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ABSTRACT 
The general theory of tides is developed within the framework of Einstein’s theory of gravitation. 

It is based on the concept of Fermi frame and the associated notion of tidal frame along an open 
curve in spacetime. Following the previous work of the author an approximate scheme for the 
evaluation of tidal gravitational radiation is presented which is valid for weak gravitational 
fields. The emission of gravitational radiation from a body in the field of a black hole is dis- 
cussed, and for some cases of astrophysical interest estimates are given for the contributions of 
radiation due to center-of-mass motion, purely tidal deformation, and the interference between 
the center of mass and tidal motions. 
Subject headings: b\a,Qk\io\zs — gravitation — relativity 

I. INTRODUCTION 

The nature of quasi-stellar objects (QSOs) and the origin of the violent activity in galactic nuclei are fundamental 
problems of astrophysics today. If the main component of the redshift of QSOs is assumed to be cosmological 
in origin, the source of the enormous amount of energy that is emitted is a mystery at present. The apparent 
concentration of the mass of a quasar in a very small region, together with the observation of high-speed astro- 
physical phenomena associated with QSOs and galactic nuclei, has led to the hypothesis that relativistic gravitational 
phenomena, such as complete gravitational collapse, play a dominant role in the activity of QSOs and galactic 
nuclei. The discovery of variable X-ray sources in binary star systems and in globular clusters in the Galaxy has 
strengthened the premise that the complete gravitational collapse of massive bodies can occur in nature. To put 
the theory on a firm foundation, however, many theoretical predictions have to be corroborated with extensive 
observations. 

It is therefore of interest to develop the theory of interaction of matter with a strong gravitational field. In a 
previous paper (Mashhoon 1975, hereinafter Paper I) a simple theory has been given for the tidal interaction of a 
black hole with a perfect fluid model star in the harmonic approximation. It has been shown that within the frame- 
work of Einstein’s theory of gravitation there is a significant new consequence of the tidal interaction, namely, 
the emission of tidal gravitational radiation which is expected to have important dynamical effects in the evolution 
of a dense stellar system. The present paper develops a general theory of tides. The gravitational radiation from 
an object moving in a gravitational field is discussed, and order-of-magnitude estimates are presented for the 
radiation due to the motion of the center of mass, tidal deformations, and the interference between the center-of- 
mass and tidal motions. The theory of tides is developed in the following section, and a highly approximate treat- 
ment of the gravitational radiation from a body is given in § III. The motion of a body in the field of a black hole 
is discussed in §§ IV and V. Appendix A presents a general discussion of the deviation equation, and Appendix B 
provides some general results on the tidal deformation equations in the harmonic approximation. 

II. THEORY OF TIDES 

Consider the motion of a body in an external gravitational field. It will be assumed that this motion causes a 
small perturbation on the background field. Let1 be the metric tensor of the external gravitational field in 
a given coordinate frame and gßV = gßV + huv be the metric tensor of the background field together with the 
perturbation. The assumption that is “small” compared with guv in essence fixes the coordinate frame except 

* Supported in part by the National Science Foundation grants GP-43708X to the University of Maryland and PHY-74-16311A02 
to the University of Utah, and by NASA grant NGR-21-002-010 to the University of Maryland. 

1 Greek indices run from 0 to 3. Latin indices run from 1 to 3. Units are chosen such that G = c = 1, unless otherwise specified. 
The quantity r)uv denotes the Minkowski metric. The signature of the metric is +2. A semicolon denotes covariant differentiation 
with respect to guv, whereas a vertical bar denotes covariant differentiation with respect to gßV. The Riemann tensor is determined 
by Avlpa — Av;(TP = AuRlxvpa, and the Ricci tensor is defined by Rva = gßpRßVPa- Quantities with an asterisk refer to the Fermi 
coordinate system. Greek indices refer to an arbitrary coordinate frame, while the indices «, ft y, ..., refer to the 
hypothetical locally Lorentzian region called the tidal frame in this paper. These latter indices may be raised or lowered with the 
Minkowski metric r)a(j except when they appear on quantities referring to the Fermi coordinate system. Parentheses around indices 
denote symmetrization. A comma denotes partial differentiation. 
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for infinitesimal coordinate transformations. Let x'* = xß — €u(x) be such a transformation; then the tensor 
character of the total field together with the assumption of a fixed background metric results in the transformation 

^ MvC*') ^ hßv(.X) "b €u\v "b €v\ß ? (X) 

where all covariant differentiations, raising and lowering of indices, etc., are performed with the background metric. 
Thus the quantities AMV(x) are determined on the fixed background spacetime up to the gauge transformation (1). 
Evidently, the physical results obtained should be independent of the choice of gauge. The quantities i/jßV may be 
introduced, 

tfrßv == hßv iSßvSPa^pa 5 (2) 

which under the gauge transformation (1) transform as 

fißv — 'l'ßv + €ß\y + €v\ß ““ gßv€a\a • (3) 

It proves convenient to impose the gauge condition 

^viv = 0 (4) 

which does not completely specify the gauge, however. Any solution of 

€V + = o (5) 

leads to i/j'ßV\v = 0 in equation (3) if equation (4) is satisfied. 
In the region of spacetime under consideration the background metric £tfV(X) satisfies the source-free gravitational 

field equations. Thus the field quantities i/juv satisfy (cf. Eisenhart 1926) 

^v,/ + = -IöttT^v, (6) 

where the gauge condition (4) has been imposed. It is crucial to recognize that although equation (6) has been 
written in a formally covariant form, its validity is restricted to the background coordinate frame except for gauge 
transformations (3) that satisfy eM

)v
v = 0. Tuv is the energy-momentum tensor of the body and satisfies the con- 

servation laws 
rwv

:v = 0. (7) 

The determination of the equation of motion using equation (7) permits the evaluation of the first-order perturba- 
tion field i/ffiv from the wave equation (6). For the motion of a compact extended body in a gravitational field, the 
dynamical equations (7) are not, however, sufficient to determine the motion completely. The problem can be 
naturally divided into that of the motion of a characteristic point inside the body and of the internal motion of 
the body relative to the world line of this point. This is similar to the situation in Newtonian physics where the 
motion of a planet in the field of a star is described by the motion of the center of mass of the planet relative to 
the star together with the tidal deformations of the planet. Thus it is necessary to develop equations for the motion 
of the center of mass and for the internal motion relative to its world line. The moments of the energy-momentum 
tensor can be used to give the equations of motion for the center of mass. A detailed account of this may be found 
in the papers of Dixon (1970a, b, 1973, 1974). Let A/i(r), = — 1, be the vector tangent to C, the world line of a 
characteristic point of the body. Here r is the proper time along C such that —dr2 = gßVdxtldxv. It is possible to 
give a suitable definition of the moments of the energy-momentum tensor along Am(t). It follows from the dynamical 
equations (7) that there exist differential relations among these moments which can be written in the form 

Dp* 
Dr 

iRß
vpaXvS^ + F*, (8) 

DS^ 
Dr 

= Pß\v — PvXß + TMV, (9) 

where DP^/Dt = Pß-vXv, etc., the momentum vector Pß and the spin tensor SßV are the first two moments of TßV, 
respectively, and F* and TßV can be expressed in terms of its quadrupole and higher moments (Dixon 1973, 1974). 
When F* and TMV are neglected, equations (8) and (9) reduce to the set of equations first derived by Mathisson 
(1937) and later by Papapetrou (1951). It is possible to choose C so that it corresponds to a suitably defined center 
of mass.2 

2 The definition of a center of mass corresponds to a constraint imposed on the spin tensor. It follows from the results of Madore 
(1969), Beiglböck (1967), and Dixon (1970a, and the references cited therein) that when this constraint is taken to be SßVPv = 0 for 
a suitable definition of Pu and Suv, then the center of mass so defined is unique when certain restrictions are placed on the strength 
of the gravitational field. 
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No. 2, 1977 TIDAL RADIATION 593 

The energy-momentum tensor can be determined by the complete set of its moments; therefore, equations (8) 
and (9) need to be supplemented by additional relations describing the time evolution of the quadrupole and 
higher moments. To find these extra relations, which describe the tidal deformations of the body, more information 
about the structure of 7’"v is required. The subsequent analysis is concerned with an iterative procedure for dealing 
with this problem. Let \u

(a) be a tetrad system along C such that A‘‘(0) = A". It is important for the discussion of 
tidal radiation to specify how the linearly independent spacelike vectors A“(i) are transported along C. Let A“1(() = 
A"«) + Av

(i)AvAH be the orthogonal component of A% with respect to A". A manifestly nonrotating tetrad frame is 
determined from the requirements that the component of Au

m along A“ be a constant and that the component of 
orthogonal to A" vanish, namely, 

= constant, (10) 

(g\ + A“AV)-^. Av
1(i) = 0. (11) 

These relations are equivalent to the assumption that the tetrad is Fermi-Walker transported along C. It will be 
further assumed that the tetrad system is orthonormal. At any point O along C the set of all geodesic paths starting 
from O and orthogonal to Xß produce a hypersurface which intersects the congruence of curves representing the 
trajectories of the different points in the body. It is necessary to assume that the dimensions of the body are suf- 
ficiently small compared with a characteristic length scale of the background gravitational field. Thus if P is the 
intersection of the path of a point in the body with the hypersurface, then it follows from the construction of 
Riemannian coordinates in a small neighborhood of O that there exists a unique geodesic joining O to P which lies 
in the hypersurface. Let ^ be the unit vector tangent to this geodesic at O and a be the proper distance along the 
geodesic such that o- = 0 at O. Consider a transformation of coordinates x*ß = x*u(x) from the background 
coordinate system to a new frame in the neighborhood of C where 

**° = T, (12) 

X** = , (13) 

are the Fermi coordinates of the point P (Fermi 1922; Levi-Civita 1926; Synge 1960). In terms of these coordinates 
the conservation laws (7) may be written explicitly as 

r*"v
>v + + r*pffpT*»o = o ? (14) 

where the Christoffel symbols may be written as power series in x*\ In the absence of tidal gravitational forces, 
equation (14) reduces to the equation of motion of matter in a Minkowski spacetime with the origin as the center 
of mass. Thus for the purposes of the present discussion, it is possible to regard the tetrad frame as representing 
a locally Minkowskian region (the “tidal frame”) where the laws of the Lorentz-invariant theory hold in the 
neighborhood of C except for the presence of tidal forces. Let Xa = x*a be the coordinates of the points of the body 
and ^'ccß be the tensor of energy-momentum of matter with respect to this tidal frame. In the tidal frame equation 
(14) can be expressed as 

, (15) 

where all tidal gravitational effects are included in the forces ¿F“ which may be written as power series in X*. 
Equation (15) may then be solved iteratively by suitable approximation procedures based on the assumption that 
the size of the body is small compared to the length scale of the gravitational field. 

The explicit form of the tidal forces depends on the nature of the body under consideration. As an illustration 
of the general procedure and for the subsequent applications, the case of a perfect fluid will now be considered. Let 

T^ix) = p)uV + pg^ (16) 

be the energy-momentum tensor of the body, where p(x),p(x), and wM(x) are the rest energy per unit proper volume, 
the pressure, and the velocity unit vector of matter, respectively. One may define 

¿T«* = 0* + p)UaUß + prjaß , (17) 

where Ua = dXalds is the velocity of a point in the body relative to the center of mass in the tidal frame and s, 
the proper time in the tidal frame, is determined by 

'naßU“Uß =-1 . (18) 

It follows from equations (14) and (15) that 

= -(/x + p)(Wa + QUa) , (19) 
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where tVa and Q are given by 

MASHHOON Vol. 216 

dll“ n 
(1 - x)wa = r*“eyu*U'' + + (1 - -£jl- , 

V-x)Q = ljsln(-g*) + (l-x)-1fs+xUa,a + Xjsfo(n+p), 

and x may be obtained from 

X^XceUW 

(20) 

(21) 

(22) 

with x<xß defined by g*aß = rjaß + Xaß- For the discussion of the tidal forces in the nonrelativistic approximation it 
is convenient to write equations (15), (17), and (19) as 

^~T P + = g - y-*p(W° + yQ), (23) 

pr = - + - y-tpiW1 - Pw°) , (24) 

where X1 = dX^dr, Vf = d/dX1, ß = y2(/x + /?), and y = (1 — ~112- To arrive at the nonrelativistic approxima- 
tion it is important to note that in general C does not follow a geodesic and hence along C there is a uniform 
acceleration field. It follows that the leading power of c, the speed of light in vacuum, in xaß is —2. Hence equations 
(20)-(24) reduce to 

d£+Vi(PP) = 0, (25) 

pX'=-Vtp - pF', (26) 

in the nonrelativistic approximation where F* = r*i
00. Here p is the mass density of the fluid in motion; i.e., it is 

the nonrelativistic limit of y¿¿. 
The explicit evaluation of the tidal forces requires an examination of the metric tensor in Fermi coordinates. 

This is considered in detail in Appendix A, and some of the principal results obtained there are summarized below. 
In the harmonic approximation where the tidal forces are given to first order in the expansion in X\ we have 
Wa = WB

a + WA
a and Q = QR + QA- The curvature and acceleration parts of Wa and Q are given by 

WR° = 2y2(R*0i0j - \R\ijkX^rX>, 

WA° = 2y2A*Xt[l - (1 + 2y2)A*Xi] + y2A*Xi + 2 (p- + P) 
-i   v3 —1A * Y1 

Y dT\Ai X ' 

WV = y\R*ioko + 2R*ijk0X
i + iR*imPX')Xk, 

WJ = y2A*i + y {a- 2y2)A*‘ - 2yjT{yXi) AfX’, 

Qn = [|y(2i?*oi0i - R*J - 2y\R\w + iR'^X^WX’, 

(27) 

(27') 

(28) 

(28') 

(29) 

Qa = y(\ - 2y2) ^ (A*iX
l) + y(8/ - 4y2 - 1>4 - 2y3A*iX

i 

where 
DA" 

A*i(r) = X\^ 

-i dy 
3y 1 ^ + ViXl + Jrln^+P) 

]■ 
(29') 

(30) 

is the acceleration of C relative to the tetrad frame and R*0ioj(T) = Vj.,0A'‘Av
(i)A'1A\/), etc. In the nonrelativistic 

approximation equations (28) and (28') reduce to 

F1 = A*Kr) + R^voX* ■ (31) 
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TIDAL RADIATION No. 2, 1977 595 

It is also of interest to consider the nonrelativistic approximation in general when C is a geodesic. Then the tidal 
force in equation (26) can be written as 

Fl = K'jX1 + Kt
jkX

lXk + ■■■ , (32) 

where etc. A general method for the determination of A'*; etc., is given in Appendix A. Let 

^uvpffco = ^¡(Rßvpauo ”1" Rfip(ûv;<j) > (33) 

^¡ivpacù = %(ß%uvp<j(o "b Rugcûvîp) 9 (34) 
and 

^“iivpoan == ^^ßvpoo) ;n "b pcovRpÇjto (35) 

be new tensors constructed out of the Riemann curvature tensor. We also need to define the quantities and 
9 

^uvp =: iHAlîvp “I" i^vcrpA*7) , 

ü = À — nß;v • 

Then = i^*i0yo(T) is a symmetric matrix, and the higher-order terms in equation (32) are 

Km — ZlK'iVJc) » 

Kim = ^ ^K'iuici) 9 

and so on, where K'ijk and K'im are given by 

K'ijic — 3%*i0j0k + ^R*íikqUI*ij , 

K'im = xOjQkl + 2R*imkO0>*mjl + &*oom£*ii + ^ioimk^mi + 2R*0mk0l\^mj + iR*imkn^mj^nl. 

In the Newtonian limit one finds that 

Kijk... — <f>,ijk... > 

(36) 

(37) 

(38) 

(39) 

(40) 

(41) 

(42) 

where <£ is the gravitational potential. In the harmonic approximation, where only the linear term in equation (32) 
is kept, one is naturally led to the concept of tidal potential introduced by Synge (1935) and used in the theory of 
tides in Paper I. In the general case, however, it is useful to introduce the tidal stress tensor Tiy = Tyi, which 
is defined by 

Ft = V/Fw . (43) 

Let Uijk = XiXjXjt... ; then it is possible to write Tiy as 

Yi/= 2 [«!(« +4)]-^ (n) ij > n = 1, oo 
(44a) 

'*Vn) ~ KikL' Jlki"j -f Kjki..Jlki...i ~ ^ 4. 3 Kppi..Ri..Aj 9 

where KikL^ and UkL j each have n + l indices. Thus equation (26) may be written in the general form 

pX* = Vf” - pV/F", 

where Pi; = —pSu is the Newtonian stress in our case. Let 

tt” = pPP - P” + ; 

then it follows that when p = p(r) one has 

¿(pí‘)--vX', 

and 

^ piXW - ^X1) = - Vfc(XVfc - XW) . 

(44b) 

(45) 

(46) 

(47) 

(48) 
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Hence it” has the interpretation of momentum flux density tensor in this case. Equation (45) has to be supplemented 
with boundary conditions in general, and it can be shown from equation (47) that the normal component of Pi3 

has to vanish on a free boundary of the fluid. 
Appendix A develops general methods for the explicit evaluation of the tidal forces when the center-of-mass 

line C is given. Then it is possible to determine the rate of change of the quadrupole and higher moments of the 
body from the equations of internal motion (15) within the limits of the approximation schemes considered. These 
in turn determine the path of the center of mass according to equations (8) and (9). Thus the problem of motion 
of the body in the external field is reduced to the solution of a set of coupled differential equations for the internal 
and center-of-mass motions. The solution of these equations together with equation (6) results in the determination 
of the perturbation due to the motion of matter if the necessary boundary conditions are specified. The flux of 
gravitational radiation generated by this motion can be thought of as consisting of parts due to the center-of-mass 
motion, the tides, and the interference between the center of mass and internal motions. In a consistent solution 
of the problem of motion the reaction force due to the emission of gravitational radiation should be taken into 
consideration. In the present paper, however, only approximate estimates for the rate of emission of radiation is 
provided, and no attempt is made to take account of the radiation reaction force. 

III. APPROXIMATE TREATMENT OF THE DEFORMATION EQUATIONS 

In the iteration process for the determination of tidal deformation and tidal radiation, the center of mass follows 
a geodesic of the combined field in the lowest order of approximation. The general considerations of the previous 
section can be applied to the simplest case of the motion of a body in a gravitational field such that the center of 
mass follows a geodesic of the external field and the internal motion can be adequately described in the non- 
relativistic approximation. It will be further assumed that (¿0 the tidal forces dominate over the internal stresses 
in the spacetime region considered and (b) the harmonic approximation (31) is adequate for the description of the 
tidal forces. Then the equations of motion for a perfect fluid reduce to 

X1 + = 0 (49) 

and the continuity equation (25). The velocity of the fluid X1 can, in general, be expanded in a power series about 
the center of mass X4 = 0, 

P = Vi
j(r)X

i + i-, Vi
ik(r)XiXk + ■■■ , (50) 

and consistency with the harmonic approximation requires that only the linear term in this series be kept. It follows 
from the continuity equation that in this approximation the density is only a function of r. The general problem 
of the motion of a homogeneous fluid body such that the velocity is a linear function of the position was posed by 
Dirichlet (1860) and solved by Riemann (1860). Let the body always keep an ellipsoidal shape with a^r) the 
semiaxes of the ellipsoid. It is convenient to work in the principal axis frame of the ellipsoid. Thus, let Qi be the 
angular velocity of the body frame relative to the tetrad frame and x* = Mi/rfX3 the corresponding transformation 
law; then 

Mu — eiki£liMkj, (51) 

where eijk is the alternating symbol with e123 = 1. Thus in the principal axis frame equation (49) can be written as 

Xi + 2eijkQ.jXk + (i^Oy — Q2Su + euj&i + k^Xj = 0, (52) 

where = MimMjnKmn. The velocity in the body frame can be written as 

*i = > (53) 

where is restricted by the assumption that the body is ellipsoidal. Let rx — Xila^ then it follows from equation 
(53) that 

rM = HuiryAO) . (54) 

If Xi are the coordinates of a point on the ellipsoid, then rt are its coordinates on a unit sphere. In the motion of the 
ellipsoid this unit sphere is mapped onto itself; hence (Hu) is an orthogonal matrix. It follows from equations 
(53) and (54) that 

Qij — ai 1Gi$u + eijlaiaj 1^i , (^5) 

where Ai = %eukHjiHkl is connected with the vorticity of the fluid. The continuity equation then reduces to the 
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No. 2, 1977 TIDAL RADIATION 597 

requirement that the mass of the ellipsoid m — be a constant of the motion. Equation (52) can now 
be written as nine differential equations : 

f]2n 

(^22 + ^32 + -^22 "b AQ
2)ai + 2(Q,3A3a2 + 02^2ß3) + knai ^ 0, (56) 

ö2 - a3 + 2^! ^2 - A, + 0203ö2 + - 2Q2A3a1 + kZ2a2 = 0, (57) 

d-^a2-
d-^a2 + 2^! ^2 - O, + A2A3a2 + n2Ü3a3 - 2A2Q3a1 + k23az = 0, (58) 

and the other six may be obtained from equations (56)-(58) by cyclic permutation of the indices. For general A:iy, 
these equations determine Oi, and A* provided appropriate initial conditions are given. Under the assumptions 
of the present discussion the tidal forces may be written as the sum of the external and internal field contributions; 
hence 

= kij + 2tt, (59) 
where 

poo 
s/t = aia2a3 A-1(aj2 + u)~1du, (60) 

Jo 

A2 = (a!2 + u)(a2
2 + u)(a3

2 + u), (61) 

and kij is determined from the curvature and the tetrad frame of the background field. Properties of the functions 
¿^i together with a detailed discussion of Dirichlet’s problem and Riemann’s solution may be found in the book of 
Chandrasekhar (1969). In Paper I, expressions have been derived for the rate of change of energy, angular mo- 
mentum, and circulation of the body as it moves in the gravitational field. The tidal matrix k^ is symmetric; there- 
fore, three of the nine deformation equations reduce to the fact that the circulation vector precesses instantaneously 
around the vector (Af). 

An approximate expression for the amount of gravitational energy radiated can be obtained if it can be assumed 
that the background field is weak and the motion of the body is nonrelativistic. Then the energy flux is proportional 
to the square of the third time derivative of the total quadrupole moment of the system. The time derivatives of the 
quadrupole moment can be evaluated using either the coordinate time of the background spacetime or, alterna- 
tively, the proper time r along C since the results are approximately equal in the weak field limit. Thus, the energy 
radiated per unit time is given by 

where D = (A;)> the matrix of the total quadrupole moment, can be written as the sum of the tidal part referred 
to the background spacetime plus the center-of-mass contribution 

D = Dr + Z>CM. (63) 

If the gravitational field is sufficiently weak, DT may be evaluated with respect to the tetrad frame so that 

DTij # dklMkiMij, (64) 

where d = (dkl) is the quadrupole moment in the principal axis frame. Let di0) = d and 

^(n + l) =: ^(n) + [^(n)5 ^*] > (65) 

where £2% = eijkQ.k. P may be written as 

P = 43[Tr (di3))
2 + 2Tr (Mt¿(3)ML)CM) + Tr (L)CM)2], (66) 

where the terms in the brackets represent the purely tidal contribution, the flux due to the interference between the 
tidal and center-of-mass motions, and the center of mass contributions, respectively. The quantity di3) can be 
written as 

d(Q) = + ^2 + ^ 5 (67) 
where 

50 = [[[d, ß*], Ü*], D*], (68) 

51 = [[d, Q*], ù*] + 2[[d, Û*], Q*] + 3[[d, Q*], Q*], (69) 

52 = [d, Ö*] + 3[d, Ô*] + 3[d, Q.*], (70) 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
77

A
pJ

. 
. .

21
6.

 .
59

1M
 

598 MASHHOON Vol. 216 

and du = \m{2>ai2 — — a2
2 — ^2)^ir It follows from equations (56)-(58) and (66)-(70) that P is a polynomial 

of second order in = P*i0yo and (dldT)Kij9 

\jrKi¡ = M*iom - R*mn0A*k, (71) 

where the terms in equation (71) involving the acceleration of C can be neglected in the nonrelativistic approxima- 
tion considered here. The presence of the S0 term in equation (67) points to the fact that the motion of a rigidly 
deformed body with the body frame rotating uniformly with respect to the tetrad frame contributes to the tidal 
and interference radiations with J(3) = 8q. 

Characteristic features of tidal gravitational radiation have been investigated by detailed but rather approximate 
calculations that are presented in subsequent sections of this paper for some cases of astrophysical interest. In these 
studies it is convenient to consider an initially nonrotating spherical body of radius R0 and density p0 which is 
subsequently deformed by the tidal forces. Let T0 = (27r/o0)“

1/2 be the characteristic time for hydrodynamic pro- 
cesses in the body. Then if the internal quadrupole moment is given in units of jmR0

2 and all distances (and times) 
connected with the center-of-mass motion are given in units of T0i equation (66) can be written in the form 

p = Vof (PCM + 0.6ÇF1 + 0m2FT) , (72) 
where 

£ = m/P0 (73) 

is half of the gravitational radius of the body and the power P is given in units of L0 = c5/G = 3.63 x 1059 ergs 
s-1. Equation (72) defines the quantities PCM, F7, and FT which represent the contributions of the center-of-mass 
motion, the interference between the center-of-mass and tidal motions, and the tidal deformation, respectively, 
to the energy radiated by gravitational waves per unit proper time. 

Consider, for instance, the radial infall of a body toward a Schwarzschild black hole of mass M, 2M » R0 » m. 
In Schwarzschild coordinates the equations of the geodesic path C are given by 

fT = y0(l - 2M/r)-1, (74) 

^ = -(yo2-1 + 2M/r)1'2, (75) 

where y0 = 0 — ß2)-112 and ß is the speed of the body for r oo. If the body has no initial rotation or internal 
motion, one can assume = 0. In a tetrad frame so chosen that it coincides with the Schwarzschild co- 
ordinate frame at spatial infinity for ß = 0 the tidal matrix is diagonal with Ku = «iM/r3 where «! = — 2, a2 = 
a3 = 1, and it has been assumed that in the spacetime region under consideration the internal gravitational binding 
forces are negligible compared with the external tidal forces. For ß ^ 0, equations (56)-(58) reduce to 

2z2(l -z)§- z^ + «iai = 0, (76) 

where z = —i(y0
2 — l)r/M. Let ^ be a solution of 

2Ç2 — 3£i + cci = 0; (77) 

then (—z)~Kiai(z) satisfies the hypergeometric equation 

zd ~ z) + l>3 ~(Pi + P2+ 1)] ^ - P1P2V = 0 (78) 

with Pi = U — 1, P2 = Xu and Pq = 2£i — The nondegenerate case occurs when 2£f is not an integer (cf. 
Erdélyi et al. 1953 for a detailed discussion of the hypergeometric equation). If 2£{ — ^ is not an integer and 
\z\ < 1, then üí is a constant linear combination of the two independent solutions of equation (76): 

0ai;z) = (-zyiF«i,^- l^^-ijz) 
and 

where 3/2 — ^ is the other solution of equation (77). The solutions for a{ are absolutely convergent for |z| = 1. 
Any hypergeometric series valid for \z\ < \ can be continued analytically to the domain |arg(—z)| < tt\ therefore, 
solutions for may be obtained for all z in this domain. Alternatively, for |z| > 1 let w = z-1; then equation 
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(76) takes the form of equation (78)3 with v = ^(w), and p2 solutions of equation (77), and/?3 = 2. If 2^ is not 
an integer, then the solutions of equation (76) are (Erdélyi et a/. 1953) F(£f, f — 2; z-1) and F(^, f — Çi; 
1 — z-1). In the degenerate case under discussion, i.e., ax = —2, a2 = a3 = 1, ^ is a constant linear combination 
of (1 — z-1)1/2 and4 z2F(l, 2; 7/2; z); a2 and a3 can be similarly expressed as linear combinations of — z and 
( — z)1/2 (1 — z)1/2. When ß = 0, a± can be expressed as a linear combination of r _1/2 and r2, while a2 and a3 are 
linear combinations of rand r1/2. Let x = r/r0, ßi = R0(xQlx)ll2,anda2 = a3 = R0(xlx0)

112 sothat p = Po(x0lx)112. 
Here x0 is a constant such that x0 » 2A, where A = M/Tq = (p0lPb.h)112 and /oB.H. = (IttM2)'1 is a characteristic 
“density” for the black hole. It is then possible to write 

Fcm = 48A3/x5, (79) 

F1 = (Xoxy'il + lOx0
2/x2)FCM, (80) 

FT = (81) 

It follows from equations (79)-(81) that for given values of r[M and r0/M, i.e., for the same orbit FCM oc A-2, 
F1 cc A-4, and FT cc A-6. This variation of the radiation functions, and hence of the power P, with A, together with 
equation (81), holds generally for the free fall of a spheroid (i.e., ß = 09 a2 = a3) into a Schwarzschild black hole 
when the external tidal stresses dominate over the internal binding forces. 

IV. MOTION IN THE FIELD OF A BLACK HOLE 

The motion of a highly simplified model star in the gravitational field of a massive black hole is discussed in 
this and the following section, and rough estimates are presented for the amount of gravitational radiation emitted. 
Far away from the black hole the model star is assumed to be a perfect fluid with the internal gravitational forces 
balanced by the hydrostatic pressure so that the star is initially spherical and nonrotating. As it moves close to the 
black hole, it is deformed but always keeps an ellipsoidal shape. The density of the fluid is constant, p = p0, and 
its pressure is given by (cf. Paper I, § III) 

p = - 2 WM2)] ’ (82> 

so that the pressure vanishes on the surface of the model star as required by the boundary conditions. Following 
the considerations of the previous section, the deformation equations are (56)-(58) with formally replaced by 

Poai 

and kij- is given by equation (59). Let FT, P7, and FCM be the tidal, interference, and the center-of-mass contri- 
butions to the total power emitted, respectively, computed with respect to the coordinate time such thatP, given by 

P = Tôè3(FCM + 0.6ÇF1 + 0m2FT), (83) 

is the amount of gravitational radiation emitted per unit coordinate time t. If the gravitational field is weak and 
the motion of the body is nonrelativistic, then P x P. Let E and E be the amount of energy emitted according to 
equations (72) and (83), respectively. In the motion of the body in a strong gravitational field, solutions of equation 
(6) are required to give a close estimate of the energy emitted; E and E in general differ considerably from each 
other and from the more exact result. However, P1 and Ë may be used as a rough guide for the expected amount of 
energy radiated. If, for instance, they fall within an order of magnitude of each other, then it is expected that their 
average gives an estimate of energy radiated to within an order of magnitude. 

Consider the radial fall of a model star into a Schwarzschild black hole of mass M, 2M » R0 » m. Following the 
discussion of the previous section, we let A¿ = Oi = 0; hence = (M/r3)«^. Equations (56)-(58), modified 

3 The hypergeometric equation (78) for v(w) is transformed into 

z2(l - + [0>3 - 2)z2 - (/>! + p2- l)z] ^ + Pip2v = 0 

with w = z"1. When p3 = 2 this equation has the same general form as equation (76). Moreover, if and p2 are solutions of 
equation (77), then equation (76) is obtained and vt(z) = { — zY^L^iz'), where z' = (1 — z~1Y12 and Lyf is a Legendre function 
with /x2 = 1 and ^(^ + 1) = 2(1 — a*). 

4 A detailed analysis of the correspondence between the solutions of equation (76) and Legendre functions (cf. n. 2) reveals that 

z2F(l, 2; 7/2; *) = - ÿ [z' In + \ z ~ 2) 

for the range of variable z under consideration (z < 0). 
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TABLE 1 
Radial Fall of a Model Star into a Schwarzschild Black Hole with pb.h. = Po* 

Radiation Functions 
Coordinate r Deformation  —  
(in units M) a^Roiaz/Ro F^iF^iF^ 

15.0   1.01:1 
5.5    1.01:0.99 
5.0. .    1.016:0.988 
4.5   1.026:0.985 
4.0   1.041:0.981 
3.5    1.060:0.974 
3.0   1.086:0.964 
2.5.    1.125:0.948 
2.0    1.185:0.923 

1.0 x 10_7:2.6 x 10-6:6.3 x 10"5 

2.0 x 10-4:1.4 x 10-3:9.5 x lO"3 

1.4 x 10_4:1.0 x 10-3:1.5 x 10-2 

4.45 x 10"4:2.3 x 10-3:2.6 x lO“2 

2.3 x 10-3:9.7 x 10-3:4.7 x lO"2 

1.7 x 10-2:3.9 x 10"2:9.1 x 10"2 

0.12:0.16:0.20 
1.03:0.71:0.49 
12.37:4.31:1.5 

2.4 x 10-7:3.0 x 10-6:4.3 x lO"5 

1.8 x 10-6:4.3 x 10-6:1.4 x 10~3 

1.2 x 10-5: —6.7 x 10-5:1.5 x lO“3 

1.7 x 10-6: —8.2 x 10"5:1.3 x 10"3 

6.5 x 10"6: —2.9 x 10-5:7.3 x lO"4 

8.6 x 10-7: —2.2 x 10"6:7.0 x lO"6 

2.6 x 10“6:2.5 x 10-4:2.4 x 10"3 

1.0 x 10"4:1.3 x 10"3:1.7 x 10~2 

0.0:0.0:0.0 

* The initial conditions are specified at r = 15M. The initial rate of deformation is assumed to be zero. The quantity 
a3 may be evaluated from a^as = R0

3. The central pressure is almost a constant except very near the horizon where 
it drops by about 1.470- The increase in the internal energy of the ellipsoid at the horizon is E — E* = 0.83 x 10"2 

m2/R0,i where E«, = —%m2IR0. The proper time r and the coordinate time t may be evaluated from (cf. eq. [74] and eq. 
[75] with ß = 0) 3r + 4M cosh3co = Ci and 3t + 4M cosh3co + 12M (cosh o> + ln tanh ^co) = c2, where co is given by 
r = 2Mcosh2co, ci and c2 are constants. 

to take^account of the pressure, may be integrated numerically to determine the tidal deformation of the body, 
P and P. For the free fall of a point particle from rest (ß = 0), we have ECM = (2/105)m2/M, about twice the value 
obtained from the more exact computations that take account of the curvature of the background spacetime, 
and ecm/ÊCM' # 7.75. Table 1 presents the results of numerical integration of the deformation equations for au a29 
and the contributions of the tidal, interference, and center-of-mass parts to the power radiated by the model star 
with ß = 0 and p0 = pBiH.. When À increases, the deformation of the star generally decreases and so do FÁ

T, FA
!, 

and Fa
cm. For À = 4, e.g., at the horizon, ai/P0 = 1-03 and a2/^o = 0.99; andFJ, F^1, and P4

CM are approximately 
10-3, 10-2, and 0.9 x 10"S respectively. On the other hand for A = aJPo = 1.69, a2/^o = 0.77, Pi// = 3.1 x 
105, P1/4

7 = 2.7 x 103, and Pi/4
CM = 24 at the horizon. Taking the approximate schemes of this section to their 

limit of applicability, consider a neutron star of mass m = % M0 and radius R0 = 3.7 x 106 cm falling radially 
into a black hole of mass M = 36 M0. Then À æ £ æ 2 x 10_2, and the energy radiated per unit proper time 
at the horizon is ~6.5 x 1054 ergs s_1 of which ~35.570 is due to the center of mass motion, ~ 16.5% due to the 
internal tidal deformation, and ~48% due to the interference between the tidal and center-of-mass contributions. 

V. EQUATORIAL MOTION IN THE EXTREME KERR FIELD 

A class of geodesic orbits in the extreme Kerr spacetime will be considered in this section and the characteristics 
of the radiation from a body following one such orbit will be described in detail within the approximation scheme 
of this paper. The path of the center of mass of the body is given by dx^jdr = AM. In Boyer-Lindquist coordinates 
(Boyer and Lindquist 1967) where x° = t and x1 = (r, 6, <j>) we have ddjdr = 0 and 

dl = yQr(r
2 + M2) + 2M\y0M - P*) 

dr r{r — M)2 

l±Y = y 2 A _ ^\2 + y0
2M2 - P/ 2M(y0M - P0)2 ? 

\¿/t/ yo y r j r2 r 3 

(fy = rpt + 2M(y0M - P0) ^ 
dr r(r — M)2 

(84) 

(85) 

(86) 

Here y0 and /70 are the energy per unit mass and the orbital angular momentum per unit mass of the body, respec- 
tively. Consider the class of orbits with y0 > 1 and p# ^ 0 such that the body approaches the black hole from 
infinity for r < 0, has a turning point at r = 0, r = r0 > M, and travels to infinity for r > 0. To calculate the 
tidal interference radiation within the approximation scheme of this paper, it is necessary that the parallel-propa- 
gated tetrad frame carried along by the comoving observer coincide with the Minkowski frame at infinity for 
ß -> 0. It follows from the parallel transport equation for A2

(a) and from the confinement of the orbit to the equa- 
torial plane that Xß

i2) = ^2/r and A2
(i) = Si2/r. From AMAW

(1) = 0 and A^/^) = 1 one finds that 

A%± = ^AV, ± {(<7/ - + ^2}1/2, (87) 
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where qu q2, and q3 are given by 

qi(r ) = A1A0(y0A0 — p^X3) 1, (88) 

q2(r) = (r - My\y0A° — P(pX3) ~ ll2[g11p<i)
2 + , (89) 

fair) = P<j>(r - M)~1('y0A° - p^X3)-112 , (90) 
with gu(r) = r2(r - M)~2 and gsaO*) = r2 + M2 + 2Af3/r. Equations (87)-(90) together with DA1

(¡1)IDt = 0 
and A^Am

(1) = 0 determine A1^ when appropriate boundary conditions are specified. A detailed examination reveals 
that it is possible to choose A°(1) and A3

(1) such that they are odd functions of r. Thus in the determination of 
A1(i), A°(1)_ can be used for r < 0 and A°(1)+ for r > 0. The quantity A1

(1) is then an even function of r and its 
value at r = 0 is given by A°(1)(t = 0) = 0, hence A^i^r = 0) = ±(1 — Mfr0). If A^^t = 0) = — 1 + M/r0 is 
chosen, then the value of A1^ is y0 for r oo. In this way A/i

(1) is completely determined, and the choices made here 
have been used in the numerical work reported in this section. If instead A°(1)+ is used for r < 0, A°(1)_ for r > 0, 
and A1

(1)(r = 0) = 1 — M/r0 (i.e., A1
(1)->—y0 as r->oo), then A^d so obtained is simply the negative of the 

tetrad vector chosen above (cf. Appendix B). In the numerical work A1
(1) is required at an initial value of r, r » M, 

for the integration of the deformation equations. Thus DX1
a)/DT = 0 is integrated using A^^r = 0) = — 1 + 

M/r0 to find A1
(1) at some initial value of r. It is next necessary to determine X11^ from XuXum = 0, A^^A^) = 0, 

and A^g^g) = 1. To this end, A0
(3) and A3

(3) can be found from A^o) = 0 and A^A^g) = 0 in terms of A1
(3) 

and the results substituted in A/í
(3)Aw(3) = 1 to give an expression for [A1^)]2. Up to a change in sign, AM

(3) — Aß
(3), 

two possibilities present themselves. If A1^) is taken to be an odd function of r with A1^) > 0 for r < 0 and A1
(3) < 0 

for T > 0, then A0
(3) and A3

(3) are even functions of r and A3
(3) -> 1/r as r -> oo. Alternatively, if A1^) is assumed to 

be even with A1
(3) > 0 for — oo < r < oo, then A0

(3) and A3
(3) are odd functions of r with a jump discontinuity at 

t = 0. Thus in the latter case Xu
(3) coincides with the result of the former case for r < 0 but becomes its negative 

for r > 0. For the purposes of the present discussion we assume that A1
(3) is an odd function of r with A3

(3) -> l/r 
as r -> oo. 

Once the tetrad frame is completely specified, the tidal matrix may be evaluated. The only off-diagonal element 
of the tidal matrix is K13 as in Paper I; therefore, it may be assumed that the body is initially spherical and non- 
rotating, = Q3 = 0, Ai = A3 = 0, and the circulation vanishes. A general discussion of the resulting deforma- 
tion equations is contained in Appendix B. The orbits under consideration fall into two classes. For p# < 0, a. 
test body approaching the black hole from infinity can first encounter a turning point in </>, i.e., it can reach r = 

= 2M(1 — yoM[p0) before reaching r0. For p# > 0, however, a test body simply reaches the turning point r0 
and then goes to infinity. The remainder of this section is devoted to the study of gravitational radiation from bodies 
following the latter type of orbits with ß « 1. A separate study is necessary for the orbits with p# < 0. The /?<*, = 0 
case has been considered by Hiscock (1977). Following the method outlined in the previous section, expressions 
(72) and (83) are evaluated for each > 0 and compared. It appears from the numerical work that P is always 
greater than P by at most a certain factor which is approximately [A0(r0)]

6. The same statement also applies to 
Fa

cm, Fx
t, and |FA

7|. Thus when r0 » M this factor is y0
6, and for the orbit chosen in Paper I (ß = 0.1, = 2.5 M, 

and r0 ^ 1.961 M) it is ~ 2 x 103. In the present analysis the orbit is so chosen that P is greater than P by no more 
than an order of magnitude. Thus we let ß = 0.01, p# = 3.75 M, and hence r0 # 5.704 M. This orbit is depicted 
in Figure 1. The initial conditions for the deformation equations are specified at r = 10.002 M such ax = 1.01 R0, 

Fig. 1.—Plot of the trajectory of a test body with orbital angular momentum per unit mass p# = 3.15 M and initial speed at 
infinity ß = 0.01 following a geodesic orbit in the equatorial plane of an extreme Kerr black hole of mass M. The turning point 
occurs at r0 = 5.704 M. 
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TABLE 2 
Motion of a Model Star in the Equatorial Plane of an Extreme Kerr Black Hole with A = 0.35* 

Proper Time 
(in units M) 

Coordinate r 
(in units M) 

Deformation Frequency 
üílRoiaz/Ro (in units To-1) 

Central Excess Internal Energy 
Pressure (E — En)/(0.3 m2IR0) 

-23.1922. 
-20.3. . .. 
-15.6. . .. 
-5.1. . .. 

0.0. . .. 
5.1. . .. 

11.2. . .. 
17.2. . .. 
21.5. . .. 
35.1. . .. 
41.0. . .. 
49.1. . .. 
37.8. . .. 

10.002 
9.2 
8.0 
6.0 
5.704 
6.0 
7.0 
8.4 
9.5 

13.3 
14.9 
17.1 
14.1 

1.01:1 
1.00:0.99 
1.07:0.97 
1.24:0.88 
1.42:0.84 
1.69:0.79 
1.96:0.74 
2.06:0.75 
2.01:0.77 
1.76:0.90 
1.78:0.85 
1.87:0.82 
1.77:0.89 

0 
-6.95 

0.05 
0.25 
0.23 
0.22 
0.23 
0.25 
0.28 
0.37 
0.36 
0.32 
0.36 

1 
1.00 
1.00 
0.97 
0.92 
0.83 
0.74 
0.71 
0.73 
0.80 
0.81 
0.77 
0.80 

0.53 x 
0.46 x 
0.33 x 
0.29 x 
0.78 x 
0.16 
0.25 
0.30 
0.31 
0.28 
0.27 
0.28 
0.27 

IO"4 

10"3 

10-2 

lO"1 

lO"1 

* The model star follows the orbit of Fig. 1. The deformation of the body depends on the initial conditions 
which are specified at r = 10.002 M. The frequency given is — D2 = dS/dr, so that it is positive when the 
body corotates with the black hole. The central pressure function given here is defined to be unity at the 
starting point. The sum of vibrational, rotational, and gravitational (potential) energies of the ellipsoid due 
to the tides is given in the last column where Eoo = —0.6 m2IR0. 

&2 = = i?o3 with the initial rate of deformation assumed to be zero, O = 0, Q2 = 0, and A1
(1) is obtained 

from the integration of the parallel transport equation from r = r0, A1^ = — 1 + M/r0, to r = 10.002 M which 
results in A1

(1) ^ 0.02. In Paper I similar initial conditions were specified at r = 10 M except that A1
(1) = 0.945 

was used as an estimate, which is to be compared with A1
(1) = 0.935 obtained from the integration of the parallel 

transport equation from r0 # 1.961 M. The deformation equations were then integrated from r = 10 Af to r0 ^ 
1.961 M and again from r0io r > M using the same tetrads as in the present work except that A1^) > 0 was as- 
sumed for — oo < r < oo. The crudeness of our numerical estimates for the amount of gravitational radiation 
emitted should be emphasized again. The radiation due to the tides becomes significant when the body is very 
close to the black hole, and this is precisely where the weak field approximation that is used here breaks down. 
The relationship between P and P is thus a rough guide as to how different the actual results may be from our 
estimates. The orbit used in the present analysis is such that r0/M is not too large to make the tidal radiation 
insignificant and yet not too small to make our approximation scheme totally inadequate. 

For a given orbit and given initial conditions, the deformation equations contain only A > 0 as a free parameter. 
The deformation of the body near the turning point generally increases as A decreases. The numerical work for 
the orbit of Figure 1 shows that for A > 0.35 the tidal force is not great enough to cause a permanent deformation 
of the model star and the body oscillates as it moves away from the turning point and goes to infinity. For A < 0.3, 
however, the body continues to be elongated as it moves to infinity. Tables 2 and 3 illustrate the former case for 

TABLE 3 
Motion of a Model Star in the Equatorial Plane of an Extreme Kerr Black Hole with A = 0.5* 

Proper Time Coordinate r Deformation Frequency Central Excess Internal Energy 
(in units M) (in units M) a^Ro’.a^Ro (in units To"^ Pressure (E — En)!(0.3 m2IR0) 

-23.1922. 
-20.5  
-15.6. . .. 
-9.6. . .. 
-3.8. . .. 

0.0. . .. 
4.2. . .. 
6.3. . .. 

14.2. . .. 
17.7. . .. 
22.3 . . .. 
26.6. . .. 
30.2. . .. 
35.0. . .. 
40.3 . . .. 
43.9. . .. 

10.002 
9.3 
8.0 
6.7 
5.9 
5.704 
5.9 
6.2 
7.7 
8.5 
9.8 

11.0 
11.9 
13.3 
14.7 
15.7 

1.01:1 
1.003:0.996 
1.06:0.98 
1.07:0.96 
1.13:0.94 
1.18:0.91 
1.20:0.91 
1.21:0.93 
1.13:0.98 
1.12:0.98 
1.09:0.98 
1.11:1.00 
1.10:0.99 
1.13:0.98 
1.10:0.99 
1.11:1.01 

0 
-6.93 

0.06 
0.26 
0.11 
0.16 
0.23 
0.22 
0.38 
0.32 
0.50 
0.30 
0.41 
0.29 
0.45 
0.31 

1 
1.00 
1.00 
1.00 
0.99 
0.98 
0.97 
0.97 
0.99 
0.99 
1.00 
0.99 
0.99 
0.99 
1.00 
0.99 

0.53 x 
0.24 x 
0.14 x 
0.26 x 
0.73 x 
0.013 
0.018 
0.019 
0.014 
0.011 
0.009 
0.98 x 
0.011 
0.011 
0.01 
0.01 

lO"4 

10"3 

lO"2 

lO"2 

lO"2 

io- 

* See note to Table 2. 
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10 8 6 6 8 10 12 14 16 

Fig. 3 
Fig. 2.—The radiation functions for A = 0.35, A = (p/pb.h.)1/2> versus proper time (and the radial coordinate r) for an initially 

( —T » M) spherical nonrotating fluid ellipsoid whose center of mass follows the trajectory of Fig. 1. 
Fig. 3.—The radiation functions for A = 0.5, A = (pIpb.u)112, versus proper time (and the radial coordinate r) for an initially 

( — r » M) spherical nonrotating fluid ellipsoid whose center of mass follows the trajectory of Fig. 1. 

À = 0.35 and A = 0.5, respectively. The corresponding results for the radiation functions are given in Figures 2 
and 3, respectively. The period of oscillations of the body and of Q.2 appears to be T2 ^ 8.6 T0, the natural fre- 
quency for quadrupole oscillations of a sphere. The oscillations are damped by frictional forces, including the 
gravitational radiation reaction force, which have been ignored in our simple analysis. Tables 4 and 5 illustrate the 
A < 0.3 case for A = 0.25 and A = 0.05, respectively, with the corresponding results for the radiation functions 
given in Figures 4 and 5, respectively. The radiation function FA

CM peaks at the turning point and has a width at 
half-maximum of ~13 M independently of A. For example for A = 1, the body has a deformation of ü^Rq = 
1.025, a2IR0 = 0.98 at the turning point, and = 0) = 0.67; Fi1, has an oscillatory character and for r > 0 
becomes almost periodic with a period of iT2 ^ 4.3 T0 and oscillates between 0 and 2 x 10-3. Fi(t) also has an 
oscillatory character, but for r > 10 M these oscillations are damped since F^ decreases rapidly. 

Some of the astrophysical phenomena associated with strong gravitational fields are expected to result in the 
emission of substantial fluxes of gravitational radiation. The experimental discovery of this radiation will mark an 

TABLE 4 
Motion of a Model Star in the Equatorial Plane of an Extreme Kerr Black Hole with A = 0.25* 

Proper Time Coordinate r Deformation Frequency Central Excess Internal Energy 
(in units M) (in units M) axIRo'.a^Ro (in units To"^ Pressure (E — E^KO.l m2IR0) 

-23.1922  10.002 1.01:1 0 1 0.53 x 10"4 

-20.1   9.2 1.00:0.99 -8.00 1.00 0.89 x 10"3 

-14.3  7.7 1.10:0.95 0.78 1.00 0.01 
-3.7  5.9 1.50:0.78 0.26 0.90 0.12 

0.0  5.704 1.75:0.71 0.29 0.83 0.25 
1.1   5.72 1.85:0.70 0.30 0.80 0.30 
8.2   6.4 2.66:0.64 0.27 0.60 0.72 

15.6  8.0 3.83:0.56 0.21 0.41 1.15 
23.2   10.0 5.30:0.41 0.16 0.29 1.50 
30.5   12.0 6.91:0.37 0.12 0.22 1.75 
37.6   14.0 8.67:0.39 0.09 0.17 1.95 
49.2   17.2 11.83:0.26 0.06 0.12 2.20 

* See note to Table 2. 
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TABLE 5 
Motion of a Model Star in the Equatorial Plane of an Extreme Kerr Black Hole with A = 0.05* 

Proper Time Coordinate r Deformation Frequency Central Excess Internal Energy 
(in units M) (in units M) a1IRo:a2IRo (in units To“1) Pressure (E — £,

<JO)/(0.3 m2IRo) 

-23.1922  10.002 1.01:1 0 1 0.53 x 10"4 

-19.9  9.1 1.01:0.99 -32.07 1.02 0.22 X 10-1 

-15.6    8.0 1.07:0.96 0.20 1.16 0.18 
-2.7   5.8 2.07:0.60 0.89 2.24 6.21 

0.0.     5.704 2.54:0.49 1.02 2.09 10.39 
4.1  5.9 3.43:0.35 1.11 1.37 18.10 

15.5   8.0 6.49:0.15 0.79 0.17 28.98 
23.2  10.0 8.64:0.10 0.56 0.05 27.79 
30.4.. ....... 12.0 10.62:0.07 0.42 0.03 25.49 
37.6   14.0 12.55:0.06 0.34 0.01 23.29 
49.2..   17.2 15.52:0.05 0.23 0.76 x 10"2 20.49 

* See note to Table 2. 

advance in the theory of gravitation. It is therefore of interest to have estimates of the amount of gravitational 
energy radiated in such processes. Two illustrative examples for a body following the orbit of Figure 1 will now be 
examined. Consider first the A = 0.3 case. The deformation at r = 0 is aJRo = 1.56, a2lRQ = 0.786, and 
reaches a maximum value of 7.47. The maximum of Fq^1 occurs at r = 3.1 M where jF0.3

CM = 6.35, F0^ = 3.40, 
and F0'Z

T = 2.59. It follows from M/i?0 = (2A2/3£)1/2 that if we let £ = 0.06, then M x R0 and thus we are at the 
limit of applicability of our approximation scheme. The amount of energy radiated per unit proper time at r = 
3.1 M is then ^ 1.7 x 1055 ergs s_1 of which ~ 1.970 is due to the tidal interference radiation. On the other hand, 
when A = 0.5, FX

T has an oscillatory character for r > 10 M with a period of \T2 ^ 4.3 Tq and an average value 
of F0'S

T £ 0.11. Thus, with R0 ^ 0.8 M and £ = 0.1 we get an average flux of ~1.2 x 1051 ergs s_1 from the 
purely tidal contribution. This flux lasts until all the excess energy of the model star, ~3 x 10-3£(mc2), is radiated 
away. For a neutron star oî m x 2-3 M© this time is of the order of 1 second. 

In the motion of a body in a gravitational field the presence of the tides and the emission of gravitational 
radiation due to the center-of-mass motion continually alter the path of the center of mass, while the tidal 
radiation damps the tidal deformation. Thus when a star approaches a black hole these processes tend to 

10 8 
r/M 

8 10 12 14 16 

t/M 

r/M 

10 8 8 10 12 

-30 -20 -10 0 10 20 30 40 

r/M 
Fig. 4 Fig. 5 

Fig. 4.—The radiation functions for A = 0.25, A == (p//>b.h.)1/2> versus proper time (and the radial coordinate r) for an initially 
(—r » M) spherical nonrotating fluid ellipsoid whose center of mass follows the trajectory of Fig. 1. 

Fig. 5.—The radiation functions for A = 0.05, A = (p//>b.h.)1/2, versus proper time (and the radial coordinate r) for an initially 
(—r » M) spherical nonrotating fluid ellipsoid whose center of mass follows the trajectory of Fig. 1. 
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increase the probability of its capture by the collapsed body. Therefore, gravitational radiation can have signifi- 
cant dynamical effects in the evolution of a dense stellar system. Moreover, if the star is endowed with a strong 
magnetic field, then the tidal deformations of the body are followed by variations in the flux of the radiation 
emitted by charged particles in its magnetic field. If the tidal deformations have an oscillatory character, this 
tidal electromagnetic radiation results in a similar modulation of the electromagnetic flux. 

APPENDIX A 

GENERAL DEVIATION EQUATION 

In this Appendix general methods are developed for the derivation of the deviation equation. In part {a) the 
general deviation equation is given to first order in the Fermi frame, and in part (b) the nonrelativistic geodesic 
deviation equation is found to third order. The geodesic deviation equation was first .discussed by Levi-Civita 
(1926) and Synge (1926) following the earlier work of Jacobi. The paper of Levi-Civita contains a detailed exposi- 
tion of the original theorem of Fermi (1922) that it is possible to choose a coordinate system in the neighborhood 
of any open curve such that all the connection coefficients vanish and the metric tensor is Minkowskian along the 
curve. This coordinate system, which coincides with the Fermi frame when the curve is a geodesic, was then used 
by Levi-Civita (1926) in the discussion of the geodesic deviation equation. 

a) Relativistic Case 

Consider a congruence of initially neighboring curves that have an arbitrary rate of separation. Let C be a 
characteristic curve in the congruence along which a Fermi coordinate frame is constructed as in § II. In the 
derivation of the deviation equation to a given order it is useful to have the Taylor expansion of the metric tensor 
near the base curve C to one order higher. All connection coefficients vanish along C except for r**™ = F*0

0i = 
^^r), hence 

g*oo = -1 - + • • * , (Al) 

g*0i = %{g*ouic)oXiXK + ... , (A2) 

g*a = ^ + &g*iUkl)QX*Xl + ... . (A3) 

To arrive at expressions for the partial derivatives of g%v along C in equations (A1)-(A3) it is necessary to use the 
fact that a curve of constant r is a geodesic. Then it follows from equations (12) and (13) that in the Fermi frame 

= 0 along C, (A4) 

where r%a, etc., are expressions involving the Christoffel symbols and their derivatives (see Eisenhart 1926 for 
their definition). 

The general method may be illustrated by evaluating to second order. The definition of the Riemann tensor 
implies that 

ig*oo,ij = “CK*0t0; + ,4V*;) along C. (A5) 

For the case under consideration it is sufficient to consider (F* V)o = 0, or 

r%;Vc) - 2F*\(ir V) = 0 along C. (A6) 

To evaluate (g*oi,jk)oX3'Xk consider (A6) for /x = 0, which implies that 

£*o(u/c) = 0 along C. (A7) 

This relation together with 2R*0kij = g*0j>ik - g*oiJk along C results in 

~kg*oifjkX^Xk = -ÏR*0jikX
3’Xk along C. (A8) 

In a similar way, g*i; can be evaluated using equation (A6) for /x = 7, hence 

G*mi = g*iv,ki) ~ ig*uk,i)i = 0 along C. (A9) 

When this equation is combined with G*jm = 0 they result in 

2g*ij,ki + g*i{i,j)k + g*w,j)i ^ g*ki,ij along C. (A10) 
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On the other hand, G*kjü = 0 can be written as 

Yol. 216 

+ g*HUM - = g*kl,ij along c • 

Equations (A10) and (All) imply that along C 

and 
g*ij,kl + g*ik,jl + g*jk,îl — 0 

g ij,kl — g kl,ij • 

It then follows from the definition of the Riemann tensor that along C 

R*ikjl — g*jktil ~ g*ij,kl > 

which together with (A12) and (A13) imply 

te*ii,klx«xl = -^R*ikjlX
kXl along C. 

(All) 

(A12) 

(A 13) 

(A14) 

(A 15) 

The Taylor expansion of the inverse matrix g*"1’ and the connection coefficients l’*".,,, can be simply obtained from 
(A5), (A8), and (A15). The results are 

g*°o = -1 + + {R*0i0j - 3A*iA*J)X
iXi + 

= -$R*0jikX’-X«+ ■■■ , 

g*v = Sy + $R*ikjlX
kX' + ■■■ , 

JA* •n*o   “ i vi 
1 00-~dTÄ ’ 

r*0
0i = A*t + (R*0i0i - A^AtjX*, 

p*0 _ 2 P* Vk 1 ij “ 3^ 0(i;)/cA > 

r*i
00 = A*1 + (i^ow + A*{A*^, 

_ _ D* yk 1 0; — ^ OkijA 5 

r*fyfc = -ÍR\WIX'. 

(A 16) 

(A 17) 

(A18) 

(A 19) 

(A20) 

(A21) 

(A22) 

(A23) 

(A24) 

The expansion of g*wv to second order in the special case that C is a geodesic has been obtained by Manasse 
and Misner (1963) using a different method. 

The equation for an arbitrary curve in the congruence is 

/7v*v rlY*P U A I _____ _ A*ß(~ 
ds*2 vp ds* ds* A J ’ 

where —ds*2 = g* livdx*“dx*v. From the definition T = dr ids* it follows that 

r-2 = 1 - X% + 2A*iX
i + (R*0i0j + ÎR*omXk - %R*iknXkX' + A^A^XW + 

and equation (A25) can be written as 

d2x* 
dr2 - * (-^) 

s/Y*u //v*v s/y*p 

+ r*\0 == r-2A*»(r9 zo. 
dr dr dr 

(A25) 

(A26) 

(A27) 

The general deviation equation (in the Fermi frame) can be obtained from {kll), and it can be written to first 
order as 

dA* 
X' + (8tlsjk - 28ik8il)A*¡X

íXk + (R*om ~ A*^*^ - 2X'Xk)Xi - XiX’ 

- •y~2(A*o,JX
i + A^JX* - j(3-R*ojik + ~ R*uikXl)XkX’ = 0 (A28) 

where y-2 si — X'Xi and A*aJ = Au .v\
u
ia)X

v
u-l. In the absence of the acceleration field, equation (A28) can also 

be obtained (Paper I, Appendix) from a result of Hodgkinson (1972). 
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b) Nonrelativistic Case 

The nonrelativistic limit of the deviation equation can, of course, be obtained from the general one in the 
approximation that [^1 « 1. However, it is simpler to develop a general procedure for dealing with this special 
case. Let the congruence of curves under consideration be neighboring and their rate of separation be small 
compared with unity. In a general coordinate frame the base curve C is given by = xM(r). Let represent 
a point P on a neighboring curve connected to point 0 (with coordinates xß) on C as in § II. Let rj* = ; then 

x'« = X« + ¿ W , (A29) 

so that X'ß(s*) = dx^/ds*, the tangent vector to the neighboring curve, is given by 

= p dx'» 
dr = r^A« + 

dr,“ 1 dT“ 
dr 2 dr 1 ^ vp dr ^ 

drjv 

where F may be determined from 

ri-2 / ,.dxflldx,v 

-r 

It follows from equation (A29) that 

p-2 = 1 _ 2XU ^ - (^)2 + + • • •, 

which corresponds to equation (A26) with 

Drf 
dr 

= PX\U + A*iX
iXli. 

(A30) 

(A31) 

(A32) 

The requirement that the rate of separation of the curves be small compared with unity implies that 

A'« = A“ + (A'«,v)0(x'v - xv) + i (A'“>Vi,)0(x'v - x')(x'° -x»)+ ■■■ , (A33) 

which to second order may be written as 

A'" = A* + \»tVW - ir\arjX) + ^\vaVvVa + • • • . (A34) 

It follows from equations (A30), (A31), and (A34) that to first order (cf. Paper I, Appendix) 

(2% + = A“;X- (A35) 

The derivation of the deviation equation to orders higher than the first is much simplified if it is assumed that the 
congruence is geodesic. The rate of change of rju along C is found, after some algebra, to be 

= + (¿T + A"AV)^V + ‘ , (A36) 

where ^vpa is defined by equation (36). The covariant differentiation of equation (A36) results in 

DV + P%vaAVAa - iQr + WXKco + 

where Avpa is defined by 

The identities 

and 

+ ^A;WA* + RH(paXt.tP\" + Rvpa)çÀt]a\
œ)r}pva + • • • = 0 , (A37) 

Kpo = Av;pffC0A
w + Av:coA

w.P(J + Av:£úpA% + Av.pû)A
w
;ff . (A38) 

(AM;coAw);/,a 
:= Av;cüP(TAw + Xv.œpXœ.a + Av.^A"^ + Xv.œX(0.Pff = 0, (A39) 

Ay\(ppa Xv.tP(J(ù = X¡í.aR^V(Pp + Xç.pRtvœa Xv.çR^pa)ff + XçR^v(ûp.t(Tf (A40) 
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may be combined to show that 

AVp<7 + + Rçvcop^ Kjiï0 + ipX0 + R*pœoK it^03 + ^vco/>'^C° ;<r == 0 . (A41) 

When the expression for Avpa given in equation (A41) is substituted in (A37), the geodesic deviation equation to 
second order takes the form 

+ R\va\^ + GT + \»X>)(@Hpcoa\t + 2Rna^ ,p)X-r¡^ + • - - = 0 . (A42) 

In a similar manner all the higher-order terms in the deviation equation may be derived. However, to obtain the 
third-order term it is simpler to combine equation (A36) with a third-order equation derived by Hodgkinson (1972, 
eq. [2.51]). The result as it would appear on the left side of equation (A42) is of the form where 
0%^ is given by 

OVç = (2RnÇ<J(û^lp + ^pcoaX^ÁWÁ»* + 2(g"v + XW)(gt* + A^) ^npçRvÇoco X* + (g*v + APAV) 

X (^po^A^ + iRvnpco^^.o + ^p^A*A0 . (A43) 

The Newtonian approximation to the deviation equation may be discussed using the fact that in this limit the 
only nonvanishing connection coefficient and Riemann tensor component (except for the symmetries of the Rie- 
mann tensor) are F^o = <£,i and where </> is the gravitational potential with |<£| « 1. The geodesic 
deviation equation (to third order) in the Fermi frame together with the Newtonian limit is given in § II. 

APPENDIX B 

TIDAL DEFORMATION EQUATIONS 

The purpose of this Appendix is to discuss some general properties of the system of deformation equations 
(56)-(58). For the sake of simplicity let the only nonzero off-diagonal element of (K^) be K1Q and set = D3 = 
Ai = A3 = 0. In terms of the quantities a± = ^(^ ± a3), o>± = Q2 ± A2,/c± = i(&n ± &33), and k0 = k13, 
the deformation equations can be written as 

d2 

+ (£+ ~ <*>2*)a± + k.aT = 0, (Bl) 

cP_ 
dr2 #2 F ^22^2 — 0 ? (B2) 

(B3) 

The circulation of the fluid C2 = 27r(a+
2w_ — ö2_co+) is a constant of the motion since the viscosity is assumed to 

be absent and the tidal matrix is symmetric. Equation (B3) expresses the rate of change of the angular momentum 
L2, L2 — (2m/5)(a + 2cü_ + ö_2cü+), due to the presence of tidal forces. In equations (B1)-(B3) we have k+ — K+i 
k22 = K22, and 

k0 = K0 cos 20 - K- sin 20 , (B4) 

k. = K0 sin 20 + cos 20 , (B5) 

with Q2 = —í/0/í/t, where 0 is the angle of rotation of the body frame with respect to the tetrad frame in the 
negative JF2-direction. 

The deformation equations depend on a given initial tetrad frame, or any other frame related to it by a proper 
spatial rotation. The tidal matrix in the body frame (^y) is invariant under all proper rotations of the spacelike 
tetrads. Improper transformations, however, produce changes in the deformation equations. Consider, for instance, 
an inversion which changes A/i

(3) into —Xß
{3). It follows from equations (53), (55), (B4), and (B5) that this trans- 

formation causes a change in the sign of 0, o>±, and k0. The same changes occur for the inversion AM
(1) -^ — Xß

ah 
whereas the deformation equations (B1)-(B5) remain invariant under A/i

(2) — AM
(2). 

Inspection of equations (57)-(58) reveals the possible existence of a singularity when two of the semiaxes of the 
ellipsoid become equal. To investigate this in the context of equations (B1)-(B3), let L2 = fra/ and 

/(T) = f k0a+a_dT', (B6) 
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where the initial angular momentum of the ellipsoid is assumed to be zero. Equations (Bl) and (B3) can then be 
written as 

d2 

dr2a± - /2a±-
3 k+a± k-a?: , (B7) 

Q2==^l(a.-2 + a+~2), (B8) 

A2 = il(a.-2 - a+ ~2), (B9) 

if the initial circulation is also assumed to be zero. It follows from equation (B7) that if /(r) ^ 0 as |a_ | -> 0, there 
is a “force” approaching infinity that repels |a_ | from zero. Thus no singularity occurs in 02 and A2. This argu- 
ment assumes the absence of viscous forces; otherwise, it is quite general. Evidence for this type of behavior can 
be found in the present work (cf. Tables 2-5) and also in some previous work of the author (Mashhoon 1972). It 
has also been noted in the context of further numerical work by Lattimer and Schramm (1976). 
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