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ABSTRACT 
A quantitative model is constructed for the process of radiation pressure on dust to explain the mass loss 

observed in cool giants. Results are given for six sample stars, demonstrating the effects of stellar luminosity, 
mass, and effective temperature on the mass loss rate. The envelope expansion velocity and average grain size 
related to the fraction of grain material condensed and the gas density is found to be the key factor in determining 
the feasibility of mass ejection under this mechanism. 
Subject headings: late-type stars — mass loss — radiative transfer 

I. INTRODUCTION 

It has been known for nearly 4Q years that in most 
M giants, deep, narrow absorption lines are found 
displaced toward the violet from the normal broad 
absorption lines by about 2-25kms_1. In 1956, 
Deutsch interpreted this displaced component as an 
indication of mass loss from the star after his analysis 
of the spectrum of the visual companion of a Her 
(Deutsch 1956). 

Since that time, many physical mechanisms have 
been proposed to explain this phenomenon. These 
include actions of turbulent motions, vaporization, 
shock waves, and electromagnetic acceleration. The 
turbulent velocities implied by the curve of growth are 
large compared with thermal motions in some cases, 
but fall far short of the escape velocities needed 
(Deutsch 1960). Rubbra and Cowling (1959) also 
demonstrated the insufficiency of other mechanisms. 
Radiation pressure has always been a popular source 
of power because of the abundance of energy available. 
However, Weymann (1962a) has shown that radiation 
pressure on atoms and molecules is probably 
inadequate. 

Hoyle and Wickramasinghe (1962) suggested that 
radiation pressure acting on dust may drive the gas to 
escape velocity. Recent infrared observations have 
indicated the presence of silicate material in the 
Trapezium region of M42 (Ney and Allen 1969) and in 
clouds surrounding certain cool stars (Woolf and Ney 
1969). Gilman (1969) has shown that graphite and 
silicon carbide could arise from cool carbon stars, and 
iron and silicate particles may arise from cool, oxygen- 
rich stars. Hackwell (1972) found that carbon stars 
have a common emission feature at 10.8 /x which could 
possibly be due to silicon carbide. 

After the existence of circumstellar dust had been 
established, the mechanism of radiation pressure 
acting on grains became more plausible. So far this 
process has been only theoretically studied by ana- 
lytical approximations (Gehrz and Woolf 1971; 
Gilman 1972). In this paper we shall seek numerical 
solutions to the equation of motion by including the 
effects of (a) radiation pressure on grains; {b) gravita- 
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tional attraction by the star; (c) growth of grains; {d) 
momentum transfer from the grain to the gas; and 
(e) sputtering of the grains. 

II. METHOD OF CALCULATION 

We shall assume that the flow is steady and spheri- 
cally symmetric. The evidence that the flow is steady 
comes from the fact that no significant variations in the 
velocity of the flow have been observed, and at least 
in the case of a Ori, these observations cover a span of 
25 years (Weymann 1962&). As for spherical sym- 
metry, the star’s magnetic field and the interstellar 
medium will probably cause the flow, particularly at 
great distances from the star, to deviate from spherical 
symmetry. However, these are details that go well 
beyond current observations, and at present there 
seems to be little justification to abandon the simplicity 
of spherical symmetry. Under these assumptions we 
have the following equations : 

conservation of mass: (pvr2) = 0 ; (1) 

conservation of momentum: 

\dP 
P dr 

^(r)], (2) 

where t>, P, and p are the velocity, pressure, and den- 
sity of the gas, respectively. The function J^(r) is the 
ratio of the strength of the radiation pressure (via the 
grains) to the gravitational attraction. M* is the mass 
of the star. 

The energy, if defined in the usual sense as 

i? /i 2 . y P GM*\ P=mUi;2 + — * 1 
\ y - 1 P r ) 

is not conserved because energy is being transferred 
from the radiation field to the gas. 

Following the treatments of Bondi (1952) and Holzer 
and Axford (1970), we choose the Mach number as 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
7 

5A
pJ

. 
. .

19
8.

 .
58

3K
 

584 KWOK Vol. 198 

the dependent variable. The Mach number M is 
defined by 

M = v/u, 

where w is the speed of sound given by 

u2 = yP/p . 

Weymann’s work (1960) showed that for temperatures 
in the range considered here (less than 104 K), radia- 
tive heating and cooling can be ignored in the first 
approximation; thus the only input from the radiation 
field that needs to be considered is the mechanical 
energy of the radiation pressure on grains. In this 
calculation we shall make the assumption that the 
flow is adiabatic. Making use of the adiabatic relation 

fr(Pp-') = 0, (3) 

we arrive at the following equation : 

dM2 2M2 

dt - £(M2 - 1) 

+ (4) 

where the dimensionless independent variable is 
chosen to be £ = r/r0. The quantity r0 is the point 
where M = 1, and will be referred to as the sonic 
point from now on. 

Assuming that the ideal-gas law is valid, we have 

- - — . (5) 
P pinn 

where ¡jl is the mean molecular weight of the gas and 
raH is the mass of the hydrogen atom. As a result we 
have 

and 

ykT 
P'mK 

T =T0(p/p0y-1, (6) 

where the subscript zero refers to the sonic point. 
From equation (1) we have 

or 
pvr2 = p0v0r0

2 , 

P = p0(M
2a-1,<y+1) • 

The velocity of the gas is then given by 

v = Mu P£oj 

(7) 

(8) 

jected this mechanism because of the unreasonable 
long mean free path of gas between collisions by 
grains. His results were derived from the relation 

Q7Ta2L 
4ttC 

GM*mn, 

where a is the size ofjhe grain, mH is the mass of 
xydrogen atoms, and Q is the ratio of the radiation 

pressure cross section to the geometric cross section. 
This relation, in fact, assumes that gas molecules can 
gain momentum only through direct collisions with 
the grains. It was later pointed out by Gilman (1972) 
that the mean free path of gas molecules within the 
gas is very small (~107 cm), and the majority of the 
gas molecules gain momentum through collisions with 
other gas molecules. As a result, the momentum of the 
grain is diffused throughout the gas. 

In addition to the requirement that momentum be 
effectively distributed, we must also know how much 
of the momentum received from the radiation field is 
actually transferred to the gas and how much is 
retained by the grains themselves. For this reason we 
shall now consider the equation of motion of the 
grains, 

where vgr is the velocity of the grain, ps is the density 
of the grain, and Fdrag the drag force produced by 
collision with gas molecules. For late-type giants, it 
can be shown that for grain sizes of the order of 0.1 /x 
the gravitational force on grains is about 1000 times 
smaller than the radiation force and can therefore be 
safely neglected. In an approximate solution to the 
above equation, Gilman (1972) found that for a Ori, 
the grains will approach terminal velocity over a 
distance of ~10n cm, which is small compared with 
the characteristic dimensions of the envelope. For the 
purpose of this calculation, which concerns the dy- 
namics of the circumstellar envelope, the following 
approximation should be a good one : 

^rad ==: ■k'drsig • 

The drag force can be estimated by adopting the 
following simplified picture : A perfect sphere is mov- 
ing at a velocity vd in a field of gas particles with 
Maxwellian velocities of temperature T. After taking 
the average of encounters from all possible directions, 
the rate of momentum transfer takes the form 

-^drag ^ 'n’G pVdVT 

in the limit of vd « vT, where vT = 3/4(3kT/pimIl)
112. 

In the case of vd » vT, the drag force can be 
approximated by 

^drag = 7TCl2pVd
2 . 

The working of the radiation pressure on grain 
mechanism relies on the effectiveness of the transfer of 
momentum from the grains to the gas. In his discus- 
sion of mass loss mechanisms, Weymann (1962a) re- 

The following expression gives a convenient way of 
connecting these two regions : 

^drag = CC7Ta2pVd{vT
2 + V2)112 . 
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We have also introduced a factor a, whose value 
depends on the elasticity nature of the collisions. In 
the calculation we shall assume a = 3/4. 

The radiation force is given by 

7Ta*QL 
rad “ 47rcr2 * 

Equating Frad to the drag force and letting K = 
QL/47Tcapr2, we have 

^ = {M(4*2 + vT*)112 - vT
2]}^2 . (9) 

The dimensionless function ^(r) can be written as 

where ngr is the number density of the grains. In a 
steady flow, we have from equation (1) 

where p is the probability that an atom of the appro- 
priate grain material will condense on the grain during 
collision. 

When the drift velocity of the grains with respect to 
the gas is large, the kinetic energy of the gas may 
exceed the surface potential energy of the grain, and 
atoms may be knocked out from the grain. The 
energy dependence of the sputtering yield can be 
divided into four regions (Wickramasinghe 1972): 

S(E) = 0, E < Et, 

= S0(E - Et)I(Ea- Et), Et<E< Ea, 

= S0, EA < E < \0Eb, 

= So(\OEb¡E), e> \oeb . 

Et, Eb, and S0 are sputtering parameters depend- 
ing on both the target material and the impinging 
atom : 

A 2 
-JF = 4npvr 

the integration constant dVR/dt being the mass loss 
rate of the star. At each point in the envelope, the 
grain flux can be related to the gas flux via the follow- 
ing expression : 

4TT(jTTa3ps)ngr(v + vd)r
2 = > 

where A = molecular weight of the grain material, 
y = relative number abundance of the grain material, 
/ = fraction of grain material condensed, and pu = 
mean molecular weight of the gas. 

Taking the ratio of the above two equations, we 
have 

ngr ^ 3Ayf / ^ \ 
p 47ra3fMps \t; + 

Substituting into the expression for ^(r), we have 

) = —'iQLAyf / _JL_\ 
{ ) \6ircGM^aps \v + vd) ' UU; 

Assuming that all grains are formed at the base of 
the flow and that no grain is totally destroyed in its 
passage through the envelope, we have 

f = fo(ala0)
3. (11) 

III. GRAIN GROWTH AND SPUTTERING 

As the grains travel through the gas, collisions be- 
tween the grains and the gas will cause some of the 
atoms to be adsorbed onto the grain surface. As a 
result, the grains will grow in size. The growth rate due 
to this process is 

da = ßr0y(l - f)PA 
dè 4/xps(y + 

{vT
2 + vd

2Y'2, (12) 

Et oc (Mt + m)2l4Mtm , (13a) 

EAK(Mt + m)/Mt, (13b) 

Eb oc m/Mt, (13c) 

S0 oc m(Mt + l)/(Mt + m), (13d) 

where m and Mt are atomic weights of the impinging 
and target atoms, respectively. 

If silicon is assumed to be the target atom, then the 
parameters for sputtering by hydrogen on silicon are 
(Wickramasinghe 1972; Kaminsky 1965): ET = 25 eV, 
Ea = 849 eV, Eb = 1109 eV, and S0 = 0.05. The cor- 
responding parameters for sputtering of other atoms 
on silicon are obtained by equations (13a) to (13d). 

If are the relative cosmic abundances of elements, 
we have the following sputtering rate : 

da = AroP l vd \ V ^ o 
dè 4^ps\v + vd]^^\ 

Combining growth and sputtering, we have the 
following equation : 

da _ Ar0p / 1 \ 
d£ ~ 4fiPs \i; + vd) 

X [/Ml -f)(vd
2 + iM)1'2 - 2ZiS‘ ■ (14) 

We can easily see that the relative importance of 
sputtering and growth by collisions depends mainly on 
the sputtering energy threshold—in other words, on 
the magnitude of the drift velocity. As long as the 
grain material is not completely condensed, sputtering 
becomes dominating at a drift velocity of about 
20 km s-1. 

IV. INPUT PARAMETERS 

There are seven variables of interest: v, vd, T, p, a,f, 
and P. We also have seven coupled equations (1), (2), 
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(3), (5), (9), (11), and (14). Since four of them are 
first-order differential equations, four initial condi- 
tions are required. The obvious initial point to choose 
is the sonic point. The four possible parameters are 
To, po, a0, and/0. 

The flow in the envelope must be supersonic, since 
a subsonic flow would require too high a density in the 
envelope. Parker (1960) has shown that for 5/3 > 
y > 1, there is a unique point where the solutions can 
pass from subsonic to supersonic, and only one 
solution passes through this point. 

From equation (4) we can observe that a singu- 
larity occurs at M = 1. For a steady flow this singu- 
larity must vanish, and, in consequence, the following 
relation must be satisfied : 

^(r) must have attained a value close to unity. From 
equation (5), and using the relation 

Va= [ QL ]i/2 
v icccv0(d2ft/dt)\ 9 

we have 

/g¿\r 3Ayf (Q\ /_^\ 
dt ~ \«ciJ0/Ll67rcG/ips \a/r=ro\A/*/ 

Recognizing that the Eddington limit luminosity is 
given by 

r0 

(1 - 
2u0

2 (15) 

This condition further restricts our freedom in 
choosing the initial conditions. Since ^(ro) is a func- 
tion of tf0 and /o, therefore only one of these two is a 
truly free parameter. 

In order to have a physically acceptable solution, 
there are other limitations on the remaining param- 
eters. Assuming that only a small fraction of grain 
material is condensed at the condensation point, there 
will be a lot of uncondensed material left in the gas, 
and the condensed grains will be able to grow rapidly 
and reach a large size. This will result in a large drift 
velocity and in turn lead to a large sputtering rate. If 
sputtering dominates over growth too early, then the 
gas may never reach the sonic speed. On the other 
hand, if most of the grain material has already con- 
densed at the base of the flow, the grains will have little 
chance of growing further and will remain small. In 
other words, there will be a lot of small grains. How- 
ever, the grain size cannot be smaller than a certain 
minimum below which the radiation pressure on the 
grain is inadequate to overcome the gravitational 
force. Since the nucléation process is unknown, and 
may well be different for different stars, it is very 
difficult for us to estimate the fraction of grain 
material condensed at the base of the flow. Therefore 
we shall leave a0 (or equivalently f0) as a free parameter, 
and calculate all the possible cases. 

Before we actually go into the numerical calcula- 
tions, we shall now try to roughly estimate the mass 
loss rate under this mechanism. At the sonic point, 

the mass loss rate can be expressed as 

dm 
dt 

Qk\\lM\jL _ i]~2 

“«VIA M / Lm J 

Since / < 1, we have 

dm - 
^ > 3.16 x 10170o 

7.3 x 
'•-(SUcKft) 

(16) 

(17) 

where we have assumed the sonic-point temperature 
to be 3000 K. 

If we take into account the effects of sputtering by 
excluding cases that have vd > 20kms~1, we can 
estimate the minimum mass loss rate for any star, 
given its luminosity, mass, and effective temperature. 
Table 1 lists the minimum rates for six sample stars. 

v. RESULTS 

Calculations have been performed for the circum- 
stellar envelopes of six different stars. The grain 
material is assumed to be magnesium silicate 
(Mg2Si04), appropriate for oxygen-rich stars (Gilman 
1969). We have used the minimum condensation radius 
calculated by Gilman (Gilman and Woolf 1974) as the 
base of the flow. The_values of the mean radiative 
pressure cross section Q(a, Te) are taken from Gilman 
(1974Z>). The value of y is chosen to be 5/3. 

The velocity gradient dM/dÇ at the sonic point is 
first derived using the initial conditions. Next, a 

TABLE 1 
Minimum Mass Loss Rates for Six Sample Stars 

L = 104 Lq M* = 1 Mg L = 105 Lq M* = 5 M© L — 106 L0 M* = 25 M© 

dJ( dJt dJt dJt dJt 
dt dt a° dt dt a° ~dt ~dt aa 

rc(K) (1020 g s-1) (10"6 M0 yr~l) (lO^gs-1) (lO’6 Me yr"1) (d) (lO^gs"1) (10~6 Mq yr_1) 0*) 

2000  0.35 0.55 0.15 1.1 1.8 0.11 3.8 6.0 0.08 
3000 : ... ... 0.62 0.98 0.06 1.9 3.1 0.045 
5000  ... ... ... ... ... ... 1.0 1.6 0.02 
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Fig. 1.—The gas velocity as a function of distance for a star of L = 1O5L0, M* = 5M©, Te = 3000 K, = 2 x 1020 g s_1. 
The number labeling each curve is the dust grain size at the sonic point. 

series of iterations is performed to determine the 
position of the sonic point. The solution is then 
obtained by integrating both inward and outward 
from the sonic point. 

Figure 1 shows the gas velocity as a function of 
distance for a star of luminosity 105Lo, mass 5 
and effective temperature 3000 K. The sonic-point 
temperature is chosen to be 3000 K, and the mass loss 
rate 2 x 1020 gs-1. Four solutions corresponding to 
different values of sonic-point grain sizes are shown. 
We can see that between the extremes of many small 
grains and a few large grains lies the optimal ex- 
pansion velocity. This result is expected from our 
discussion in the last section. 

All these velocity curves show a characteristic sharp 
rise and then stabilize at a constant velocity over a 
large part of the circumstellar envelope. This is in 
agreement with the established narrowness of the 
circumstellar lines. 

Figure 2 shows the corresponding absorption-line 
profile of the a0 = 0.08 ¡jl case for an atom whose 
state is independent of position in the envelope and 

for which the line is produced by pure absorption. A 
violet-displaced circumstellar line can clearly be seen. 

Table 2 shows the results for six sample stars. The 
first mass loss rate for each star corresponds to the 
lowest possible. In all cases, the mass loss rate was 
chosen such that the total mass column density of the 
grains will not exceed 10~3 g cm-2. A higher mass loss 
rate (and, therefore, a higher mass column density) 
will mean that the envelope is optically thick. Since 
the effects of radiative transfer are not included in this 
calculation, we did not consider such cases. 

Note that the agreement between Tables 1 and 2 is 
better for hotter stars. This is because results of Table 
1 are derived under the assumption of complete con- 
densation. In hotter stars, the allowed grain sizes are 
smaller and grain condensation is more complete; 
therefore, there is better agreement. 

When the fraction of grain material condensed is 
small, the grains tend to grow to a large size, and as a 
result they receive a greater initial push from the star’s 
radiation field. In cases of complete or near complete 
condensation, not only are the grains smaller and have 

Fig. 2.—The stellar absorption line profile produced by pure absorption of a material whose state does not depend on temperature 
and density. 
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TABLE 2 
Numerical Results of the Model for Six Sample Stars 

Star 
dt 

(1020 g s“1) 

Gas Terminal 
a0 Velocity 
0¿) (km s"1) 

Mass Column 
Density of 
the grains 

(10~4 g cm-1) /o 

L = 104 L0, M = 1 M0, Te = 2000 K. 

L = 105 L0, M = 5 M0, Te = 2000 K. 

L = 106 Lq, M = 25 M0,Te = 2000 K. 

L = 105Lo,M= 5 M©, Te = 3000 K. 

L = 106 T©» M = 25 M0, Te = 3000 K. 

L = 106 L©, M = 25 M0, Te = 5000 K. 

1.8 

2.0 

2.2 

3.0 

5.0 

7.0 

5.0 

7.0 

10.0 

1.0 

2.0 

3.0 

4.0 

6.0 

10.0 

1.0 

2.0 

4.0 

0.08 
0.10 
0.16 
0.08 
0.12 
0.15 
0.22 
0.08 
0.20 
0.25 
0.06 
0.12 
0.19 
0.06 
0.12 
0.20 
0.06 
0.10 
0.20 
0.22 
0.06 
0.08 
0.10 
0.06 
0.08 
0.11 
0.05 
0.08 
0.12 
0.05 
0.07 
0.08 
0.04 
0.06 
0.08 
0.10 
0.04 
0.09 
0.12 
0.04 
0.05 
0.06 
0.03 
0.05 
0.07 
0.03 
0.06 
0.09 
0.018 
0.020 
0.022 
0.015 
0.020 
0.025 
0.015 
0.020 
0.030 

8.1 
12.3 
16.8 
8.4 

15.8 
17.9 
14.6 
8.7 

18.9 
13.1 
5.2 

15.6 
6.4 
6.6 

24.5 
10.4 
8.9 

25.7 
14.9 
10.4 
7.1 

12.4 
5.5 

12.8 
18.5 
7.5 
7.7 

24.4 
9.9 

15.7 
15.1 
9.0 

15.3 
31.0 
22.6 
10.7 
20.7 
24.6 
11.4 
27.8 
17.6 

8.3 
22.3 
27.9 

8.7 
29.8 
28.8 

7.0 
8.8 

10.5 
5.4 

18.4 
25.0 
15.5 
30.7 
39.0 
20.3 

7.6 
4.7 
1.7 
8.7 
3.7 
2.3 
0.8 
9.7 
1.2 
0.7 
4.2 
1.0 
0.3 
8.1 
1.7 
0.6 

10.0 
3.1 
0.7 
0.6 
1.4 
0.7 
0.5 
1.9 
1.0 
0.6 
4.2 
1.3 
0.6 
1.3 
0.6 
0.5 
3.7 
1.4 
0.8 
0.6 
4.7 
0.9 
0.7 
1.1 
0.7 
0.6 
3.0 
0.9 
0.7 
3.6 
0.8 
0.7 
0.4 
0.3 
0.2 
0.7 
0.4 
0.3 
1.1 
0.6 
0.3 

0.67 
0.48 
0.26 
0.68 
0.38 
0.29 
0.16 
0.69 
0.20 
0.14 
0.85 
0.44 
0.26 
0.85 
0.39 
0.24 
0.83 
0.43 
0.22 
0.18 
0.87 
0.71 
0.58 
0.84 
0.65 
0.49 
0.91 
0.56 
0.40 
0.84 
0.62 
0.55 
0.85 
0.56 
0.43 
0.36 
0.76 
0.33 
0.28 
0.77 
0.63 
0.54 
0.88 
0.54 
0.40 
0.76 
0.38 
0.27 
0.91 
0.85 
0.79 
0.87 
0.68 
0.56 
0.70 
0.53 
0.37 

a slower acceleration, but also the sputtering rate can 
dominate over growth at moderate velocities such as 
10 km s-1 (see eq. [14]). This greatly limits the value 
of the terminal drift velocity. Figure 3 shows the drift 
velocity as a function of distance in three different 
degrees of condensation. 

From Table 2 we observe that the maximum al- 
lowed grain size decreases with increasing LjM* and 

increasing effective temperature. The main limiting 
factor here is sputtering. A large grain for stars with 
high L/M* is not permissible because this will lead to 
a high drift velocity and a large sputtering rate. 

VI. DOMAIN OF MASS LOSS 
One very important question remains : Within what 

limits will this mechanism be applicable? From our 
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Fig. 3.—The drift velocity as a function of distance 

past discussions we can see that the success of this 
mechanism relies on four physical parameters: the 
stellar luminosity L, stellar mass M*, condensation- 
point gas density pc, and the effective temperature Te 
(through its influence on the efficiency factor Q). For 
a star of mass 1 M0, the Eddington limit luminosity is 

£Bd = M*(a/ß) 

~ 5 x lO4(a/0Lo . 

For a star of 3000 K, LEd varies from ~500Lo (if 
a = 10“7 cm) to 5 L© (if a = 10~5 cm). Therefore, the 
Eddington limit can easily be satisfied in the case of 
late-type giants. This implies that in the absence of gas 
the loss of dust particles will probably be occurring 
(Wickramasinghe 1972; Gilman 1973). The question 
now is whether the gas drag is important, and if so, 
whether the gas can be ejected. As we have shown, 
among the stars that we are considering, the L, M*, Te 
combination is generally sufficient to drive the grains ; 
therefore the most critical factor is pc. Not only has pc 
to be large enough to ensure momentum coupling, it 
has also to be large enough to maintain a low drift 
velocity in order to avoid an unacceptable sputtering 
rate. The lower L/M* is, the larger pc has to be. 

Having recognized the importance of pc in deter- 
mining the occurrence of mass loss, we may ask what 
controls pc. Gilman has shown that the significant 
determiner of the grain temperature is the radiation 
field and not the gas temperature (Gilman and Woolf 
1975). Therefore, the condensation-point distance 
will be a function of the effective temperature. Using 
his results, we shall now attempt to define a domain 
where mass loss is theoretically possible. 

Assuming that the effective temperature represents 
the kinetic temperature of the stellar atmosphere, the 
gas density at the condensation point is 

Pc' = ^ exp (—rc/h), 

where rc is the distance of the condensation point from 
the surface of the star and x is the mass column 
density of the gas in the photosphere. A value of 
x = 300 gm cm-2 inferred from the opacity is used in 
this calculation. Let us further assume that stars of 
interest obey a mass-luminosity law in the form of 

TABLE 3 
Ratio of Gas Density Available at the Condensation Point to Minimum Required Gas Density for 

Mass Ejection 

 Te (K)   

Log (LILq) M/Mq 3600 3400 3200 3000 2800 2600 2400 2200 2000 

5.4   50 8.3( —53) 5.5(-37) 4.9(-26) 8.8(-18) 6.4(-12) 4.9(-8) 1.3(-4) 2.7(-2) 1.2(+1) 
5.2   27 5.1( —37) 1.4(-25) 8.8(-18) 7.3(-12) l.l(-7) 6.7(-5) 1.9(-2) 1.0( + 0) 6.9(+l) 
5.0   16 1.2( —25) 2.0( —17) 7.6(-12) 1.3(-7) 1.4(-4) 1.2(-2) 6.8(-l) 1.2(+1) 2.5( + 2) 
4.8  9.4 2.1(—17) 1.4( —11) 1.4(-7) 1.6(-4) 2.3(-2) 6.1(-1) 9.3( + 0) 7.4(+l) 6.3( + 2) 
4.6  5.3 1.6(—11) 2.4( —7) 2.0(-4) 2.6(-2) 9.0(-l) 9.7( + 0) 7.4( + l) 2.7( + 2) 1.2( + 3) 
4.4   3.1 2.7( —7) 2.6( —4) 3.3(-2) 1.0( + 0) 1.3(+1) 7.2( + l) 3.0( + 2) 7.8( + 2) 2.0( + 3) 
4.2   1.7 3.6( —4) 4.7( —2) 1.3( + 0) 1.7( + 1) 8.8(+l) 3.1( + 2) 7.7( + 2) 1.6( + 3) 3.3( + 3) 
4.0   1.0 5.5( —2) 1.7( + 0) 1.8(+1) l.l( + 2) 4.1( + 2) 8.9( + 2) 1.6( + 3) 2.6(+3) 4.3(+3) 
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Then the scale height is given by 

h 1 / ?>kT\ L (Le
ll2\ 

R* - 2G(477(t)1/2 Vmh/ n
2 l Mq J 

x (io4)o-82(¿y_o-71 • a») 

Table 3 gives the ratio of the gas density available at 
the base of the flow (pc') to the required gas density for 
mass ejection (pc), the latter being calculated from the 
minimum mass loss rate given by equation (17). The 
gas velocity at the condensation point is taken to be 
1 km s “1. Mass loss is theoretically possible for those 
stars with this ratio greater than unity. 

Results shown in Table 3 seem to preclude any 
early M luminous stars from ejecting mass. Grains can 
only form at a large distance from a hot star, and at 
such a point the gas density may be too low. However, 
some early M supergiants are known to be losing 
mass; a Ori is a good example (Weymann 19626). 
Gilman and Woolf (1975) have suggested that the 
large macroscopic motion in the atmosphere may 
increase the scale height and bring enough gas to the 
condensation point. They found that the required 
turbulent velocities for a Ori, a Her, ¡jl Cep, and HR 
5171 are in good agreement with their observed values. 
Another piece of evidence comes from the observation 
of mid-infrared excesses in some low-surface-gravity 
stars, which according to Gilman (1974a) may also 
imply the existence of photospheric turbulence. 

VII. COMPARISON WITH OBSERVATIONS 

Two methods have been devised to measure the rate 
of mass ejection from cool stars. Deutsch (1956) and 
Weymann (19626) have employed an optical method 
which used the curve of growth to measure the surface 
density of Ca n ions. This density is related to the 
total number of Ca atoms and therefore to the total 
number of hydrogen atoms. Assuming a size and 
expansion velocity of the envelope, the mass loss rate 
can be obtained. Another way of estimating this rate 
is by means of infrared observation. Gehrz and Woolf 
(1971) have measured the [3.5/x] — [8.4/x] and 
[8.4 jix] — [11/x] color excesses for M stars. From 
these measurements it is possible to obtain the optical 
depth of the dust and its amount. Assuming a com- 
plete condensation of silicates, the mass loss rate can 
then be determined. 

Although the absolute values of the mass loss rates 
estimated by the above methods differ from each 
other, they nevertheless show similar trends of be- 
havior, which can be summarized by the following 
rules: (1) The mass loss rate is greater for more 
luminous stars (Deutsch 1960). (2) The mass loss rate 
increases for decreasing effective temperature. The 
rates probably more than double for each change of 
spectral class (Gehrz and Woolf 1971; Weymann 
1963). (3) Compared with the mass loss rates for 
similar stars, there seems to be a large spread for 
individual cases (Gehrz and Woolf 1971). 

Results of our calculations as shown in Table 1 and 
2 are in agreement with the above rules. For a star 
with larger luminosity, more momentum is fed into the 
outflowing motion, and mass loss is possible even if 
the drift velocity is large. On the other hand, a star 
with larger mass will have a larger gravitational 
attraction, and cannot afford to have a large drift 
velocity. Since the drift velocity is inversely propor- 
tional to the square root of density (and the mass loss 
rate), therefore mass ejection cannot occur unless a 
higher gas density at the base of the flow inhibits the 
growth of drift velocity. Equation (17) shows that the 
mass loss rate is roughly proportional to M*2¡L. For 
stars with a mass-luminosity relation L = aM* and 
6 < 2 (which is appropriate for late-type giants), a 
more luminous star will always be observed to have a 
higher mass loss rate. 

The fact that stars in the later spectral classes have a 
higher mass loss rate can also be understood in this 
model. Since Q(Te,d) increases with re if a > 10“6 

cm and Te > 2000 K (Gilman 19746), a star with a 
higher surface temperature can drive grains more 
efficiently and, therefore, by the same argument above, 
is able to eject mass on a smaller scale. The more 
important factor, however, is the fact that the conden- 
sation-point gas density is higher for cool stars than 
for warm stars. As a result, more mass will be ejected. 

As for the third empirical relation, the mass loss 
process can take place, according to this model, 
whenever the condensation-point gas density exceeds 
a certain minimum value. This implies that mass loss 
can occur on various scales, depending on the actual 
scale height of the stellar atmosphere. 

VIII. SUMMARY AND CONCLUSION 

A quantitative model of the circumstellar envelope 
of cool stars has been constructed. It is found that 
once dust condensation takes place, radiation pressure 
on grains can drive the gas to the observed expansion 
velocities, under the condition that the gas density at 
the condensation point is high enough. The range of 
grain sizes can be determined if the properties of the 
star are known. Admittedly, the upper bound of grain 
size is less certain, due to its dependence on the 
sputtering parameters. A correlation between grain 
sizes and L/M*, Te is also predicted. Although we did 
not discuss the nucléation of grains, this model never- 
theless provides a link between the observed expan- 
sion velocity and the nucléation process, due to the 
fact that the expansion velocity is a function of the 
fraction of silicates condensed at the base of the flow. 
It was also pointed out that in the case of red giants, 
the condensation-point gas density is the main factor 
in determining whether mass loss is possible. The 
theoretical relation between L, M*, Te and the mass 
loss rate is also found to be consistent with the obser- 
vations. The mass loss rates calculated by this model 
are possibly more reliable than those determined by 
observational means because of fewer assumptions 
involved. 
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OH and H20 maser emissions have been observed 
in the circumstellar envelopes of many late-type stars 
(Hyland et al. 1972; Wilson et al. 1972; Dickinson et 
ah 1973). The results of the present dynamic model, 
when combined with a particular pumping mechanism, 
can give prediction to the spectra of maser emissions. 
A calculation under the simplifying assumption of 
total saturation has already been performed (Kwok, 
Gilman, and Woolf 1975), but a more detailed calcu- 
lation remains to be done. 

I am indebted to Drs. R. C. Gilman and N. J. 
Woolf for valuable discussions and advice. I also wish 
to thank Dr. M. H. L. Pryce for a critical reading of 
this manuscript. This work was performed under 
NSF grant GP-32772 and was also partially supported 
by the NRC of Canada, grant A-5363. 
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