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Summary. An equation of state (P = P(g, T) of matter (ho-
mogeneous charge-neutral mixture of electrons and inter-
acting neutrons and protons) at high temperatures (3 10°
<$T<$410' K) and densities (10'° S <5 10 g/em?)
as expected ina supernova core is calculated in a Thomas-
Fermi approximation which simultaneously describes
correctly the saturation properties of nuclear matter.

It is shown that in the region 103 <0 <10'* g/cm?
and T <210 K the attractive nuclear interaction is
lowering the pressure by a factor up to five compared to
the results of previous works for pure neutron matter.

Key words: hot and dense matter — supernova — equa-
tion of state

1. Introduction

During the collapse of a massive star with a mass
MZ=7 Mg (Schramm and Arnett, 1975), the core of the
star becomes a hot and dense region (T'210'°K,
02 10 g/cm?).

Due to the high temperatures and densities, processes
such as nuclear photodisintegration and neutronization
(electron capture) will have converted the matter to a
mixture of neutrons, protons and electrons as much as
to assure charge neutrality (Schramm and Arnett, 1975;
El Eid, 1976). Our aim is to determine for that mixture
the equation of state (EOS) which is of use in the hydro-
dynamics of a supernova explosion. The EOS plays the
key role whether or not the supernova core will collapse
to high densities and at which density it will bounce,
to explode and finally whether it might leave a neutron
star.

The calculations have been performed for a homo-
geneous mixture consisting of electrons (e), interacting
neutrons (n) and protons (p). The nuclear part, ie. the
strong interaction between nucleons is treated in a
Thomas-Fermi approach which describes correctly the
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saturation properties (density, binding and compres-
sibility) of nuclear matter (see Sect. 4 for details) by using
an effective nuclear potential as suggested by Seyler and
Blanchard (1963).

The contribution of the electrons to the total pressure
is calculated by applying the Fermi-Dirac statistics.

The formalism used in this work is presénted in Sec-
tion 2. We then describe the numerical evaluation in
Section 3. Section 4 contains the discussion of our results
for the equation of state of the n,p,e-mixture and a com-
parison with the results of previous works.

The main results of this work may be summarized
as follows:

a) With the exception of the limit of low temperatures
and densities our equation of state differs from the one
of Buchler and Coon (1976) (see Fig. 1 and the discussion
in Sect. 4).

b) The contribution of the electrons to the total
pressure is quite important for low densities and high
temperatures (Fig. 2).

¢) For high densities the percentage of protons in
B-equilibrium increases rapidly due to the degeneracy
of the neutrons (Fig. 3). The presence of protons reduces
the pressure due to the attractive n-p-interaction (Fig. 4).

d) The pressure of neutron matter at finite tem-
perature is, compared to Buchler and Coon (1976)
much lower (up to a factor of five) for ¢ <g,/2 (0, being
the nuclear matter density ~2.510'*g/cm®) and
T <210 K, but higher for g2 g, (Fig. 5). The corre-
sponding energy per particle E/A is in our case higher
than the perfect non-interacting neutron gas for ¢ > g,,
whereas with Buchler and Coon (1976) E/A stays for
all densities below the perfect gas (Fig. 6).

e) Neutron matter is unbound for all densities in
the Thomas-Fermi model (Fig. 7). We do not get phase
transition at any density (Fig. 8).

2. Method

Our aim is to determine in a simple way the grand
canonical potential for a homogeneous mixture of neu-
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trons, protons and electrons in local thermostatic equi-
librium by taking care of charge neutrality. Thus

The method which we used was developed by Kiipper
et al. (1974) who applied it to finite excited nuclei. In
what follows we shall present the expressions of the
energy E and of the entropy S. Starting from the ex-
pression of the total energy E in Hartree-Fock approxi-
mation, it can be rewritten in phase space (Theiss, 1956;
Kiipper, 1975), in the form

2 3 3 Pz 1
(znh)sjd r;jd p [ﬂ +3Vdp, r)] oAp. 1), 2

where 7 is the isospin of the nucleon, g, is the probability’

of a state with momentum p being occupied, and V,
denotes a single nucleon potential with isospin .

Since we are using Thomas-Fermi approximation it
is reasonable and consistent to take for g, the Fermi-
Dirac distribution function

p (P—z Vo, r)—ut)]}_l , ()

edp.n)={1+exp |5

where f: =1/KgT; T is the temperature and u, represents
the chemical potential of the nucleon with isospin .
The single-particle potential V, is given (Myers and
Swiatecki, 1969; Kiipper et al.,, 1974) in the form
2

(2nh)?
Vllr =), Ip— pNep’, )
+Vllr—rl,lp—pDe-Lp’, r)]. @)
Here, V;, denotes an effective interaction between
nucleons with parallel (“like”) and opposite (“unlike”)

isospin respectively and is given by (Seyler and Blan-
chard, 1963; Myers and Swiatecki, 1969)

Vip. r)= fdr|dp

exp(—|r—r|/rp)
(ir—r'l/rp)

This potential contains a simple repulsive quadratic
momentum dependence and has four parameters: C, ,
the strengths of the effective interaction, ry, its range and
pp characterizes the momentum dependence. The force
in Equation (5) has been applied by Myers and Swiatecki
(1969) to nuclei in equilibrium at T =0, where they got
reasonable account for the nucleon distributions.

For simplicity we omitted a possible implicit depen-
dence of the interaction parameters ¥, on the density
and temperature. Applying then the previous equations
to homogeneous matter and assuming within the Tho-
mas-Fermi model an isotropic momentum distribution,
one gets (Kiipper et al., 1974) for V, after performing the
angular integration

V,(K) = VOT + K2 Vlt H (6)

Viw=—=Cru ‘A—=(p—pl/ppyl.

where
Vor=—2 OIO dK'K’*(1—-K"*)[ag(K")+bg_(K")] (7
0
Vi.=2 OIO dK'K"*[ag(K")+bo_(K')], ®)
0

with the definitions

K:=p/pp; a:=(4n)*(rppp/h)*C;; b:=aC,/C,. (9)
With the aid of Equation (6) the distribution function
as given in (3) now takes the form
oK)=[1+exp(y—nJ17*, (10)
where

y:=ﬁ(td+V1t)K2; nt:=ﬂ(ut_l/0t); td:=pf)/2m' (11)

It is now easy to write the previous equations in terms of
the Fermi-integrals (Stoner, 1939; Wrubel, 1958) by
changing the integration variables. The following rela-
tion can be obtained.

1
2Bty + V1o o i

}) dK K*"0(K)= (12)
0

with n=0, 1,2, ... and the usual definition of the Fermi-
integrals has been taken

(2n—1)/2

Fan-yal)= | dy7 (13)

+exp(y—n)

Throughout the rest of the paper Equation (12) is used
as a tool to get the quantities we need for the numerical
evaluations. The number density g, of a nucleon with
isospin 7 can be obtained as

3w 3
0.=8n (%) { dKK?q(K)= %(P_D) Fi(1)
0

) [B(ta+ Vi)
14

The quantities Vj,,, ¥, can be calculated by using Equa-
tion (7), (10) and (12)
Vou=a{F3,5(1,)/[Bta+ V11>

—F10(1,)/[BCas+ Vin)] 32}

+b{F;3,,(0,)/[B(ts+ V)17

—F 1 (n)/UB(ta+ V1)) (15)

where the subscripts n, z denote neutrons and protons
respectively. The equation for ¥, is similar to Equation
(15) but the subscripts n, z have to be interchanged.
Furthermore the equations for V;,, V;, are determined
from the Equations (8), (10) and (12)

Vin=aF 1 ;,(n,)/[B(ts+ Vi, )1*"? ‘
+bF,,(n,)/[Bta+ V1)) 312
Vi.=aF,(n,)/[B(t;+ V)12
+bF ;5 (a)/LBs+ Vin)]* . (16)
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The baryon density g,, that is the sum of g, and g, is
given by using Equations (14) and (16) as

- i(@f (Vi + Vi) (a+b) 17)
Qb_ 27152 h in 1z .

The energy density e = E/V for the homogeneous nucleon
mixture is obtained from the Equations (2), (6), (10) and
(12) to be

1 (pp\} 1 5/2
o= 53 (5] 1AV Fanlnd/ TR+ Vi)

+(ta+3V1,) - F30(m)/[Bta+ V1)1
+3[Von " F 12 )/[ B+ V1)1
+Voz - F1201)/[B(ta+ V1)1>1} . (18)

In order to calculate the entropy density s Landau’s
quasiparticle approximation (Kiipper et al, 1974 and
references therein) is applied, where the entropy per
nucleon S/A has the form

s Ky 2
A", Cair
- [edK) In 0 (K)+ (1 —(K)) In (1 —¢(K))] . (19)

This equation is formally identical to the entropy of a
free Fermi gas. However the spectrum of free nucleons
t(K)=h2K?/2m is now replaced by the single-nucleon
energies

t{K)=t(K)+ V(K).

As already mentioned by Kiipper et al. (1974) the Equa-
tion (19) is based on the assumption of weakly interacting
quasiparticles in a nonsuperfluid Fermi liquid at suf-
ficiently low temperatures and might be a too simple
approximation at high temperatures. However, in our
case, the expression (19) for the entropy is correct at low
densities (0 <10'2 g/cm?3) since the nucleon interaction
is small (dilute gas) and thus (19) reduces to the expres-
sion for a perfect gas. For medium densities
(12<log 90 $14) the expression (19) will be an under-
estimate of the entropy. Thus the lowering of the pressure
might be even somewhat bigger compared to a perfect
gas. For higher densities the degeneracy of neutrons is
large, thus the product T-s is small compared to the
internal energy.

In our calculations we need an expression for the
entropy density. By writing s=(S/A)g, and using the
Equations (19), (10) and (12) we get

| d*K

3
oo % (%) L+ VinF s s/ LBEs+ Vi

+(t;+V1)F; /2(’1:)/ [B(t;+V1.)] 5/2]
—[(ton— VouF 1 2(n,)/[Blta+ V11> _
+(to: = Vo) F 120)/[Bta+ V11?13 T (20)

where u,, 4, are the chemical potentials of the neutrons
and protons respectively.

Finally we determine the pressure P=P(g,, T) as a
function of temperature T and baryon density g,. The
pressure of the interacting protons and neutrons is
obtained from

Pn,p= —8+Ts+lunQn+y‘zQz’ (21)

where ¢ is given in Equation (18), s in (20), ¢, and g, in
Equation (14).

The total pressure is then calculated by adding to
P, , in Equation (21) the contribution of the electrons
as a perfect quantum gas: P=P, ,+P,.

3. Numerical Evaluations

We used for the parameters of the potential [see Egs. (5)
and (9)] the results which have been obtained from a
Thomas-Fermi calculation to nuclear masses by von
Groote (1973)

rp=0.557fm; pp=409.29 MeV/C (C = velocity

of light)

C,=353.69MeV; C(C,=516.53 MeV.

These quantities lead to values for a, b, t; [Egs. (9) and
(11)]

a=34726 MeV; b=507.14MeV; ,=89.21 MeV.

To determine the pressure P according to Equation
(21) we solved iteratively the coupled equations for V;,
and V;, as given in (16) with the constraints of charge
neutrality g¢,=g, with g,, ¢, being the densities of elec-
trons and protons respectively. The numerical procedure
for a fixed temperature T works as follows: with a given
n. [Eq. (11)] the Fermi-integral F,,(y,) is evaluated
according to Equation (13). An iteration loop depending
on the quantity #, is performed in order to fulfil the
condition of charge neutrality (o,=g,). At each iteration
step the coupled equations for V;,, V;, are solved and
the quantities V,,, V,, [Eq. (15)], 4,,, 4, [Eq. (11)] are then
known.

The number density of protons g, is calculated ac-
cording to Equation (14).

The electron number density g, is determined, as a
function of temperature T and p, the chemical potential,
by evaluation of the Fermi-integrals (El Eid, 1976). The
chemical potential yu, is calculated under the condition
that u,=pu,—u, The calculations have been done for
several temperatures and over the range of densities as
shown in Figures 1 and 2.

4. Results and Discussion

An equation of state (EOS) is computed for hot (3 10°
<ST <5410 K)and dense (101° S0 <5 101 g/ecm3) mat-
ter expected in a supernova core which is considered in
this work to be a homogeneous, charge-neutral mixture
of electrons (e), interacting neutrons (1) and protons (p)
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Fig. 1. The pressure P(g,, f) as a function of baryon density g, for
various temperatures T =1.161101°/8 in Kelvin. (—): this work
(charge-neutral mixture of electrons and interacting neutron and
protons). (——-): Buchler and Coon (1976) (pure neutron matter). With
the exception of the limit of low T and g, both equations of state are
quite different
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Fig. 2. Contribution of the electrons to the total pressure P=P, ,+ P,
as a function of g, for various temperatures. (—): P. (~—-): P, , (only

protons and neutrons). The contribution of the electrons is important
for low densities and high temperatures

T T T T T T T T
Log (pplpb)

Log B=-10
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Fig. 3. The ratio of proton density to the total baryon density g,/0,
in the n,p,e-mixture as a function of baryon density g, for various
temperatures. For high densities the percentage of protons increases
rapidly due to the degeneracy of the neutrons

in f-equilibrium (see Sect. 3). The contribution of the
partially degenerated electrons to the total pressure is
calculated by using the Fermi-Dirac statistics. The nu-
clear part (interaction between nucleons) is treated with
the Thomas-Fermi model, which we presented in Sec-
tion 2.

In Figure 1 a comparison is made of our EOS to
that one recently presented by Buchler and Coon (1976)
who considered pure neutron matter and used a many-
body technique of Bloch and Dominicis (1958) and the
isospin singlet part of the Reid sof-core potential (Reid,
1968).

The electrons which assure charge neutrality in the
n, p, e-mixture have a quite important contribution to the -
total pressure in the high temperature-low density
region (T>10!° K, ¢<10'? g/cm?®) since the neutrons
are still non-degenerate. This can be seen from Figure 2
for the present EOS.

At higher densities (10'2<50S0, g/cm3, where
00~2.510'* g/cm? is the saturation density of nuclear
matter) and T $10'! K the pressure compared with that
of Buchler and Coon (1976) is systematically lower by
a factor of two to five depending on temperature while
for g 20, our method gives higher pressure.

The homogeneous matter contains a certain fraction
of protons. The ratio of the proton number density to
the total baryon number density ¢,/g, is displayed in
Figure 3 as a function of g, for various T. In the low
density region (¢ <10'? g/em®) ¢, /0, decreases for all
temperatures as g, increases. At higher densities the
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Fig. 4. Influence of protons on the equation of state. (———): pure
neutron matter.(—): protons and neutrons. The presence of protons
reduces the pressure, the n-p-interaction being attractive

neutrons become partially degenerate and the com-
pensation of their rising Fermi-energy causes the protons
to be more abundant (Fig. 3). The effect of the inclusion
of protons on the EOS, illustrated in Figure 4, is a
certain reduction of the pressure due to the attractive
p—n interaction.

In order to compare the nuclear part of our method
with that of Buchler and Coon (1976) wé calculated the
EOS of pure neutron matter. The results are shown in
Figure 5. Of couse, both methods yield the same pressure

as long as the nucleon-nucleon interaction can be ne- .

glected compared with the kinetic energy. One can
clearly see that the Thomas-Fermi method compared
to Buchler and Coon leads to lower pressure for neutron
matter up to ¢~ 10!* g/cm?® (~g,/2), but for ¢Z e, to
higher pressure. From Figure 6 it can be seen that the
energy per particle E/A4 for neutron matter is in our
model lower than the perfect non-interacting gas up to
0~g, but higher for ¢>g,, while Buchler and Coon
obtained E/A staying always below that of a perfect gas.

Figure 7 summarizes E/A calculated by the Thomas-
Fermi method which includes the results for symmetric
nuclear matter (¢,=¢,) and neutron matter at T=0
obtained by the method of Myers and Swiatecki (1969)
but for the potential parameter readjusted by von
Groote (1973)(see Sect. 3). In order to study the behaviour
of these curves for E/A we have calculated the free
energy per particle for neutron matter at various tem-

| —— Present Work //
~—— Buchler and Coon (1976)

log Pn(MeV/fm3)

-4
- Nuclear
Matter .
Density
! | L | ! | 1 l—l
-5 -4 3 -2 -1
log py, (fm™3)

Fig. 5. The pressure of pure neutron matter at finite temperature.
(—): this work using Thomas-Fermi approach. (-—-): Buchler and
Coon (see text for details). The nucleon-nucleon interaction in this
work is more attractive for @S¢, (00: nuclear matter density) and
T 510! K, but repulsive for ¢ =0,

T 1 1 I T TF7rd 1
/ /
- E/A (Mev) // .
40F /]
/
/
- / -
/
30+ / -
/
20+ . -
10 —
B Nuclear ]
[Matter Density
0 1 1 1 | 1 | L

0 2 A .6 .8
] ~ .
£ (fni)
Fig. 6. Comparison of the energy per particle E/A for neutron matter
(—) to the perfect non interacting gas (——-) as a function of g}/
for T=1 and 10 MeV. The dashed-dotted line, taken for comparison

from Buchler and Coon for T =1 MeV, stays always below the perfect
gas o
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Fig. 7. Energy per particle E/A for neutron matter of various temper-
atures as a function of g/>. The curves of cold neutron matter and cold

nuclear matter are taken from von Groote (1973). Neutron matter
is unbound for all densities

30 T T T T T T T
flpb (MeV)

Py (i
Fig. 8. Free energy per particle f /g, for neutron matter as a function
of ol for various temperatures. No phase transition occurs

peratures. It can be seen from Figure 8 that no phase
transition occurs at any density (critical temperature of
neutron matter: 7,=0).

Summing up, we may emphasize some main features
of the method used in this paper for the treatment of the
nuclear interaction.

(1) The semi-empirical macroscopic Thomas-Fermi
approach is easy to compute, and not only describes
correctly the saturation properties of nuclear matter but
allows for the treatment of a mixture with any n/p-ratio.

(2) The two-body effective force of Seyler and
Blanchard (1963) has not only an attractive but also
a repulsive part being simply proportional to the square
of the relative momentum. For low temperatures and
densities the relative momentum is on the average small
and an attractive part of the effective force lowers the
pressure (Fig. 1). At high densities the relative momentum
gets larger with higher degeneracy and thus increases
the pressure (Fig. 1).

(3) The free parameters of the Seyler-Blanchard
force (Sect. 3) have been adjusted (van Groote, 1973)
to reproduce the binding energies of finite nuclei. They
give the values for the energy per particle, the density
and the compressibility of saturated nuclear matter as:

E/A=—161MeV, K,=131fm™', K=306 MeV

which are in good agreement with macroscopic mass
formula values from the Droplet model (Myers and
Swiatecki, 1969) fitted to all known nuclear masses
(von Groote, 1973; von Groote et al., 1976).

(4) The application of the Thomas-Fermi approach
used in this paper to hot symmetric nuclear matter and
finite excited nuclei has been done by Kiipper et al. (1974)
and Kiipper (1975). Their results for the critical tem-
perature 1,=17.35 MeV of nuclear matter (no phase
transition vapour/liquid for T > T, at any g) agree well
with the corresponding states approach to nuclear matter
(Palmer and Anderson, 1974).

The microscopic method used by Buchler and Coon
(1976) is based on a general many-body technique for
the treatment of interacting fermions at finite temper-
atures developed by Bloch and Dominicis (1958). This
method with the isospin singlet part of the Reid sof-core
potential has to our knowledge not been applied to
nuclear matter or finite nuclei. It may be noted, however,
that most of the many-body calculations based on
nucleon-nucleon potentials yield underbound nuclear
matter.

5. Conclusion

The behaviour of the equation of state calculated with
the Thomas-Fermi method presented in Section 2 is
strongly dependent on the interaction between nucleons.
While the attractive part of the interaction dominates
(see Fig. 1) in the region of 13 <log ¢ <14, it is repulsive
in the higher density region.

A further step in calculating the EOS for hot matter
is the inclusion of heavy and possibly other elementary
particles as mesons and hyperons.

A main application of the present EOS will be the
incorporation in a hydrodynamic calculation of super-
nova explosion.

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1977A%26A....57..243E

BE.

74

FOO77RGA 22570 "

M. F. El Eid and E. R. Hilf: Equation of State for Hot and Dense n,p,e-Mixture with Zero Charge Density : 249

Acknowledgements. The authors thank K. Takahashi and W. Hille-
brandt for many critical and valuable remarks, H. von Groote for
providing his results for cold nuclear matter, and we are very grateful
‘to H. Graef for his help concerning the numerical evaluations.

References

Bloch,C., de Dominicis,C.: 1958, Nucl. Phys. 7, 459

Bloch,C., de Dominicis, C.: 1959, Nucl. Phys. 10, 181

Bloch,C., de Dominicis, C.: 1959, Nucl. Phys. 10, 509

Buchler,J.R., Coon,S.A.: 1976, (preprint) “The hot interacting neu-
tron gas”

El Eid, M.F.: 1976, Thermostatic properties of hot and dense matter
(to be published in Nucl. Phys.)

von Groote, H.: 1973, report presented at the meeting on gross prop-
erties of nuclei, Hirschegg, Austria

von Groote, H., Hilf,E.R., Takahashi, K.: 1976, Atomic Data and Nucl.
Data Table 17, 418

Kiipper, W.A.: 1975, report of the Institut fiir Kernphysik TH Darm-
stadt, IKDA 75/3

Kiipper, W.A., Wegmann,G., Hilf,E.R.: 1974, Ann. Phys. 88, 454

Myers, W.D., Swiatecki, W.J.: 1969, Ann. Phys. 55, 395

Palmer,R.G., Anderson, P.W.: 1974, Phys. Rev. D 9, 3281

Schramm, D.N., Arnett, W.D.: 1975, Astrophys. J. 198, 629

Seyler,R.G., Blanchard,C.H.: 1963, Phys. Rev. 131, 355

Stoner,E.C.: 1939, Phil. Mag. 28, 257

Theis, W.R.: 1955, Z. Phys. 142, 503

Wrubel, M. H.: 1958, Handbuch der Physik, Vol. LI, Astrophys. II

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1977A%26A....57..243E

