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ABSTRACT 
In this paper we describe a method for deriving analytic stellar models in general relativity. The models are 

exact solutions to Einstein’s equations. By inverting the usual procedure in astrophysics, we reduce Einstein’s 
static field equations to one first-order linear differential equation. Such an equation can always be reduced to 
quadratures. Two new exact solutions are presented and the rotational properties explored. 
Subject headings: collapsed stars — neutron stars — pulsars 

I. INTRODUCTION 

For a given equation of state the determination of the structure of a neutron star requires large complicated 
computer programs. Since one has neither perfect knowledge concerning a nuclear potential (Reid 1968; Bludman 
1973; Borner 1973) and its applicability, nor complete confidence in the present state of many body theory at high 
densities, a less ambitious program is often sufficient. Also, it is desirable to have a quick, easy way to determine the 
relationships between the mass, radius, moment of inertia, stability, and other physical quantities without extensive 
computer analysis. For these reasons we present a method for calculating analytically the structure of a spherically 
symmetric star in general relativity. The method relies upon being able to do two definite integrals. The equation 
of state, i.e., the relationship between the pressure and the density for cold matter, is the end result of the calculation 
rather than the beginning. The solution will be taken as reasonable if both the pressure and density are positive 
and monotonically decreasing functions of r, if the pressure goes to zero at a finite radius, and if the mass, radius, 
and moment of inertia have reasonable values compared with computer-generated ones for the same central 
pressure and density. The idea behind this is similar to that used to solve the rotation equation for incompressible 
matter (Adams et al. 1974). The method used in that paper will be used to calculate the angular momentum as a 
function of the rotation rate. 

II. THE METHOD 

The metric for a static, spherically symmetric star is (Landau and Lifshitz 1971): 

ds2 = —A2dt2 + B2dr2 + r2(d62 + sin2 dd<p2), (1) 

where A and B are functions only of r. This metric leads to the familiar form of Einstein’s field equations for a 
static body: 

SttT00 = r~2 - (rB)~2 + 2Br(rB
3)~1, (2) 

877-r11 = lArirAB2)-1 - r~2 + (rB)-2, (3) 

SttT22 = SttT33 = ArrCAB2)-1 - ArBriAB3)-1 + Ar(rAB2)~1 - B^rB3)-1, (4) 

in which the subscript r denotes differentiation with respect to r. The usual assumption, that the matter is isotropic, 
implies 

P = T00 , (5) 

p = T11 = T22 = T33 . (6) 

After subtracting equation (3) from equation (4), equation (6) leads to 

0 = —rBrB~3{A + rAr) + B~2(r2Arr - rAr — A) + A . (7) 

It is interesting to note that Buchdahl (1959; 1967) independently investigated a similar equation using different 
methods. Fie derived a second-order equation which must be solved to obtain A in terms of the average density 
[p = 3ra(r)(477r3)“1]. He obtained a solution for A and p-1 in terms of a hypergeometric function and a linear 
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function in r2, respectively. Our approach has the advantage that we solve a first-order equation for B in terms of 
^4 rather than a second-order equation for A in terms of B. By letting x = r2, denoting differentiation with respect 
to a: by a prime, and defining/by 

/= (1 -i?-2)/*, (8) 

equation (7) can be written as 

/' + If (A' + 2xA")(A + IxA')*1 = 4A"(A + 2xA/)~1. (9) 

Assuming that ^4 is a known function of x,/can be found in terms of a function g: 

g'(x) = 2(A'+ 2xA"XA + 2XA')-1 (10) 
via the relation 

f(x) = e-9<//o + 4 J* dtA"(t)e9W[A + 2tA'(t)l “1|! (11) 

where f0 is a constant of integration. The method for finding analytic models is to assume a reasonable but definite 
form for A asa function of x and to perform the integrals in equations (10) and (11). Once/is known, the pressure 
and density can be found by expressing equations (2) and (3) as 

Snp = 3/H- 2x/', (12) 

SttpA = 4A' - f(A + 4x^4') . (13) 

The total mass, defined from the exterior Schwarzschild solution, 

m{R) = R(l - B~2)I2 , (14) 
can be expressed as 

m = R?f(R2)l2 . (15) 

The integration constant/) can be found by the requirement that the pressure in equation (13) be zero at the outer 
boundary of the star, radius R. In general, if one chooses a certain form for A and does the integrals to find / and 
p, the density will not be zero at the radius R. The requirement that this occur restricts the possible forms of A. 

For gaseous stars, both the pressure and density vanish at the outer boundary of the star. In the method pre- 
sented in this paper all physical quantities are determined from A. Hence, it is useful to formulate this condition 
on the density and pressure in terms of A alone. By evaluating equations (9), (12), and (13) at the outer boundary, 
this restriction on A takes the form 

0 = ZA{R2)A\R2) + 2R2[A,{R2)}2 + 2R2A{R2)Ä\R2) . (16) 

The procedure used here is an inversion of the usual problem solved in astrophysics. Instead of assuming that 
some equation of state is given and then solving the equations of structure, e.g., the Tolman-Oppenheimer-Volkoff 
(TOY) equations for the metric coeificients (Harrison et al. 1965; Borner and Cohen 1973; Cohen and Cameron 
1971), we assume some form for the metric coefficients and find what equation of state induced this form. If we 
make a judicious choice of ^4(x), then a simple but physically significant form for p{p) will result. 

III. ROTATIONAL PROPERTIES 

Some of the material in this section has been dealt with elsewhere (Adams et al. 1974; Brill and Cohen 1966), 
but for completeness we will give here a brief review. The equations for a fluid body rotating about some axis are, 
in general, difficult to solve. The simplifying assumption of slow rotation, i.e., that the centrifugal force is small 
compared with the gravitational force, makes the problem tractable. Through first order in Q, (the metric coeffi- 
cient which measures the dragging of inertial frames by the rotating body [Brill and Cohen 1966; Cohen and Brill 
1968]), the equations to be solved are the three structure equations (2), (3), and (4), and a rotation equation. This 
rotation equation can be written as 

-l67TréB2(œ - Q)0> + p) = (r4Qr)r - 47Tr*QrB
2(p + p) , (17) 

where w is the rotation rate about the z-axis as measured by a distant observer. Even if one has solved the equations 
of structure analytically, the rotation equation is often too difficult to solve analytically, except for a star (with 
equation of state/? = ap) surrounded by a thin shell (Adams et al. 1973). In more complicated cases, information 
about the rotational properties can be obtained simply by inverting the problem. Instead of trying to solve the 
rotation equation for some assumed rotation rate œ (for rigid rotation a? is a constant independent of r), we assume 
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some reasonable form for the dragging of inertial frames and (from eq. [17]) find what form of w produced this 
result. The advantages of this procedure are that the equations can be simply and analytically solved, and that one 
readily knows how close to the physically desired solution one is. 

In order to match smoothly to the exterior solution (Cohen and Brill 1968) 

Ü(r) = 2/r"3, (18) 

in which J is the total angular momentum of the body, Q must satisfy the boundary condition at the stellar radius 
R that Q and Qr be continuous. 

It was found (Adams et al. 1974) that a form for D which produced substantial variation in oj was 

O(r) = Q0[l - 0.6(r/^)2]. (19) 

Subsequent to this work (Adams 1974), it was found that a form for Q which gave less differential rotation for 
the relativistic incompressible stars (cr = pc!pc ~ ^) at the expense of Newtonian stars (o- « 1) was 

Q(r) = Q0{1 - 3r2[R2(2a + S)]"1}“ (20) 

for a ~ y- This form for Q with a = % will be used for one of the examples in the next section. If a is a function of 
o-, then the differential rotation is small over a wide range of a (Adams 1974). 

In terms of x = r2, Q(x), and/(x), a>(x) can be written from equation (17) as 

cu(x) = Q(x) + xíy(x)/2 - (5ÍY + 2xD")(l ~ *f)[Mp + P)]'1 • (21) 

IV. EXAMPLES 

In this section we present a number of new analytic solutions using the method described above. 
Case 1. Assume that A"(x) = 0 which implies 

A = aQ + a±x . (22) 

From equation (10) we obtain 

g(X) = I ln(a0 + 3flix) , (23) 

which (from eq. [11]) leads to 

/(*) =/o(tfo + SßjXT2'3 . (24) 

From equation (13) and the requirement that the pressure be zero at the outer radius,/0 is found to be 

f0 = 4a1(fl0 + 3a1R
2ra(a0 + Sa.R2)-1. (25) 

From equations (12) and (13) we obtain expressions for the density and pressure: 

8ttp = 4a1(a0 + 3a1i?2)2,3(3a0 + 5a1x)(a0 + 3a1x)_5,3(a0 + Sa^2)“1, (26) 

8np = dßi [1 — (aQ + 3a1R
2)2l3(a0 + Sa^^cio + 3a1x)~2ls(aQ + 5aii?2)_1](a0 + flix)-1. (27) 

The ratio of central pressure to density (<r = pjpc) can be expressed in terms of the parameter y = a.xR2la0. By 
evaluating equations (26) and (27) at x = 0, we see that a can be expressed as 

3a = (1 + 5y)(l + 3y)-2'3 - 1 . (28) 

Table 1 gives a and dyjda as a function of y. This table will be used later to compute stellar models. In terms of 
y and pc the radius and mass are 

R2 = 3y(2npc(l + 3a))-1, (29) 

m = 2yR(l + Sy)-1. (30) 

The parameter a0 can be determined from the requirement that this solution match smoothly to the exterior 
Schwarzschild solution, i.e., 

A(R) = (1 - 2mR-1)1'2 , (31) 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
7 

5A
pJ

. 
. .

19
8.

 .
50

7A
 

510 ADAMS AND COHEN Vol. 198 

TABLE 1 
a AND dyjda VERSUS y 

which implies from equation (22) 

û0-
2 = (1 + 5j)(l + y). (32) 

As for the rotational properties, we assume that 

Q(x) = Q0(l - 3*(2i0"2)1/2. (33) 

By evaluating equation (21) at the origin [ojc = co(0)], we obtain the relation between ü0 and a>c: 

Q0 = 32y(l + *K[5(1 + 3cr) + 32X1 + tf)]"1. (34) 

The angular momentum of this body can be found by evaluating equations (18) and (33) at the outer radius and 
by using equation (34) to express Ü0 in terms of o>c : 

/ = 8yi£3(l + o-K(5(l + 3cr) + 32X1 + ^))"1. (35) 

Since from equation (30), R = m(l + 5y)(2y)~1, equation (35) can be rewritten as 

j= 4MR2œc(l + a)(l + 5y)[5(l + 3cr) + 32X1 + ct)]-1. (36) 

Although the concept of a moment of inertia is not useful if the rotation is not rigid, as long as a)(x) does not change 
sign for a: less than R2 the ratio of J to œc is a measure of how well the body can resist an external torque. Hence, 
for want of a better term, we will call the ratio of /to coc the “moment of inertia.” As a measure of the uniformity 
of the rotation we will use the ratio œ(R2)/œc. From equation (21) this is 

o)(R) = 4(1 + aK(12 + 51 y + 41/)(3 + 5y)~1[5(l + 3a) + 32X1 + cr)]'1. (37) 

Case 2. Assume that 

A(x) = b0 exp (bi^x) . (38) 

Retracing all the steps from equations (23) to (32), we have for y = 2è1jR2/è0 

g(x) = 2b1x, (39) 

f(x) = [fo + 2b1J(2b1x)]exp(-2b1x), (40) 
where 

J(q) = e-^EiO +q)~ 1.89512] (41) 
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TABLE 2 
Bethe Johnson Equation of State and Neutron Star Parameters as 

Calculated by Borner and Cohen (1973) 

Pl5 P35 a M33 Z0 I45 

3.16  12.5 0.439 9.78 3.72 2.08 1.54 
2.51   8.23 0.364 10.25 3.69 1.64 1.64 
2.00   5.34 0.296 10.73 3.59 1.28 1.68 
1.58  3.37 0.237 11.19 3.39 0.98 1.66 
1.26  2.11 0.186 11.59 3.10 0.74 1.55 
1.00   1.27 1.141 11.91 2.71 0.55 1.35 

Note.—p15 = po/1015 g cm-3, P35 = P0/1035 dyn cm-2, a — P0¡pQi R5 = P/105 cm, M33 = 
M/1033 g; Z0 = yá(O)-1 - 1;/45 = I/1045 gm-cm2. 

and Ei(l + q) is the exponential integral (Abramowitz and Stegun 1964). The integration constant /0 is given by 

f0 = 2b1[2e\\+ 2y)-' -J(y)], (42) 

and p and p by 

877p = + 2b1x)~1 + 2Z?1(3 — 4Z?1x)[/(2Z?1x) — J{y) + 2^(1 + 2j)_1] exp ( —26!^) , (43) 

$Trp = 40^1 — (1 + 4b1x)(l + 2y)~1 exp (y — 2b1x) + (1 + 4b1x)[J(y) — exp ( —2^!x)/2]. (44) 

In terms of y, the ratio of Pc to pc is 

3 o- = [2 + J(y) - 2^(1 + 2y)~1][2ev(l + 2yy' - J(y)]-' . (45) 

The total mass is 
m = yR(l + 2y)~1, (46) 

where R is given by 
R2 = 3y[2^(1 + 2y) ~1 - Jiy)]^) ~1. (47) 

Finally, the expression for Z>0 is 

= [ey(l + 2y)]~112 . (48) 

From equation (46) it can be seen that as y -> oo, 2mR~1 1. In this same limit, however, o- -> —3-, so this limit 
is not physically achievable. For nonnegative cr, the maximum y is about 2. 

Case 3. The form A(x) = e~bx(l + 2bx) gave a very simple result for/(x) but resulted in negative pressure for 
all values of b. 

V. APPLICATIONS 

In this section we use the results of the first example (case 1) to calculate the mass, radius, redshift, and “moment 
of inertia” of a fluid body whose equation of state at the center is the same as that calculated by Bethe and 
Johnson (Borner and Cohen 1973). This, of course, does not mean that we are using the Bethe-Johnson equation 
of state, since ours would differ from theirs for all x greater than zero. We are using their pressure versus density 
curve to set the scale and to show that a simple analytic model can give reasonably accurate answers in certain 
limited density ranges. This model cannot be expected to give reliable answers for o- < 0.2, since the density 
becomes more and more like incompressible matter as a goes to zero. This approach has many points in common 
with that of Bludman (1973) who used polytropes. 

TABLE 3 
Neutron Star Parameters as Calculated from Analytic Formulae 

Pis o' y P5 ^33 Z'o I45 

3.16  0.439 0.921 9.00(8) 4.00(7.5) 2.28(9.6) 1.94(26) 
2.51   0.364 0.675 9.10(11) 3.79(2.7) 1.71(4.1) 1.87(14) 
2.00   0.296 0.490 9.13(13) 3.49(2.8) 1.26(1.6) 1.76(4.8) 
1.58  0.237 0.355 9.20(17) 3.16(6.8) 0.94(4.1) 1.74(4.8) 
1.26  0.186 0.256 9.15(21) 2.77(11) 0.69(6.8) 1.44(7.1) 
1.00   0.141 0.179 9.04(24) 2.32(14) 0.49(11) 1.20(9.6) 

Note.—Percentage errors are in parentheses. 
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512 ADAMS AND COHEN 

Table 2 gives the results from the Bethe-Johnson equation of state as calculated by Borner and Cohen (1973). 
Table 3 gives the results of the analytic model as calculated by a slide rule. The numbers in parentheses are the 
errors of our results relative to the computer-generated ones. The procedure used was that for each density, a 
was calculated from Table 2, and y was calculated by interpolation from Table 1. From equations (29), (30), 
(32), and (36) the radius, mass, redshift at the center (zQ = do'1 — 1), and moment of inertia were calculated. 

VI. CONCLUSIONS 

From Table 3 it can be seen that the gross features of sophisticated computer models can be duplicated within 
15 percent by a simple analytic model. It is to be hoped that there will soon be discovered a simple form for A(x) 
for which all the integrals can be done analytically, which will give even better numerical agreement. If these 
integrals can be done, we can obtain additional solutions besides the two presented in the paper. 

We thank Dr. Sidney Bludman for discussions at the start of this work. 
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