressure. (For the special-relativistic generalization of eqs. [8] and [9], see § IV.4 of Wiita 
1976.) 

Now we must note that the assumption that the shock is strong, which allows equation (2) to be used, may no 
longer hold. In fact, we will see that eventually, for at least some portions of the interface, a shock ceases to exist 
as the expansion becomes subsonic, and even reverses itself into a contraction. One method, the quasi-radial 
approach pioneered by Lumbach and Probstein (1969) and applied by several others (Sakashita 1971; Möllen- 
hoff 1976; see Wiita 1976 for a critique of this technique), would be adequate for the beginning of the next stage 
of the calculation, but is not so useful for the later, wholly aspherical development. 

Here we try another general attack, and determine the equation for the change in pressure via the energy in- 
serted by the central source and that taken up by the shell consisting of the swept-up external fluid. There are two 
basic contributions to the energy of the boundary layer (neglecting radiation) : the kinetic (going like MU2) and 
the internal (fV). Write this balance as (cf. eq. [3]) 

i = f = + (10) 

The final term, referring to the internal energy, is a complicated one, depending in detail upon the previous history 
of the swept-up fluid as well as its composition. As the external gas passes through the shock, its temperature and 
density both increase rapidly; when the shock is sufficiently strong, the assumption that this material takes up 
only a rather small fraction of the total volume of the blob is a reasonable one (§ II). 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
7 

8A
pJ

. 
. .

22
1.

 .
43

 6W
 

440 WIITA Vol. 221 

Basically, the increases in kinetic and internal energy are of the same order of magnitude, and close to propor- 
tional. Our key approximation will be to formalize such a proportionality and ignore its time dependence by 
expressing the total energy supplied to the external medium as merely a constant factor multiplying the well- 
defined kinetic energy, i.e., 

(MU2I2 + W) ^ a(MU2l2) . (11) 

Rough upper (~4) and lower (25/16) bounds can be set on a (Wiita 1976), by using shock jump conditions; 
physically a larger a corresponds to thicker walls. While this might appear to be a major, and perhaps crude, 
approximation, the value of a actually makes very little difference in the size and shape of specific configurations, 
as confirmed by many spherical and axisymmetric integrations (cf. § IV). 

While we will not bother to do so explicitly for the spherical equations, we shall now remove the dimensional 
factors from the Newtonian, axisymmetric equations, and will cast them into the discrete form necessary for 
computer evolution. The velocities have already been effectively nondimensionalized as we have been taking c = l 
in this section. All other variables can be divorced from their physical corequisites in the following manner. Let 
the subscript i refer to the ith zone into which the boundary layer is divided, and define 

i'i = R/l > Zi=z//, T = ctH, if = L¡{p0cl2), <A = Pi(r, z)Ipo , x = P(T)IPo , 

dai = (area of ith zone)//2, mi = (mass of fth zone c2)l(p0l
3). 

Using the definition of the sound speed and dividing equation (8) by p0l
2lc leads to the discrete mass increase 

equation 

dnii 
dt 

(12) 

Overall division of equation (9) by c2/l leads to the reduced acceleration equations : 

dU* __ da{ ^ 
dr mi * 

^ = — [x - z)] COS 0 dr mi^ T ' nti dr 

,/ ■ a Uf drrii >Kr, z) sin 9t   -j-i m¡ dr 

Ui dmt 

(13) 

The final basic equation comes from equation (10) with the approximation (11) included: 

2,V— + 3» — + - — (MU2) 
dt + P dt 2dtK 

MU2 x 2 ™J(Uir)2 + (Ut*)2] = 2 miU*2 ■ 

If we divide by p0c/2, solve for the derivative of the pressure, and make use of reflection symmetry about the 
equatorial plane, we obtain the key result 

dx 1 (J? dV aïdQm^m 
dr X dr 6 L dr Jj’ 

(14) 

where ^ is the reduced volume enclosed by one-half of the boundary, i.e., ^ = F/(2/3), where V is the total phys- 
ical volume taken up by the relativistic fluid. This is written in this manner, because reflection symmetry as well 
as axisymmetry is involved, and the zones stretch only from z = 0 (/ = 1) to z = zmax (where r = 0, / = ri). 
The final equations, which merely serve to keep the entire set a first-order system, are 

z (15) 

Figure 1 is a sketch of this symmetric configuration with the relevant quantities labeled on different zones. Thus, 
the initial values, starting from the spherical configuration that has led to a radius X' ~ O.lx/, satisfy 

S? M'c2 

2W¡ “ 2p0l
3 ‘ 

The set of 5« + 1 differential equations, (12)-(15), are not quite in a form suitable for integration. First we 
eliminate the surface area of a given segment : 

dat = 2wi(Azi
2 + Ar2)112 . 
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External Gas, i//(rtz) 

Fig. 1.—The discretized boundary for « = 11. Dots indicate the z and r positions of each of the zones at a given time r. Two 
velocity components, illustrated at / = 6, are also associated with each point as is an angle 0 = tan-1 ( — dr/dzi). Vertical lines 
demark the boundary of each zone, the surface area and mass contained between them are dai and mu respectively. Note that 
/ = 1 and i = n are one-sided and call for special treatment in the code. Physically, the expanding blob has cylindrical symmetry 
about the z axis and reflection symmetry about the z = 0 plane. 

Equation (14) harbors three more complex terms. Look first at the kinetic energy: 

dSLnkUf) 
dr Ui 2 

U? + nii (2U’^f + 2Uf 

The change in volume with time and the volume itself are the other aspects still to be considered. ^ = 2 
is a simple sum. Then, 

dr 

•’l[2r<7rAz< + r‘A(È)] 

Tr 2 (¿nU'Azi + rfAUf) , (16) 

where AU? = (ÍW - etc. 
For any given run in which we have a Gaussian pressure falloff [0(r, z) = exp ( —— Aqz2)I2] there are 

essentially four dimensional parameters and three dimensionless ones. The former may be taken to be L, p0, /, T 
(temperature of the confining gas), and the latter as e, a, F. When these are combined, the stellar density as well 
as the gas density are easily found. Of course, the actual initial values of radius and overpressure are needed, but, 
as mentioned in the previous section, the final results are almost independent of them ; to a large extent this is 
also true of a, but some detailed comparisons will be made below. Throughout our calculations we have taken 
F = 5/3, correct for a monatomic gas. One further number that should be inserted is the lower limit to the pres- 
sure (or density) for the confining gas in intergalactic space. Models have been run for various values of this 
ultimate density, as well as for the case where it is taken as zero, and the Gaussian drop goes on forever; nontrivial 
differences result. 

c) A Scaling Law and Preview of Results 

While the simple nondimensionalized strength of a given source is best parametrized by = Ll(p0l
2c), a 

useful indication of its strength with additional regard paid to the external medium is JP' = ^lßs. Just as 
is an indication of relative strength, r' (= ßsr) is a measure of how fast the flow changes in differing external 
media. From dimensional considerations we expect that a scaling law in J27' and r' exists. At a specific r the 
shape of two blobs, as well as their sizes in units of their scale heights, will be the same as long as their (^')s 
are identical (and as long as e, a, and F for the two models are the same). This scaling law was checked for several 
cases and was verified to a fraction of a percent difference in any variable. Even further, at the same r' for the 
same J^', the ratios of EextIEint will agree, as will those of EtotSil/ElnpVLt. Note that, by definition, these apply to 
the entire volume : 

^ext =: a miUi2 ’ ^int := ^TTX 5 -^input = Lr , -Ftotal = J^ext “I“ ^int • 0T) 

Before examining some of the numerical experiments in depth, it may be helpful to glance at the various out- 
comes of our runs. Because the two dimensionless parameters that convey the most about any given flow are 
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Fig. 2.—General overview of the results of our numerical integrations. The type of outcome is labeled in five regions of the £?' 
(reduced luminosity)-^ (eccentricity of confining gas cloud) plane. See text for details. 

and e, we schematically sketch the results of our numerical integrations on an e)-plane. While we have run 
about 100 models, many are essentially duplicates, checking the effect of some small change, and our coverage 
of the plane is sketchy. 

The region labeled “jets” in Figure 2 is where we are fairly confident that the plasma escapes in two beams 
(though not necessarily arriving at the steady state envisioned by BR). In the “bubble” area, the pinching off at 
the origin should be complete, and two separated blobs seem to form. The further division into “slow” and 
“fast” bubbles refers to whether or not subsequent plasmoids can catch up with earlier ones. Quite a large swath 
(“marginal”) gives results that appear to go one way or the other, but because of the grossness of our approxi- 
mations, we hesitate to claim any of the above mentioned fates for the runs falling in this area. “Time limited” 
means that models with these parameters were not carried out for long enough times to be sure of the outcomes. 

IV. NUMERICAL CALCULATIONS 

d) Zoning and Accuracy 

Initial values from the spherical results are used to start off the evolution contained in equations (12)-(15), 
and the divisions between zones are based on equal separations in arc length. The equations are integrated by 
the same type of Runge-Kutta routine described above. To preserve a good physical grid, when the boundary 
elements became too uneven, a rezoning is performed. When the boundary velocity for a given zone becomes 
subsonic (i.e., Un, the normal velocity, is less than ft, the sound speed), mass is no longer being swept up. In 
lieu of considering the full two-dimensional hydrodynamics involving the compression wave that then propa- 
gates ahead of the boundary, we note that the slow moving wall still imparts energy to the external gas, and to 
aid the stability of the integration scheme, we employ 

dm{ 

dr 
(18) 

where (drai/rfr)!^ is found from equation (12), but (rfWi/¿/T)|new is then utilized in equations (13) and (14). If the 
internal pressure falls below the external pressure in the equatorial region, the motion in that area may be re- 
versed into a contraction, even while the expansion may be reaccelerating in the polar zones. The external gas 
is assumed to flow downward to continue to supply pressure, but the velocity of the contraction is clearly limited 
by the external sound speed. 

The accuracy of the integrations was checked in several ways. By modifying the external density gradients, or 
by releasing all the energy over a short time to mock up an explosion, the code was able to reproduce various self- 
similar solutions (Sedov 1959) quite well. The number of zones was also changed, and in going from 100 down to 
25 grid points, positions, velocities and energy densities varied by less than 1%. Also, while equation (14) does 
depend on total energy conservation, we do not have a particular constraint on our equations that forces the 
total available energy to equal the total inputted energy. Thus the result that the ratio EtotIEinmt varied from unity 
by less than 3% for nearly all runs, and by less than 0.5% for the majority of them, is quite encouraging. 

Unfortunately we do not have any full, multidimensional hydrodynamic calculations related closely enough to 
our models to provide a satisfactory check. In treating nonspherical supernova explosions, Chevalier and Gardner 
(1974) compare a similar thin-wall approximation (where, however, they assume a constant ratio of postshock 
pressure to internal pressure taken from the spherical case) to a couple of two-dimensional hydrodynamic models. 
They find that the approximate calculations exaggerate nonspherical effects, and in translating this to our approach 
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TABLE 1 
Input and Results for e — 0.50 Numerical Integrations 

443 

Run No. 1,46 a rend Zend ^end Comments 
(1) (2) (3) (4) (5) (6) (7) (8) 

75  0.05 0.334 2 209 0.675 0.384 Figs. 3 and 4 
73  0.20 1.337 2 260 1.150 0.673 Table 4 
47  0.50 3.343 1 314 1.741 1.049 Cf. next 3 entries 
53   0.50 3.343 2 309 1.702 1.020 
54   0.50 3.343 3 306 1.671 0.999 Table 4 
55   0.50 3.343 4 303 1.648 0.969 
59  1.00 6.686 2 372 2.501 1.528 Table 4 
85  2.00 13.372 2 766 12.838 6.732 Table 4, «* = 5 (-4) 
42  5.00 33.430 1 941 39.127 13.762 “blast” Figs. 3 and 4 

their results might imply that a larger a should be used at lower Z values, but we have not attempted such modi- 
fications. Sanders (1976) considers strong explosions in galactic nuclei using another two-dimensional code, and 
his “Explosion 1 ” is in some respects comparable to several of our high-eccentricity runs. In particular, the shape 
and size (when divided by scale heights) agree quite well with our run 34 or 35; however, his scaled energy (in 
units of Pq/3) is ~440, while ours (E # =£V) is only ~57. But the comparison should be made in terms of 
and r', and the value of <&' for Sanders’s explosion is 2.8 x 103 (using L = £/¿breakout)> almost a factor of 100 
higher than any we considered.1 It should also be noted that since we assume a constant luminosity, not an ex- 
plosion, as well as higher temperatures and a relativistic fluid, we should expect results somewhat different from 
any previous work. 

The numerical computations are terminated when the boundary velocities start to become relativistic or the 
p = p{t) assumption begins to fail. We ignore such a failure if due to pinching off at the center, and brazenly 
continue to evolve the system as a pair of bubbles. A detailed discussion of the termination criteria would absorb 
too much space (Wiita 1976); suffice it to say that almost always a run was ended by the expansion going 
relativistic in some zones. 

b) The Early Stages: No Bubbles 

Within any large category of calculation types, the three parameters L, e, and a are the ones of most interest, 
and runs were made for several values of each. The strength of the energy source, L, was found to be crucial in 
determining when and if bubbles would form, and if there was enough energy to blast out jets in the polar direc- 
tions. Contrary to the supposition of BR, but in agreement with others dealing with somewhat similar problems 
(e.g., Sakashita 1971), not much collimation could be achieved unless a rather large value for the potential’s 
eccentricity was assumed. Finally, it was interesting to note that the value of a, which was allowed to equal 1, 2, 
3, or 4, had surprisingly little effect on the overall shape, or on the time at which bubbles would form, for 
example. Furthermore, the scaling law of § IIIc was tested and found justified (cf. runs 34 and 35 in Table 3). 

We now marshal about 30 of the more than 100 actual runs of the program. Given in Tables 1, 2, and 3 are 
certain useful results pertaining to calculations based on the “canonical” BR parameters for Cyg A; thus, unless 
stated otherwise in the Comments column (8), all the runs have in common the following data: / = 135 pc, X0 = 
0.01/, /?0-4 = 0.3, Tq = 39 ßs — 0.0096, and the intergalactic number density is taken as n* = 0.0. Either 20 or 
25 points along the boundary are used in all tabulated cases. Table 1 shows nine relatively flat runs, those with 

1 I thank the referee for suggesting these comparisons. 

TABLE 2 
Input and Results for Intermediate Eccentricity Numerical Integrations 

Run No. L46 oc Tend •^end ^©nd Comments 
(1) (2) (3) (4) (5) (6) (8) (8) 

e = 0.75 

67  0.50 3.343 2 263 1.657 0.950 Table 4 
83  3.00 20.058 2 673 17.685 7.728 Table 4, w* = 5 (-4) 

<? = 0.90 

48  0.50 3.343 1 233 1.657 0.926 Cf. run 67 
65  1.00 6.686 2 267 2.274 1.258 Table 4, Figs. 3 and 4 
78  2.50 16.715 2 362 5.487 2.366 
86  3.00 20.058 2 463 12.633 4.839 Table 4, «* = 5 (-4) 
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TABLE 3 
Input and Results for e — 0.999 Numerical Integrations 

Run No. 
(1) 

L±q 
(2) (3) (4) 

Tend 
(5) 

•Zend 
(5) 

? end 
(7) 

Comments 
(8) 

71. 
43. 
69. 
45. 
46. 
44. 
51. 
50. 
52. 
39. 
80. 
84. 
34. 
35. 

0.05 
0.10 
0.20 
0.50 
1.00 
2.00 
2.00 
2.00 
2.00 
3.00 
4.00 
5.00 
5.00 
5.00 

0.334 
0.669 
1.337 
3.343 
6.686 

13.372 
13.372 
13.372 
13.372 
20.058 
26.744 
33.430 
33.430 
33.430 

123 
139 
155 
184 
214 
251 
246 
242 
237 
209 
276 
342 
179 
354 

0.603 
0.800 
1.036 
1.576 
2.453 
6.358 
4.479 
3.882 
3.440 
5.176 

26.049 
34.482 

5.489 
5.400 

0.316 
0.417 
0.552 
0.831 
1.156 
1.784 
1.607 
1.497 
1.426 
1.502 
6.164 

19.423 
1.597 
1.574 

Table 4 
Fig. 7 
n* = 5 (-4) 
Table 4 

Cf. next 3 entries 

“blast” Fig. 5 
“blast” 
Table 4, w* = 5 (-4), Figs. 3, 4, 7 
^0-4 = 1.2, / = 67.5 pc 
“ blast,” i?0-4 = 0.6, Tq = 0.75 

e = 0.50; column (1) gives the run number for identification purposes; the most important parameter, the lumin- 
osity (in units of 1046 ergs s-1) is given in column (2), and its reduced value, is in column (3). The value of a 
used in that particular model is listed in column (4). The values of r, zmax, and rmax at the time each run (or the 
non-bubble-like phase of the run) ended are stated in columns (5), (6), and (7), respectively. Table 2 provides the 
same information for six runs of intermediate eccentricity, while Table 3 tells us about 14 cases where the gas 
is very flattened. Putting dimensions back in, we recall that r = 1 implies Ijc seconds have gone by, and for the 
value of / used for essentially all these cases, this leads to the conversion: r = 1 = 1.39 x 1010 s = 442 yr; 
also, the values for z and r are quoted in terms of /: 135 pc = 4.166 x 1020 cm. Most of the runs listed in these 
tables terminated (at least for this stage) with bubble formation; and if no comment is present, this is to be as- 
sumed. The notation “blast” in column (8) means that the calculation went nonrelativistic and appeared to be 
sending out jets before pinching off, while “time” indicates that the best run was terminated by exceeding a fixed 
initial temporal bound on the evolution. Finally, “/? < 0” means that our approximations were sufficiently 
crude that carrying the integration out beyond the Tend listed leads to the evolution equations implying a negative 
internal pressure; although this caused a termination in the code, one really expects that when the pressure does 
get very low, the boundary will start to implode all over or, more probably, fragment, since the thin wall 
approximation becomes useless, and the wall material would expand inward. 

With all other variables held constant, we find that the times at which various similar facets of the evolution 
occurred varied very little with a. Averaging comparisons made for six different (L, e) combinations, we find a 
weak dependence, summarized by 

ä —0.015 ± 0.004 (formal 1 <j spread) . (19) 

Obviously, the value of a does change the ratio of the amount of energy stored in the walls (kinetic plus internal) 
to that residing in the relativistic plasma. 

Now we examine in more detail a sample of five of the runs we have tabulated : they can be characterized on a 
strength-eccentricity grid as follows: run 75, weak and spherical; run 42, strong and spherical; run 65, inter- 
mediate and moderately flattened; run 69, weak and flat; run 84, strong and flat. Figure 3 presents the values 
of the ratio of our assumed constant-in-space internal pressure, to the central pressure of the confining gas, 
plotted on a log-log scale against the nondimensionalized time r. 

We draw the following conclusions from Figure 3. First, the initial value of the overpressure (equivalently, 
initial velocity) is not important. Second, between r = 1 and r # 30, the slopes are rather constant, as the blobs 
expand almost spherically: approximately, x ^ t-0 7. Also, once x below one, the drop becomes much more 
precipitous, with expansion losses dominating the injected energy (which is cut off if the blob bifurcates). 

The maximum elongation in the polar direction, z, as well as the radius of the first zone, r, are given as func- 
tions of r for the same five runs in Figure 4. If and when r goes to zero, we declare that a bubble has formed, 
and in its stead we commence plotting zmin, the rear surface of the bubble. A comparison of runs 65 and 69 (Fig. 
Ab) shows how the stronger source, 65, has a larger radius at any given time, and its lower eccentricity enables it 
to avoid showing much asphericity until r ä 100. The differences between cases 42 and 84 (Fig. Ac) are dominated 
by the fact that run 84 has a lower bound on the intergalactic density, while run 42 does not. 

Another way of presenting the output of some of these numerical investigations is to show snapshots of the 
entire shape at specific times. Consider run 39, which we have not yet discussed in any detail; it is depicted in 
Figure 5, which gives the shape of the wall at the labeled times in one quadrant. A rotation about the z-axis and 

1 dTend 
Tend 
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Fig. 3.—Internal pressure as a function of dimensionless time for five cases. Run 75 (L46 = 0.05, e — 0.50, a = 2) follows the 
solid line. Run 69 (L46 = 0.20, e = 0.999, a = 2) is shown by the dashed line. Run 65 (L46 = 1.0, e = 0.90, a = 2) follows the 
circles. Run 84 (L46 = 5.0, e — 0.999, a = 2) goes along the dot-dash line. Run 42 (L46 = 5.0, e — 0.50, a = 1) has a pressure 
drop that follows the triangles. 

a reflection about the z = 0 plane would yield the entire volume. This is a flat (e = 0.999) and quite powerful 
(J^' ä 20) model which displays a substantial amount of collimation by the time r = 209, when the polar ex- 
pansion is semirelativistic and accelerating. Since Uv is already negative and this squeezing is also going faster, 
there is still the possibility that it would pinch off before a real blast is formed, so we must call this a marginal 
jet formation. 

c) Bubbles and Compact Parameter Sets 

We have just seen how, for most values of eccentricity and luminosity we have considered, a neck tends to 
form and pinch off, at least as long as we utilize our approximations and neglect the feedback from the central 
energy source. After the innermost zone has pinched off, subsequent zones near the trailing edge smash into the 
axis; we then divorce them from the rest of the calculation. This would physically imply that the bubbles move 
outward, leaving a tail of denser material behind them. Of course, this is not a good picture, the blobs being 
more likely to sweep material out of the way (Christiansen 1973) than to add some ; but since these inner zones 
usually have a small fraction of the energy, the errors so introduced are not substantial. As opposed to the neces- 
sarily subsonic and buoyancy-driven bubbles of Gull and Northover (1973), our bubbles are primarily pushed 
and distorted by the pressure differential across both their leading and trailing boundaries, and they can move 
supersonically at the former. 

Eleven models that formed bubbles are drawn from Tables 1 through 3 and are listed in Table 4. The first four 
columns are purely reidentification. Now rend refers to the final termination of the run, with the beginning of the 

TABLE 4 
Selected Bubble-Forming Numerical Evolutions 

Run No. e La rBn<ï zmax ¿mm fmax Comments 
(1) (2) (3) (4) (5) (6) (7) (8) (9) 

73  0.500 0.20 2 650 3.655 2.787 1.074 “time” 
54  0.500 0.50 3 2791 29.289 16.262 8.774 “time” 
59  0.500 1.00 2 586 5.539 2.360 2.695 “p < 0” 
85   0.500 2.00 2 955 20.572 1.593 10.460 “p < 0,” «* = 5 (-4) 
67  0.750 0.50 2 605 5.766 3.173 1.970 “time” 
83   0.750 3.00 2 1009 43.674 3.443 17.993 “time,” n* = 5 (-4) 
65  0.900 1.00 2 461 7.361 1.779 2.549 “p < 0,” Figs. 3,4, 6 
86   0.900 3.00 2 1030 51.978 5.644 24.513 “time,” «* = 5 (-4) 
71  0.999 0.05 2 1017 16.929 10.077 3.399 “time” 
45  0.999 0.50 1 338 11.737 2.026 1.962 “blast” 
84   0.999 3.00 2 390 39.452 2.052 25.938 essentially blast w* = 5 (-4), Figs. 2, 4 
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Fig. 4.—Radii of the first zone and z-coordinates of the last zone as functions of time: {a) For run 75 the solid line is the r 
value and the dashed curve is the z value. After r = 0, the solid line gives the rear boundary of the bubble. In (b\ run 69 is just 
as for run 75 in (a). For run 65, in (Z>), the dash-dot line gives the maximum z value, and the dotted curve gives the radius, then 
the rear of the bubble. Run 84 is depicted in (c) just as run 69 is in (b). For run 42, just as run 65 above, except that r never goes 
to zero. 

Fig. 5.—The boundaries of the relativistic fluid for run 39 (L46 = 3.0, e = 0.999, a = 1) in one quadrant as a function of time. 
The labels next to the curves are the time in units of l/c. 
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Fig. 6 Fig. 7 
Fig. 6.—As in Fig. 5 for run 65 (X46 = 1.0, e = 0.90, a = 2) 
Fig. 7.—As in Fig. 5 for run 43 (L46 = 0.1, e = 0.999, a = 2) 

bubble phase being given by the rend (col. [5]) for the same run in its earlier tabular appearance. At that late time 
(this new rend) the values for the maximum and minimum extent along the polar axis as well as the largest radial 
dimension of each packet of plasma, are given in columns (6), (7), and (8). Column (9) contains comments, with 
the termination code words the same as those in the previous section. 

We can classify the various cases on a “fast’’-“slow” spectrum. “Fast” bubbles are those that seem to rise 
sufficiently rapidly that by the time a new bubble is ready to break off, the earlier one is far removed from the 
origin; “slow” ones can be caught by younger siblings. Runs 73, 54, and 71 can be classified as fast, while runs 
85, 83, 65, 86, and 84 are slow; the others (59, 67, 45) are intermediate in speed. It is clear that the fast runs 
come from the weakest sources while the slow ones arise from more powerful sources. A finite minimum external 
density also tends to slow the escape of earlier bubbles. Overall, we confirm the idea of Christiansen (1973) and 
Gull and Northover (1973) that later bubbles can catch up with, and probably merge with, earlier ejecta. The 
possibility mentioned in Blandford and Rees (1975) of a stream of bubbles coalescing into a jet thus also remains 
a viable alternative model for jet formation. 

Run 65 has already been discussed in considerable detail; thus, a perusal of Figure 6 should be adequate to 
detect the salient features of this “slow” type. We see that the trailing boundary advances much less rapidly than 
does the leading one, and a new bubble that starts to form at r = 267 when this one is ejected would probably 
catch up with this one around r = 550. Figure 7 depicts a “fast” case, run 43. Here the bubble’s irregular rear 
boundary quickly approaches a rather stable fraction of the smooth front boundary. 

Six numerical experiments were performed using parameters characteristic of the smaller galactic nuclei models 
of Paper I. The results paralleled those already presented for the cooler, less dense, clouds. Variations due to eccen- 
tricity and luminosity go the same way; and the (J^', r') scaling law is verified over a very wide range. No difference 
is seen in terms of stability or ease of nozzle formation, so the relative strengths and weaknesses of the models 
remain as described in Paper I. 

V. CONCLUSIONS 

Several of the results we have found could have been expected, but the actual relationships should be summarized. 
The larger the eccentricity of the confining potential, the better collimated the expanding jets are, and the sooner 
a bifurcation into bubbles occurs. Obviously enough, increasing the power of the mass-energy source makes for 
a larger volume at a given time, all else being equal. Figure 8 demonstrates these relationships by showing the 
time at which bubbles form (for a = 2 runs) plotted against L; different lines correspond to difierent values of e. 

Such an increase in luminosity also postpones the choking off at the origin; and for a sufficiently powerful 
source, a blast out rather than a bifurcation is the likely outcome. However, this value of L46 ä 2.5 is consider- 
ably higher than what the basic stationary models call for. A way to incorporate both results is to assume that 
at early times a more powerful source carved out a channel which then relaxed into a shape that accommodates 
the present, less powerful, momentum flux. Again, the grossness of the approximations we have employed should 
be pointed out, so that such a two-phase scenario may not even be necessary. Despite the results we have ob- 
tained, which argue against a wholehearted acceptance of the twin-exhaust model, we have already mentioned at 
least two other ways in which throats might still be formed. The first of these is due to the likelihood that as the 
walls recollapse near the center, the pressure gradients will build up and halt them before a division takes place. 
The other possibility involves slow bubbles being overtaken by, and merging with, later ones to form a channel. 

Within the framework of this paper the next step would be to get the coupled flow in the one-dimensional, but 
relativistic, approximation working. Then the models we have looked at could be followed to much later times. 
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Fig. 8.—Times of bubble formation versus luminosity for differing eccentricities (for canonical BR parameters) 

Single jet sources might also be formed if the luminosity source is off center with respect to the confining gas 
(cf. Chevalier and Gardner 1974). But of course, major progress on this problem demands the discarding of many 
of our approximations and the employment of a full, two-dimensional magnetohydrodynamic code. However, 
our approach allows a wider exploration of the («£", e)-plane than such a more detailed—but also far more costly— 
method would permit, and thus serves as a guide for such future work. 

It is a pleasure to thank William Press, my advisor at Princeton, for many useful suggestions and for supply- 
ing encouragement when it was most needed. Conversations with Roger Blandford, Martin Rees, and Craig 
Sarazin were of substantial help. This work was supported in part by NSF grants GP-30799X at Princeton and 
AST 74-21216 at Chicago. 
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