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THE INTERPRETATION OF CYCLICAL PHOTOMETRIC
VARIATIONS IN CERTAIN DWARF ME-TYPE STARS

E. BUDDING
Dept. of Astronomy, University of Manchester, England

(Received 16 August, 1976)

Abstract. A method of determination of parameter sets characterizing models of starspots is described.
The method makes use of a systematic integral notation in the description of the darkening due to
spots and optimization procedures to evaluate appropriate parameters. The method is applied to
light curves of YY Gem and CC Eri. In the latter case a comparison is made with the results of Bopp
and Evans’s (1973) study. The physical meaning of the derived parameter set and possibly correlated
effects are considered for YY Gem.

1. Introduction

In recent years interest has developed in the notion of ‘starspots’, or regions of relative
darkness on stellar photospheres, and whether such ideas can be used to account for
the cyclical photometric variations observed in certain stars (see, for example,
Krzeminski, 1969; Evans, 1971; Torres et al., 1972; Chugainov, 1966, 1971; Mullan,
1974). In particular, the concept has been applied to certain flare stars where quanti-
tative results have been presented (Bopp and Evans, 1973).

Observations of YY Gem - the late-type flaring dwarf binary component of the
Castor system — were carried out by the author in the winter of 1974-75 working with
the co-operation of Japanese observers at Tokyo Astronomical Observatory. The work
was described separately (Budding, 1975a) where particular attention was paid to
points of observational procedure.

The starspot idea, with reference to dwarf Me-type stars, came from suggestions
originally made by Kron in 1952, who first drew attention to the photometric irregulari-
ties of YY Gem. Quantitative details were, however, lacking in Kron’s discussion of
the system.

It is the purpose of this paper to establish a method for dealing with light curves
which may exhibit the effects of long-lived starspots and to supply a set of optimal
numerical parameters for a suitable representation of the spot in relation to the
photosphere. The treatment will be found to be quite parallel to that of the author’s
method for the determination of optimal parameter sets to specify the characteristics
of eclipsing binary light-curves (Budding, 1973). It will be applied to the observations
of YY Gem and also to Evans’s observations of CC Eri for comparison purposes.
Closer attention to some particular features of the YY Gem system will be paid in
Section 6.
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208 E. BUDDING

2. The Photometric Effect of Starspots

The photometric effect produced by a dark ‘spot’ on the photosphere of an observed
star as it is moved around in relation to the line of sight by the axial rotation of the
star will depend upon various quantities. As with the light curves of other kinds of
photometric variable we may expect, after analysis of the observed variations, to be
able to derive a set of n parameters k; (or ‘elements’ as they are sometimes called)
which will enable a theoretical function /(k,, k,,..., k,; t) to represent, to a certain
accuracy 4/, a set of m observations (m>n) of light intensity /,, at given times ¢,.

We should not presume that a set of parameters k; will be necessarily uniquely
determinable from the observations, nor indeed can we presume the uniqueness of
the underlying hypothesis to explain the observed effects. However, we may aim at a
principle of simplicity in specifying a minimal number of parameters and assumptions
which are capable of providing a satisfactory curve fit.

Hence, we shall suppose that the ‘spot’ is of circular outline, —i.e., as though formed
by the intersection of a plane with a spherical star surface. The star is assumed to
rotate uniformly about an axis of rotation which is inclined at angle i to the line of
sight.

The description of light losses in an eclipsing system was extensively developed by
Kopal (1942, 1959) in whose treatment integrals of the form

oy, = f x™mz" dx dy

Eclipsed
area

played a fundamental role. In our treatment we shall, in a similar way, recourse to
integrals of the form

noT = ffﬂz"dxdy,

Spot
area

where the xyz rectangular coordinate system, convenient from the observers point
of view, will be related to a spherical polar system in which it may be more natural
to express coordinates of features on the surface of the star.

Thus, for instance, the latitude § and longitude 4 of the spot centre, which we may
take to be effectively constant for a given period of time, would count as two of the
unknowns required to be determined from the observations. Along with these we
shall introduce another five parameters sufficient for an initial simple representation
to be described in this section. In Section 5 we shall consider the extension of the
parameter set to more than seven quantities. Listing these parameters we have:

A —longitude of spot centre,
B — latitude of spot centre,
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i —inclination of the rotation axis of the line of sight,
v — angular extent of spot. It is found to be slightly more convenient to express
the spot size in angular measure. The apparent semi-major axis of the spot,
k, is then simply given by k=sin 7,
U - fiducial intensity level from which the darkening will be reckoned. Normally
it would be set at unity,

K,, — the ratio of the mean flux over the starspot to the normal photospheric flux
(over spectral window w). k,, is generally a small quantity for the stars and
spectral ranges likely to be encountered,

u — the coefficient of linear limb-darkening which we expect to adequately account
for the effects of limb-darkening over the range of observed light variations.

2.1. COORDINATE TRANSFORMATION

Consider the radius of the spherical star to be the unit of length. We then erect a
rectangular coordinate system &, », { in which we may denote by &,, #, and {, the
coordinates of the centre of the spot. Recalling that, with respect to axes fixed in the
body, longitude is usually defined by a negative rotation about the rotation axis
(§) we may write

& = cos Acos B, Mo = —sin Acos f, {o = sin f.

In this way the & axis lies in the equatorial plane directed to a point of zero longi-
tude (which may be conveniently defined by reference to a suitable epoch). To trans-
fer from &, n, { to x, y, z, first rotate about the { axis by negative angle ¢; then a
rotation about the new # axis by positive angle i will bring the { axis into coincidence
with the z axis. A third rotation, of say w, about the z axis may then be made to make
the newly redirected & axis coincide with the x axis which is defined to pass through
the centre of the apparent elliptical outline of the spot on the disk (see Figure 1).
The third rotation is done for convenience in defining the integrand and integration
limits — actually ¥ does not appear explicitly in any of the resulting integrals.

We obtain

x cosy siny Ollcosi 0 —sini|cos¢ —sing O|&
yl=|—-siny cosy Of 0 1 0 (sin ¢ cosd Olln. (2.1)
z 0 0 Iflsini O cosi|| O 0 1|

Since the y coordinate of the spot centre is zero, we can write for the coordinates
of this point in the x, y, z system (d’, 0, z,). It may be easily shown that the separa-
tion of the apparent spot centre from the centre of the disk d is related to the separa-
tion of the actual central point of the spot d’ by d'=d(1 —k?)~1/2, k having been
introduced already in the definition of the parameter y. The introduction of the terms
k, d was made in order to bring out certain formal resemblances of the o-integrals
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Fig. 1. Schematic representation of starspot of radius k¥ whose apparent elliptical outline is centred
about a point distant d from the centre of the star. x and y coordinate axes are chosen for con-
venience in the directions indicated.

to the a-integrals as previously discussed in the form off'(k, d) (see, for example,
Budding, 1973). For computation purposes, however, it became more convenient to
consider o as dependent on y and z, — z, is, of course, simply related to d’ by

z2=1-—4d2
Multiplying out (2.1) we obtain
Zo = cos (A — ¢) cos Bsin i + sin fcos i. (2.2)

2.2. 0-INTEGRALS

We may now write out the basic g-integrals (i.e., 5 and ¢9) in a convenient form. In
the Appendix the formulae necessary to evaluate the whole network of o7 for arbitrary
m and n are provided, where use is made of auxiliary quantities and recursion re-
lations in a manner similar to that originated by Kopal (1947).

The forms of the basic g-integrals are as follows:

(1) ‘Annular case’ (i.e., entire outline visible), d<1—k?

63 = k?z,, 2.3

2 . s 3d%k2 1.
ag’=§[1—V1—k{(1—k)+m}], 2.4)
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(ii) ‘Partial’ case, d>1—k2,

68 = Licos—ts — sVT = 5% + K2zo(cos—* v — w1 = W)}, (2.5)
T

o = 2 [cos‘1 (E) \/1 {kzo(?’k2 - D)V1 —v? —

— (2s(1 — k?) + 3dk*) cos™! v}], (2.6)
where

k="‘spot’ radius (=sin y);

d=apparent separation of spot centre from the star’s centre;
zo=2z-coordinate of spot centre;

s=(1-k?/d;

v=(d—s)kz,.

In the case of a ‘totality’ (y>n/2, d<1—k?), we obtain the trivial values g9=1,
=%
3. Application to Observations

As a test case, the foregoing formulae were first applied to Evans’s (1959) observations
of the star CC Eri. Evans remarked on the similarities between CC Eri and YY Gem,
though it must be admitted that repetitive photometric features which can be easily
and definitely linked to a starspot model seem to be much clearer in the 1956/57
series of observations of CC Eri than any which have so far been presented for
YY Gem.

In fitting the observations to a theoretical curve use was made of the y? statistic,
defined in a similar way to that given previously by the author in dealing with eclipsing
binary light curves (Budding, 1973).

If we first write

= U{l - (1 - Kw)ac(ua Vs ZO)}, (31)
then we may form y? by

s Sl = kY

G 62

Equation (3.1) as it stands contains four of the unknowns of the problem, i.e. U,
K., # and y; the remaining three unknowns A, f and i are involved through the
definition of z, given in Equation (2.2). o, is the appropriately weighted spot-darken-
ing function given by
{1 — wal + uoY}, (3.3)

O, =

3
G-u
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where the explicit forms of ¢ and ¢? were written out in the preceding section. The
suffix 7 on /, in Equation (3.2) means that this quantity is to be calculated at the time
of each observation of /,, measured in intensity units. The value of /., evidently relates
to the value of the phase ¢; which is to be substituted in Equation (2.2) for z,. The
conversion of time values into phases implies that the rotation period P and epoch
of zero phase E are known quantities. In the systems which have been dealt with this
can be regarded as being the case, though in principle the equations of condition
could be used to determine the two additional parameters given by

t — NE)

¢ = 360( 2 degrees,

where N is an integer chosen so that

t — NE
P

0 < < 1.

An optimal curve fit is defined (‘in the x? sense’) by the minimization of y? This
may be achieved by well known computational methods (see, for example, Bevington,
1969). The introduction of a large number of unknowns, particularly when the effect
of variation of two or more parameters can combine to produce little resultant
decrease in y?, decreases the accuracy of determination of any single one of them. It
may be considered advantageous, therefore, if we can reasonably evaluate certain
parameters independently. If the starspot variable happens also to be an eclipsing
variable, as is the case with YY Gem, or a spectroscopic binary as is the case with
CC Eri, the phases can be reckoned from an independently determined epoch, pro-
vided we can assume synchronism of rotation and revolution periods, although this
may not hold true exactly in practice (Budding, 1975b). However, errors introduced
by this assumption should not be too large provided the time-base of observational
coverage is not too long.

An additional circumstance is, however, introduced if the spotted star happens to
be a member of a close binary system. This is that the light level multiplying the
fractional loss of light in Equation (3.1) is not the unit luminosity U, but the fractional
luminosity of the star on which the spot is supposed to exist, which may be designated
L, so that Equation (3.1) should in this case be replaced by

Ic =U- Ll(l - Kw)ac(us 7s ZO)- (34)

4. Results

An optimal theoretical curve and corresponding geometric parameters appropriate
to Evans’s (1959) observations of CC Eri are given in Figure 2 and Table 1. The
results of Bopp and Evans (1973) are also presented for comparison purposes. In
these results only the geometric parameters A, 5, i and y have been optimized as these
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Fig. 2. The observations of Evans (1959) of CC FEri with an optimal curve fit as defined by the
model of this paper shown by a continuous line. The dashed line indicates the curve constructed by
Bopp and Evans (1973).
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Fig. 3. An optimal curve fit, on the basis of the circular starspot model, to Budding’s (1975a) obser-
vations of YY Gem. (The V-band observations have been used for this purpose.)
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TABLE 1
Starspot parameters for CC Eri (Evans’s (1959)-1956/57
data)
Parameter Optimal value Bopp and Evans’s
(1973) value
A 14826+1.1 15225
B 38°0+4.7 10°
i 50214520 42°
y 21°1+0%2 21°
mo* 87755407005 8776
Ky 0.0 0.0
u 0.5 0.5
Al 0.015
x? 56.3
v 62

* In Table I and Table II the fiducial reference lumino-
sity is given in the more directly relatable magnitude
measure. This value is obtained in a simple way from
the initial trial value for this reference magnitude (such
as would normally be quoted in sources) and the fiducial
intensity U, which would be exactly equal to unity if no
further correction to the reference magnitude was
required.

T v is the number of observations minus the number
of free unknowns.

TABLE II
Starspot parameters for YY Gem

Parameter Optimal value

A 143244+-1.7

B 43°2+6.0

i 556+ 6.5

y 18°4+0.8

mg 97169 + 07006
Ky 0.0

u 0.8

Al 0.015

x2 68.2

12 81

were the only elements sought by Bopp and Evans. A low value of the limb-darkening
coefficient was retained in order to provide the comparison results for CC Eri, though
this may be numerically inappropriate for the photosphere of a late type dwarf in
the ¥ range. Bopp and Evans argued reasonably in favour of a spot that was essen-
tially black in comparison to the surrounding photosphere (x,,~ 0) and this hypothesis
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has been retained. Their assumption that the light contribution of the secondary star
was negligible (L, = U) has also been held.

Similar assumptions were made for YY Gem. In this case, however, the value of
the limb-darkening coefficient was raised to 0.8 in accordance with the value used
in the analysis of the eclipses (#=0.8) (Budding, 1975a). Equality of primary and
secondary luminosities was also assumed (L, =0.5U), since this was determined to
within the quoted probable errors of the eclipse solutions for the F-band light curves.
The results for the out-of-eclipse light variation curve fit are presented in Table II
and shown diagrammatically in Figure 3.

It will be noted that we cannot say, from the results as presented, on which the star
spot is located, and this situation is likely to be generally true for close binary situations
where the amplitude of light variation due to the spots is less than the fractional
luminosity of either star. If, however, theoretical arguments can be advanced which
favour particular spot sizes, it may be possible to deduce which of two stars is more
likely to be spotted in a case like, say, BY Dra where the luminosity ratio is about 3
(Bopp and Evans, 1973). Actually, part of the light variation due to the starspot, as
assumed for the observations of YY Gem, is interrupted by the secondary eclipse. If
observations were really precise, therefore, an appropriate decision could be made
concerning which star is darkened by the supposed single spot. The observations
under investigation, however, were not of sufficient number or quality to permit such
a high-grade photometric resolution.

Concerning more detailed points of the results as presented in Tables I and II and
Figures 2 and 3 the following remarks have some relevance. Bopp and Evans’s (1973)
numerical integration procedures for the evaluation of spot parameters seem some-
what inaccurate. Thus a ‘spot’ which is bounded by parallels of latitude and meridians
of longitude is unrealistic. The doubtful value of their limb-darkening parameter has
been mentioned already. The value of the inclination supports further consideration
however. Bopp and Evans have assumed that the rotation axis of the primary star of
CC Eri is parallel to that of the binary orbit whose value was obtained by inde-
pendent spectroscopic means. The comparison value given, obtained by free optimiza-
tion curve fitting, is not so far away from this value as could plausibly be expected
— though ‘forcing’ the value of the orbital inclination onto the rotation axis may be
reckoned a methodologically undesirable restriction. A significant difference between
rotation and revolution axes also seems possible from the results on YY Gem,
although it should be kept in mind that the quoted uncertainties refer to the proper-
ties of the curve fit for the particular model used, and may not be so realistic with
reference to the true physical picture.

The longitude and spot size values for CC Eri compare reasonably well, though
a fairly large discrepancy appears in the quoted latitudes. Actually, the duration of
the darkening as a fraction of the total period imposes a strong correlation between
the spot latitude and the rotation axis inclination of the form

tan f = cos y tan i,
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where

@—vy)_D

7 P’
P being the period and D the duration just referred to. Indeed, the imposition of this
constraint on the parameters was found not to affect the resulting optimal y? value
by more than a few per cent. A rough application of this constraint to Evans’s 1956-57
observations yields fx30° even using the quoted value of 42° for the rotational
inclination. Bopp and Evans’s low value for the spot latitude in the 1956-57 observa-
tions of CC Eri is thus difficult to understand.

The quoted error estimates of these highly correlated variables have been obtained
by noting their wander over a number of improvement iterations in the vicinity of
the adopted y* minimum at y? values differing from this minimum value by unity —
not, as, for instance, with the much less correlated longitude and size values, from
their independent effects on the variation of y2. The error estimates are greater in the
case of YY Gem which must be a reflection of the greater relative observational
scatter in the case of this star.

5. Choice of Parameters

It was remarked in Section 2 that a minimum of seven independent parameters was
required for the specification of a simple model to be used in providing a curve fit
to the available data. The possibility of including a further two (or three in the case
of close binaries) basic parameters as unknowns to be elucidated from the curve fit
was suggested at the end of Section 3. The hypothesis of a circular spot and the use of
definite integrals has, however, proved successful and advantageous in optimizing
the curve fit.

We may now consider whether such a parameter set is really adequate or appro-
priate, and perhaps whether there could be circumstances in which the number of
parameters in the set, or indeed the model should be changed.

In order to do this we can consider the objectives and circumstantial factors which
concern the determination of the parameters. Since the stars under study are, in
general, low intensity objects we can expect correspondingly reduced signal to noise
ratios to operate in their observation, so that if magnitude determinations are correct
to within 0701 we can consider that we are doing relatively well by typical standards.
When we consider that the maximum amplitude of cyclical photometric variations
of the type under consideration which have been discussed so far are of order 072,
we can quickly form some feeling for the probable significance to be attached to more
complicated models. This point can also be assessed from the scatter of points about
the theoretical curves in Figures 2 and 3.

Data on the spots observed on the much more easily observable solar photosphere
are, to a very large extent, to be found used in statistical studies connected with the
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solar cycle. By analogy we might expect interest to develop in similar studies of star-
spots. For these purposes the parameters already used are probably quite adequate.
Effective spot sizes as measured by y, and positions given in terms of A and f are repre-
sentative values for statistical studies concerning, say, spot growths or declines,
preferred latitudes or longitudes and migrations. Relative constancy of the determined
value of i provides some additional check on model plausibility.

Of course, with better sets of observations the possibility of more detailed analysis
becomes more feasible. The most likely first step in model development would be to
include the provision of a description of the darkening in terms of more than one
spot. A spot model which includes a ‘penumbra’ can be easily dealt with in the fore-
going method by writing in place of Equation (3.1),

lc = U[l - {p’o-c(u: y’, ZO) + p”ac(u: yﬂa ZO)}]a (51)

where (say) 9’ <y” so that p’ and p” would combine to represent the umbral effect
while p” alone represents the fractional flux loss in the penumbra. In these circum-
stances it would be realistic to write p’=1—p"=x,, where k), is the penumbral flux
ratio. Whether the two contributions could be reliably separated is not obvious.
Further refinements which can be dealt with by the present methodology are to allow
a more complicated limb-darkening law than one which is merely linear in terms of
the cosine of the angle of foreshortening, or else that the photosphere on which the
spot is found is, to some extent, distorted from sphericity. In the former case an
extension of Equation (3.3) to include higher order integrals ¢9(i>1) is all that is
required. For the latter purpose more complicated expressions such as along the lines
presented by Kopal (1959) are adaptable. The integrals involved in such representa-
tions will be considered in the Appendix.

6. Conclusions

We may take the results as presented to be evidence for the existence of large dark
areas on stars like those of the system YY Gem. Moreover, the circular spot model
and o-integral formulation provides a useful and convenient means of curve fitting
for the photometric variations associated with such dark areas. The adequacy of the
given set of specification parameters for statistical studies of starspot variations seems
reasonable. Mullan (1974) has argued theoretically that it is not unreasonable to
expect spots covering an area of the order of 10209 of the photospheres of late
stars of the type in question. That such features last long enough for a consistent
description to be derivable from the observations is supported by the work of
Chugainov (1971) and others, as also, of course, in the earlier series of observations
of Evans (1959) in addition to the more recent analysis of Bopp and Evans (1973).
The fact that we cannot easily say, in the case of YY Gem, just which is darkened by
the spot (or indeed whether or not spots of comparable size and similar longitude are
present on both stars) may be taken as something of a limitation.
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The existence of large spots on flare stars implies the existence of a whole range of
related phenomena. To some extent this has already been noted in the correlation of
flares with broad-band cyclical variations of intensity associated with spots (Torres
et al., 1972). Also, the possibility of a long term cycle of activity seems expectable.
Bopp (1974a, b) has already drawn a distinction between ‘active’ and °quiescent’
phases for YY Gem. With such a categorization in mind, the interpretation could be
made that in an observed sample of similar Me stars the percentage which are observed
flaring represents some sort of average ratio of active to quiescent phases in these
stars.

Concerning the formation of emission lines in the spectra of YY Gem, Joy and
Sanford (1926) once gave rise to the interesting idea that the effect of rapid orbital
motion through a resisting medium might be such as to cause the emission line
forming atmospheric layer to be dragged behind, i.e., the receding star would tend to
show the strengthened bright lines which they had observed as a repetitive feature.
The stars do indeed move relatively rapidly — the revolution velocity at the centre of
each star is about 120 km s~! (Bopp, 1974b) — so that if there was some circumbinary
medium at a nominal temperature of 10000 K the stars would be immersed in a
hypersonic flow regime with Mach number ~ 10, shock fronts being formed about
either star. The existence of the associated shock fronts may have interesting con-
sequences for the coronal flow regime, however, on the basis of free molecular flow
notions for realistic particle densities in the hypothetical circumbinary material (a
figure of 107 particles cm~3 quoted by Bopp (1974b) could be appropriate) it can be
seen that the Balmer emission lines, which must predominantly originate in higher
density chromospheric regions, cannot have any noticeable interaction with the
medium. The results of Joy and Sanford may therefore presumably be interpreted in
terms of a particular distribution of surface active regions at the time of their observa-
tion. Whether or not there may be preferred longitudes for starspots, particularly in
the context of binary systems, is a question among those calling for further observa-
tional study.
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Appendix

Let us denote by k' =kz, the length of the minor axis of the apparent elliptical outline
of the spot when seen in projection. We may then introduce an integral Fy , by
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c
pk/B+ymipm f (x — dy"yiz2 dx, (A.1)
d~k’

where

x — d\? d(s — x)
e = k2 —_ ( d) ’ Z, = ——— ’
y J ZO ¢ ZoV ]. - k2
and ¢=s for ‘partial’ cases and c=d+k’ for ‘annular’ cases.

It may then be shown, without much difficulty, that the F-integrals satisfy the three
recursion relations

V2 v2
&+ I)FZFSLyH = (2y + 1)—1—<F31., +y1 - VOF2, , 4, (A.2)
Fm
Fpit = v(%1 - é’iy)’ (A3)
B+2,y = %(Fﬁ.v - Ft'l':v )’ (A-4)

where we have abbreviated K=(V 1 —k?)/k.

Hence, if we know only F2, , and F2, ,, we may set up a line of integrals of the
type F2, , (y>1) using the first of these recursion relations (A.2). Using Equation
(A.3) we may then proceed to evaluate integrals of the type FZ, , (m>0) in terms of
the basic F2, , set. Finally, the third recursion relation enables us to determine any
integral of the type Fj', for odd positive §. Such integrals may then be used in the
evaluation of integrals of the type o by suitable recursion relations which will be
presently set down. Let us first note that

Fio= %cos‘1 v, (A.5)
Fo .= @K(cos‘l v — _l—_vf)’ (A.6)
n v
for the ‘partial’ case (|[v|<1); or simply F2; o=z, F2, 1=2K for the ‘annular’
case.
In fact, a simple substitution reveals that

Z

Fo,, =2 (9, f (v — cos g)? dg, (A7)

0
T
where the upper label, c=7 for the ‘annular’ case, and cos~* v for the ‘partial’ case.

The form of the F-integrals, the recursion relations they satisfy and their relation-
ship to the g-integrals suggests some parallel with the J-integrals introduced by Kopal
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(1947) in connection with the a-integrals. In fact, it may be established that the
F-integrals are formally the same as the I-integrals of even second subscript when
multiplied by an appropriate factor and expressed in terms of the same argument —
i.e.,

("' l)klvlg: 2y .
Z(()B+v)2v(1 — k2)y/2

Fgy() =

The I-integrals of even second subscript were shown (Budding, 1974) not to involve
elliptic integrals at any stage, and in fact, to be expressible in terms of simple alge-
braic and inverse trigonometric expressions. We therefore deduce this simplicity for
the network of F-integrals and, correspondingly, the related og-integrals.

Recursion relations formally similar to those established by Kopal (1947) for -
integrals exist also for the o-integrals and they may be derived along similar lines. If
we first convert to polar variables we may write

€2 0,
noy = 2 f(l — rPnzym+i fcos"‘ 6dodr, (A.8)
cy 0

where ¢; =0 if the spot covers the apparent centre of the star and otherwise ¢, =d—k’,
c;=1 in the ‘partial’ case or d+ k' (<1) in the ‘annular’ case and 6, is either 7 in
the range where ¢; =0 and r<d—k’, or else is defined by the angle subtended at the
centre of the stellar disk between the radius vector to a point on the elliptical outline
of a spot and the initial radius. We next notice that

0,

2 (— 12 ol) = [oosn 434 (A9)
so that

amF?y o = n(m — DFP5% + zo(—1)™ sin 6, cos™ 1 6y, (A.10)

which allows us to write (as the second term on the right-hand side of Equation (A.10)
disappears when 0, =n)

(5]
moy + (m — Do 2 — of ™%} =7—2z- f 1 = rdH"2(rcos 6" x
ak

X rsin 8, rdr. (A.11)
This has the meaning of the line integral

€2

2
2 [ e,
-k’

d

where the term in parentheses is a simple function of the Cartesian coordinates along
the elliptical boundary (indicated by the suffix e) at radius vector r from the origin.
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Along this boundary we have

2 & 2—2 4 _ ,2_ K2 (A.12)
o

so that in place of r dr we may write (taking now x as the independent variable)

[x(l - Z—lg) + ;‘%] dx = ~z,5 dx. (A.13)
If we now introduce the auxiliary integral
€2
Ihy = }z f x"yezs dx, (A.14)
d—k’
we find that
moy + (m — D{opr? — on~ % = 2dH?;E, (A.15)
where
HE = 2 |V = g /T = s T (A.16)
ST Y A Sl 2 R V1 — k2

A second recursion relation for the g-integrals may be obtained by resorting to the
polar coordinate formulation of the double integral. Combining (A.8) and (A.9) we
observe that

c2
o = 2 (-1 f (1 = P2y pm, (6)) dr (A.17)
0 :
_ 2= fo e d
= 7t D) f(l r?) —&;(r FT o(6,)) dr. (A.18)
1
Replacing n by n—2, we have
c2
2 d
nat, = = (=1 | (1 = 2y S B, (6,)) dr; (A.19)
Zy dr
while
2 Tt d
O+ 2f =m0y = Z (-1 [ = PP SO 0, (A20)
0
i.e.

c2
2
nog,—, — (m+ n + 2)oy = ;-(—1)’” f(l — PAZpmt2 x
()

% dF’-'}l.O(HI) dr.

& (A.21)
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If ¢;=0 (the spot covers the star centre) dF™, ,/dr=0 for the range 0<r<d—k/,
otherwise

dFTl,O — —Zy CO.Sm 91 d COS 01 (A.22)
dr a(—1)y" sing, dr
and
dcosf;, 1 [(dx x 1 vr
= - —— — = - - - . '2
dr r (dr r) r ( Kz, cos 01) (A-23)

Using Equation (A.23) we may now rewrite Equation (A.21) in terms of a combina-
tion of J-integrals along similar lines to Kopal’s (1947) second recursion relation for
a-integrals. We obtain

(m + n+ 2oy — nop—, = 2GZ, ., (A.24)
where we have set
K
ml.n = J'-'-'l.n - JTl,n+2 + ’;JTI,n+1,
V1 — k2
= JTI,H - ~—Z__JT1’"+1. (A.25)
0

The auxiliary J-integrals are easily relatable to the F-integrals, previously intro-
duced as a determinable set. We have, in fact,

T, = kLS k'idm—i(’;?)ﬁg,,. (A.26)
J=0

We have thus established, in Equations (A.2), (A.3), (A.4), (A.5), (A.6), (A.16) and
(A.25), the means whereby any integral of the type o) may be evaluated if we know
03 and 9. Such integrals would find a use when it is required to describe the darken-
ing over a circular area when the brightness of the photosphere at a particular point
(x, y, z) varies in some arbitrary dependence to powers of these coordinates, such
as according to some gravity-darkening law. This situation could be associated with
some distortion of the star from sphericity, perhaps brought about by its being one
component of a close binary system. Under such circumstances it has been common
practice to express the distortion in terms of spherical harmonic functions of polar
coordinates in a form such as

r=ro{l + 4r@, §)}, (A.27)

where r, has in the preceding discussion, for convenience, been taken to be unity. If
now this distortion requires that we take account of a redistribution of emergent flux
over the stellar surface, it ought also to imply consideration of distortion from
circularity of the area originally presumed circular, i.e. the correction for surficial
distortion of the star to the calculated loss of light due to a circular area along
the lines discussed so far consists of two parts: a light redistribution component
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involving the integrals o), and a ‘boundary correction’ component which can be
shown to involve the integrals of the normal (undistorted) flux over an increased

area, i.e.
c2

2 f Ay dx,
d—k’
where the 4y of this integral can be expressed by
_ Ardx — d)
ZoVk'? — (x — d)?

Ay = (A.30)

where A'r is identical with Ar rewritten in the xyz coordinates. The ‘boundary cor-
rection’ term would then substantially involve integrals of the type

B’.n_l,n = Z;‘;(Jff'ln - dJTl,n) = GT.L,, - sz'.'_ll,n. (A.31)
4]

The o-integrals which have formed the subject of this appendix could also find a useful
role in the description of ‘reflection effects’ in close binary systems. In this case it is
not a darkening but a brightening which has to be accounted for, though there should
be a circular symmetry as far as the incident radiation is concerned. Provided we can
express the variation of this incident flux over the illuminated area together with fore-
shortening effects in its reradiation in terms of the x, y, z coordinates of the integrand,
a more generalized account of reflection laws in terms of o-integrals ought to be
possible. A full discussion of this possibility is, however, outside the scope of the
present paper.
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