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SUMMARY 

Recent theoretical work has shown that atmospheric seeing which would be 
regarded as poor for conventional imaging is desirable for attaining diffraction- 
limited resolution from an aberrated telescope using speckle interferometry. 
This result is discussed and illustrated with computational examples. An 
expression is derived for the overall signal-to-noise ratio in speckle interfero- 
metry. The signal-to-noise decreases as the seeing deteriorates; in practice 
therefore the optimum form of seeing for speckle interferometry depends in a 
complicated manner on the desired signal-to-noise ratio at a specified spatial 
frequency and on the telescope aberration. It is also shown that binary stars 
of magnitude ^ 16 should be detectable in reasonable observing times 
using realistic detection parameters. 

I. INTRODUCTION 

The technique of stellar speckle interferometry was first proposed and used by 
Labeyrie et al. (1-4) to obtain diffraction-limited resolution in the presence of 
atmospheric seeing. It has also been used for solar astronomy (5). A large number 
of short exposure {t ^ io-2 s) photographs are taken through a narrow band 
colour filter (AÀ ^ 25 nm). For each instantaneous record, the quasi-mono- 
chromatic incoherent imaging equation applies: 

I{è, v) = V) ® r¡) (1) 

where /(£, r¡) is the instantaneous image intensity, 

0(|, r¡) is the object intensity, 

¿(£,77) is the instantaneous point spread function of the atmosphere/ 
telescope system, and 

(g) denotes convolution. 

The analysis of this data may be carried out in either one of two equivalent 
ways. In the spatial domain, the ensemble average space autocorrelation is found, 
giving the resultant imaging equation, 

C($, r]) = </(£, 7]) # /(£, rj)} 

= {0(£, r,) £ 0(i, r¡)} 0 {<t(i, r,) $ t(Í, ^)>} (2) 

where # denotes space autocorrelation. 
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632 J. C. Dainty Vol. 169 

In the spatial frequency domain the average squared modulus of the Fourier 
transform (i.e. the Wiener or power spectrum) of the image intensity is found, 

W{u, v) = <|î(w, ®)|2> 

= \o{u,v)\z.(\T{u,v)\*) (3) 

where i(uy v) is the Fourier transform of the image intensity, 

o(w, v) is the Fourier transform of the object intensity, and 

T(w, v) is the instantaneous transfer function and equals the Fourier 
transform of *(£, 77). 

The operations described by equations (2) and (3) are equivalent, C(£, rj) and 
W(u,v) being Fourier transform pairs; when implementing the method, auto- 
correlation may be more suitable if digital techniques are used, whereas determina- 

tion of the Wiener spectrum is more conveniently carried out using coherent 
optical methods. 

When evaluating the potential resolution of speckle interferometry it is more 
convenient to use the spatial frequency domain expression given by equation (3). 

The quantity (\T{uy fl)|
2> is the transfer function of the speckle technique, and a 

number of authors have derived its possible forms using models of varying degrees 

of sophistication (6-11). It can be shown (see Section 2) that for very poor seeing 
the transfer function has a component proportional to the diffraction-limited transfer 
function of the telescope, regardless of telescope aberrations. However, this 
analysis also indicates that the constant of proportionality and hence the signal-to- 

noise ratio also decreases as the seeing deteriorates. 
A detailed examination of the signal-to-noise ratio is more conveniently carried 

out in the space domain following equation (2), and this is considered in Section 3 
for binary stars. The rms signal-to-noise ratio is inversely proportional to the square 
root of the average number of speckles per picture and therefore decreases as the 
seeing deteriorates. Thus in practice there is an optimum quality of seeing that 
depends on the interaction of the incident wavefront and telescope aberrations, 

and on the desired signal-to-noise ratio. 

2. THE TRANSFER FUNCTION 

The form of the transfer function <(T(w, ^)|2) is found by calculating the 
Wiener spectrum of the instantaneous intensity from an unresolvable star (see 
Fig. 1). In order to do this, it is necessary to make some assumption about the 

form of the probability density function of the complex amplitude of the perturbed 
wavefront from the star, Z(x,y). It is fairly well established (12, 13) that the log 
amplitude and phase each have a Gaussian probability density function; this 

model was used by Korff (8), but leads to considerable mathematical complexity. 

It can be shown that the phase of the incident wavefront is random in the interval 
— tt to tt if the time-averaged image does not have a significant central core; this 

is the case for the usual seeing conditions. Because of this, we may use a model in 
which the complex amplitude is a complex Gaussian process (real and imaginary 
parts separately Gaussian) as a good approximation to the true situation, and this 
leads to a very much simpler analysis (6, 7, 11). 

Assuming that the received wavefront is complex Gaussian, the transfer 
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Fig. i. The formation of an instantaneous image of a point source through the atmosphere. 

function of the speckle technique is given by the expression (7), 

<|r(«,t;)|2> = |C^)|2|7o(M> v)12 

+k ÍJJJ' C2(a!2 - X\, -yi) 12 A(xi, Ji) A*(x2, y2) 

xA*(x1 + x)yi+y)A(x2+x,y2+y) 

x dxx dyi dx2 dy2 (4) 
where, referring to Fig. 1, 

A(x, y) is the pupil function of the telescope, 

Cz(x, y) is the autocorrelation function of the complex amplitude of the received 
wavefront, 

To(u, v) is the optical transfer function of the telescope and depends on any 
aberrations that are present, 

Æ is a constant, 

and (x,y) and («, v) are related by # = Xfu and = Xfv where/is the focal length. 
It can be seen from equation (4) that the overall transfer functions consists of 

two components. The normal time-average transfer function <T(w, ?;)> is given 

by (7.14> 
<T(u,v)) = Cz(x,y) T0(u,v) (5) 

regardless of the first-order statistics of the random medium. Thus the first term 

of the transfer function of the speckle technique is simply the squared modulus of 
the time-average transfer function, and we may write, 

<| T(w, î;)|2) = |<T(w, ^))|2 + a second term. 

The function Cz(x, y) describes, in general terms, the correlation of the complex 
amplitude across the received wavefront and under average seeing conditions may 
take on fairly large values over a diameter do of approximately 20 cm. For a well- 
corrected telescope of diameter large compared to ¿0, the second term simplifies to 
the form of the diffraction-limited transfer function T^(z/, v) associated with the 
telescope aperture, and therefore, 

< I T{u, *012> = I (Jiu, *)> 12 + kTÄ{u, V) (6) 
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634 J- C. Dainty Vol. 169 

where for an unshaded pupil 

Ta{u, v) = I A{xy :v) 12 # I A(xry) |2. 

The first term in equation (6) arises from the average distribution of intensity in 
the instantaneous image, whereas the second term arises from the fluctuation of 
intensity in each image and carries the diffraction-limited information. 

Typical forms of ^)> |2 and Ta(u, v) each normalized to i-o at zero 
spatial frequency are shown in Fig. 2(a) for the case of i? = do/D = o-i (i.e. 
telescope diameter 10 times the diameter of the seeing correlation area). However, 
in equation (6) the two functions are normalized such that their volumes are equal; 

Fig. 2. (<2) The square of the time-averaged transfer function, | <T(w, v)y \2, and the 
diffraction-limited transfer function, Ta(u, v), each normalized to i*o at the origin, if) As 
(a), with Ta{u, v) scaled by the constant k. 

this follows from the result that the variance of a speckle pattern equals the square 
of the mean intensity. If the first term stays normalized to i-o at the origin, then 
the factor k is approximately equal to R2, and the two normalized terms of equation 
(6) are shown in Fig. 2(b). Clearly, the diffraction-limited information appears to 
have a low signal value when this type of normalization is applied. However, the 
question of normalization of the second term and of signal-to-noise ratio are more 
conveniently examined from another point of view (Section 3). 

The second term in equation (4) only reduces to a form proportional to the 
diffraction-limited transfer function when the seeing is poor {d^D) and the 
telescope is free of aberrations. In general, the second term depends on the form 
of the seeing correlation function Cz(x, y) and the telescope aberrations, and this 

dependence is illustrated in Figs 3 and 4. In each case the form of Cz{x, y) is taken 
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Fig. 3. Speckle interferometry transfer functions for defocus values of o, i/tt, 2/tt and 4/77 
wavelengths. The parameter R = dojD is a measure of the quality of the seeing, for a given 
telescope diameter, {a) R — 0*4, (b) R — 0-2, (c) R = o-i. 

to be a ‘ top hat ’ function as shown in each figure in which the extent of the 
correlation area is shown relative to the telescope aperture; this form is chosen for 
computational convenience to illustrate the essential features of the dependence. 

In Fig. 3 the speckle interferometry transfer functions (second term normalized 
at origin) for a defocused telescope are plotted for three cases of seeing, R = 0-4, 

41 
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636 J. C. Dainty Vol. 169 

Fig. 4. Speckle interferometry transfer functions for various values of spherical aberration 
optimally balanced by defocus: the values indicated on curves are the spherical aberration in 
wavelengths, {a) R = 0-4, (b) R = o-i. 

0-2 and o-i. For each seeing condition, transfer functions are shown for defocus 
values of o, 1/77, 2/77 and 4/77 wavelengths; the diffraction-limited transfer function 

of the telescope is also drawn. In Fig. 4 the speckle interferometry transfer functions 
for a telescope with spherical aberration optimally balanced by defocus are shown 
for seeing R = 0-4 and o-i. From Figs 3 and 4 it is clear that poor seeing (R small) 

is desirable if diffraction-limited resolution is to be achieved from an aberrated 
telescope. 

Thus, providing that the seeing is sufficiently poor, the overall transfer function 

is independent of both telescope aberration and the exact form of the seeing, and is 
simply proportional to the diffraction-limited transfer function. If it is important 
that the transfer be a well-defined function, for example when there is no suitable 
reference star available, then poor seeing is desirable and could be achieved by 
introducing an additional scattering medium in the telescope optics (7, 11). It is 
interesting to note that in their analysis of a laboratory method of measuring the 

spatial coherence which is identical to the Labeyrie method, Asakura et al. (i6, 17) 
come to the conclusion that the most desirable diffusers to use are ‘ white noise ’ 
diffusers (equivalent to very poor seeing). 
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3. SIGNAL-TO-NOISE RATIO 

637 

An instantaneous picture of a bright binary star whose components are equal in 
magnitude can be considered to consist of two superimposed identical speckle 
patterns, provided that both components lie within the isoplanatic region. For a 
faint binary, the two recorded patterns will tend to become dissimilar as a result 
of the fluctuation in the numbers of photons that are detected. 

Consider two ‘ corresponding ’ speckles labelled i and 2. Let the average 
number of detected photons in each speckle be <Af> and the actual numbers be N\ 
and ÍV2. The correlation coefficient C between the numbers N\ and Nz is defined as 

c= <iViiV2>-<iV>2 

(Af2) —<iV>2 ^ 

where < ) denotes the ensemble average. At very low light levels, N\ and Nz will 
be statistically independent, (NiNz) = <iVi><ÍV2> = <N>2> and hence C = o. 
At very high light levels N\ and Nz are equal, = (Af2), and hence C = 1. 

In speckle interferometry the autocorrelation of each picture is found (equation 

(2)). The average normalized value of the peak of the autocorrelation is simply the 
correlation coefficient; in other words, C is the signal of the speckle technique and 
depends only on the average number of detected photons per speckle <A^). The 
accuracy with which the correlation coefficient can be measured depends on the 
total number of speckles used in a given measurement ; this accuracy governs the 
noise of the speckle technique. An expression for the correlation coefficient is 
now found. 

At low light levels the numbers of photons detected fluctuate due to (i) the 
random intensity of the speckle pattern, and (ii) the Poisson nature of photon 
detection in a ‘ uniform ’ field. The probability density function for the intensity 
of a speckle selected at random in a speckle pattern formed in polarized light is 
given by 

7>(0 = ^exp(-W»- (8) 

This probability density function results from an application of the central limit 
theorem which assumes that a large number of seeing cells with random phase are 
present in the telescope aperture. When equation (8) is combined with the Poisson 
detection process, the overall probability of recording N photons for an average 
number of (N'y is given by the Bose-Einstein probability density 

<NyN 

Pn = (<iV) + i)iv+1' (9) 

The variance <Af 2> — <Af>2 of a Bose-Einstein distribution is equal to <Af>(i + <W>), 
and the expression for the correlation coefficient reduces to 

<iViiV2>-<iV>2 , x 
c - <iV>(i+<iV»- (IO) 

The average (NiNf) is defined as 

00 00 
ŒxNz) = S 2 PniNv-NiNz 

where PniNz is the probability of detecting N\ photons in 1, and simultaneously 
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638 J. C. Dainty Vol. 169 

detecting N2 photons in 2, where 1 and 2 are corresponding speckles which have 
the same average intensity, m. For a particular value of m the probability density 
is the product of two independent Poisson distributions 

[Pn^nM = exp (-am) m^i+^2. 

The value of m fluctuates according to the negative exponential distribution 
(equation (8)), and therefore for any pair of corresponding speckles selected at 
random, 

i f00 

PniN* = ^jv) jy^ jjVg! J 0 
exP ( ~ 2m)mNl+N* exp (- m/<iV» dm. (i x) 

The right-hand side of equation (xx) can be written in the form of a Laplace 

transform which can be evaluated to give 

p _ (IV1+ÍV2)! (N')Ni+Nz 
NlN* NiÜV2 ! (i + z(N))ni+n2+1' 

The average (NiNz} is therefore given by 

<7VxiV2> = I “ ” (ÍV1+ÍV2)! 
X + 2<iV> N%o N%0 Niim 

l (N) ^1+^2 

\x+2<iV>/ 
ÍV1ÍV2 (12) 

and the correlation coefficient is found by combining equations (10) and (12). 
The correlation coefficient C is plotted as a function of the average number of 

detected photons per speckle <iV) in Fig. 5, which has two notable features. First, 
the correlation coefficient is large for relatively low light levels; for example, 
C 0*5 with an average of only one detected photon per speckle. Second, it can 
be seen both from Fig. 5 and equations (10) and (12) that at very low light levels, 

C~<iV>, XN}<i. 

Fig. 5. The correlation coefficient C as a function of the average number of photons per 
speckle <iV>. 
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No. 3, 1974 Stellar speckle interferometry 639 

It can also be shown that if there is an additive uncorrelated Poisson noise term, 
due for example to sky background, then the correlation coefficient is given by, 

C' = 
<iV> 

1+^ 
<iVKi 

where k is the ratio of the average background level to the average signal level. 
The absolute rms error of an estimate of the correlation coefficient is given 

by(i8), 
I-C2 

G 
VM 

where M is the total number of speckles which in this particular case is equal to the 
product of the total number of pictures Nv and the average number of speckle 
pairs per picture <iVs>, 

M = iVp<iVs>. 

The signal-to-noise ratio Q is defined as C'/cr, and for small <iV> (and hence 
small C), 

9 - mm. (,3) 

It is also useful to write this expression in the form, 

0 _ <AW I NP 

* 2(l+¿)V<iVs> (14) 

where <A^Ph> = 2<iVXArs) is the average number of photons per picture. It should 
be noted that the rms signal-to-noise ratio £) is proportional to the number of 
photons per picture (for small <iVph», and not to the square root of that number 
as in conventional imaging. 

For given seeing conditions both <(iVpii> and <iVs> increase as the square of the 
telescope diameter, and therefore the signal-to-noise ratio increases in proportion 
to the telescope diameter. This result is contrary to the transfer function analysis 
given in Section 2 which ignores the number and statistical fluctuation of detected 
photons. For a given telescope diameter, the signal-to-noise ratio increases in 
proportion to the average number of photons per picture; this is in contrast to the 
usual Poisson detection situation where the signal-to-noise ratio increases as the 
square root of the photon flux. It should also be noted that additive random noise 
does not have a particularly significant effect on the signal-to-noise ratio, although 
given sufficient observing time it will ultimately determine the limiting magnitude 
recordable. 

The average number of speckle pairs <iVs) increases as the square of i/i?, 
where R is ratio of the seeing patch * diameter ’ to the telescope diameter. The 
signal-to-noise ratio Q is therefore proportional to i?, that is, the overall signal-to- 
noise ratio decreases as the seeing deteriorates (small R). 

The overall signal-to-noise ratio calculated above can be considered to be a 
scaling factor that should be applied to the speckle transfer function; the relative 
value of this scaling factor is simply R if the total number of pictures and photons 
per picture remain constant. When examining the effect of seeing on the transfer 
function, such as in Figs 3 and 4, this scaling factor should be taken into account. 
For example, Fig. 3(b) and (c) should be scaled by factors of o*2/o*4 = 0*5 and 
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640 J. C. Dainty Vol. 169 

o*i/o*4 = 0*25 relative to Fig. 3(a). In Fig. 6(a) and (b) the results shown in Fig. 3 
for defocus values of o and 4/77 have been redrawn with this normalization. 

In speckle interferometry we are generally interested in the high spatial fre- 
quency information, and it can be seen from Fig. 6 that the relative amplitude of 
this information depends in a complicated way on the aberrations and seeing. For 

Fig. 6. Speckle interferometry transfer functions scaled by the overall signal-to-noise 
ratio, (a) Aberration-free, (b) defocus of 4/n wavelengths. 

a well-corrected telescope, then we can in general say that the amplitude of the 
high frequency information decreases as the seeing deteriorates (Fig. 6(a)). But for 
a highly aberrated system (Fig. 6(b)), the amplitude of this information will increase 
as the seeing deteriorates up to some maximum value, after which it also decreases. 

4. LIMITING MAGNITUDE 

Suppose that an rms signal-to-noise ratio of 5 defines a just detectable result. 
Then assuming no additive noise (k = o), 103 speckle pairs per picture on average, 
and 106 pixtures used in the superposition, we require an average of 0-3 detected 
polarized photons per picture (from equation (14)). Assuming 15 per cent detective 
quantum efficiency for the detector this corresponds to an average of 2 incident 
polarized photons or 4 incident unpolarized photons per picture. At an exposure 
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No. 3, x974 Stellar speckle interferometry 641 

time of io~2 s this is equivalent to a flux rate of 400 photons s-1. Using the value of 
6-5 x io3 photons in-2 s-1 Â-1 for the flux from a zero magnitude object (19), and 
assuming a 200-in. telescope and a 250 Â bandpass, we have approximately 5 x 1010 

photons s-1 for a zero magnitude star; therefore the limiting magnitude is 

. /5xio10\ 
- log2-51 ^  — 20. 

\ 400 / 

In principle this limit is achieved in 106. io-2 s = 2*5 hr of observing time, although 
in practice there is a certain dead time between records. 

More realistic observing parameters are io4 pictures, a detector DQE of 10 per 
cent, and background noise equivalent to & = 1, giving a limiting magnitude of 
approximately mv =16 for a binary object. It should be emphasized that this 
value applies only to binary objects. The main purpose of this analysis of limiting 
magnitude is to indicate that speckle interferometry is capable of detecting much 
fainter objects than either intensity interferometry or Michelson interferometry. 
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