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ABSTRACT 
We have tested the stability of a thin, orbiting accretion disk near a black hole. Under conditions 

appropriate for a binary X-ray source, with the usual (ad hoc) assumptions about viscosity, the disk is 
always secularly unstable on time scales of a few seconds or less. Therefore current thin-disk models 
for such X-ray sources are seK-inconsistent. We mention possibilities for alternative models; perhaps 
the secular instabihty explains chaotic time variations in Cygnus X-l. 
Subject headings: binaries — black holes — instabilities 

Current models (Pringle and Rees 1972; Shakura and 
Sunyaev 1973; Novikov and Thorne 1973) for binary 
X-ray sources powered by accretion onto a black-hole 
companion envisage the gas flow near the hole as either 
a thin, orbiting disk or a thick, perhaps chaotic cloud. 
If the X-ray luminosity L exceeds the Eddington limit, 
LED^ (1038 ergs s-1) (Mbb./Mq), where MBh = mass 
of black hole, then the cloud picture is more likely. 
Moreover, even at luminosities somewhat lower than 
the Eddington limit, say L > 10“2 LED (all figures 
quoted will be for typical parameters of accretion 
models), thermal instabilities caused by optical thinness 
(Pringle, Rees, and Pacholczyk 1973) may disrupt the 
inner region of a thin disk, transforming it into a thick 
cloud. We wish to point out in this Letter that, with the 
usual (ad hoc) assumption about the viscosity, detailed 
thin-disk models are always secularly unstable over the 
whole “inner region” (that region where radiation 
pressure dominates gas pressure, Pr > Pu, and the 
dominant opacity is electron scattering). Such an inner 
region exists near the hole when L > 10“4 LED. There- 
fore these models are inconsistent. The observational 
consequences are great since most of the X-ray lumi- 
nosity originates in the inner region. 

The current thin-disk models (Pringle and Rees 1972; 
Shakura and Sunyaev 1973; Novikov and Thorne 1973) 
are stationary and include two key assumptions: 

(a) Accreting matter forms a thin, orbiting, non- 
self-gravitating disk drifting inward on a slow time 
scale /drift (slow compared with thermal and Kepler 
time scales). The drift is caused by viscous stress 
removing angular momentum. 

(b) Although the viscous stress t$? arises from in- 
tricate processes (e.g., turbulent motions on fast time 
scales, or magnetic fields), it may be approximated on 
slow time scales ^ /drift and longer by 

tipr = aPtot > (I) 

* Supported in part by the National Science Foundation 
[GP-36687X, GP-28027]. 

where Ptot = Pr+ Pg and « is a number believed to 
lie between 10“3 and 1. 

To investigate stability of the above models we 
generalize them to allow time-dependence in the radial 
disk structure on the slow time scale /drift (a few seconds 
at the outer edge of the inner region ; a few milliseconds 
at the inner edge). We shall sketch the development 
here. For a complete discussion of the stationary 
models, see Novikov and Thorne (1973) and Shakura 
and Sunyaev (1973). For a complete discussion of the 
time-dependent generalization, see Lightman (1974). 

Variables describing the local, instantaneous state of 
the disk are surface density 2(r, /) (g cm“2), total 
inward mass flux M(r, t) (g s-1), mean half-thickness 
h(r, t) (cm), mean pressure P(r, /), mean temperature 
T(r, /), radiative flux F(r, /) (ergs cm“2 s“1) from top of 
disk (= same from bottom), and vertically-integrated 
viscous stress W(r, t) ~ 2ht$î (dyne cm“1) (means are 
vertical averages). The structural equations relating 
these variables (ignoring relativistic corrections) are: 

Equations of radial structure: 

2wr ^ (conservation of mass) (2a) 
dt or 

M = f (2irr2W) 
dr dr 

(conservation of angular momentum) ; (2b) 

here Í2 = (GMbhA3)172- Equations (2) are exact. 
Equations of vertical structure (specialized to inner 

region): 

F — ffílY (conservation of dissipated energy), (3a) 

F = %acT*/ (/ccompt 2) (vertical 

radiative diffusion, Compton opacity), (3b) 

LI 
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P = |M222 (vertical pressure balance against 

out-of-plane gravitational forces of black hole), (3c) 

P — P R = \aT* 
(equation of state, Pr » P<?), (3d) 

W = 2ahP 

(source of viscosity, eq. [1]). (3e) 

Equations (3) are only approximate, because of un- 
certainties in averaging over vertical structure. 

The stationary models are obtained by setting 
d2/d¿ = 0 in equations (2), (3). 

For time-dependent models, it is best to choose 
2(r, /) as the sole independent variable characterizing 
the local, instantaneous state of the disk. Then, at each 
(r, t), one solves equations (3) algebraically for h, P, 
P, P, and W as functions of (2, r). It is essential to 
determine TF(r, t) self-consistently in this way, rather 
than to fix W through equation (2b) from a given M, 
as one does in the stationary case. Equations (2) yield, 
as the evolution equation of 2(r, ¿), 

The instability arises in the inner region for the 
following reason: Equations (3) give 

PF(2, r) = const./2 . (5) 

[To justify this paradoxical result: Since Pr^> Pg, P 
is not determined directly by p (p = '2/2h), but only 
by T; and in fact T and P turn out to be independent 
of 2. Equation (3c) implies h oc 2-1; then equation (3e) 
shows W cx S-1.] The integrated stress W is here a 
decreasing function of 2; hence the nonlinear diffusion 
equation for 2, equation (4), has a negative effective 
diffusion coefficient. As a result an initially stationary 
disk tends to break up into rings Ar > /z, on time 
scales ~ (Ar/r)2 /drift; alternate rings have high-2/low- 
W and low-2/high-íT. The density contrast grows 
because matter is pushed into regions of minimum 
viscous stress W. Eventually the low-2 regions become 
optically thin and hence thermally unstable (Pringle 
et al. 1973). As 2 grows in the high-2 regions, eventually 
a regime is reached in which the disk cannot radiate as 
much energy as it is generating and the vertical struc- 
ture equations fail to admit a solution. Therefore the 
growing instability causes a complete breakdown in the 
thin-disk picture, assumption (a). These conclusions 
are supported by detailed analytic and numerical 
calculations which one of us (A.P.L.) will report else- 
where (Lightman 1974). 

Definitive models must therefore await a better 
understanding of viscosity: we mention two quite 
distinct possible alternatives to current models : 

1. Assumption {a) fails because assumption (b) is 
roughly correct. Around the hole forms a cloud, which 
is 10 to 100 times larger than the hole. If dissipation is 
efficient (expected, since accreting matter must still 
lose its angular momentum), the cloud may emit X-rays 
as a hot, thin plasma with Comptonization probably 
important (Felten and Rees 1972; Illarionov and 
Sunyaev 1972). Alternatively, synchrotron cooling may 
be important. Gross time variations, both in intensity 
and in spectrum, are expected on the hydrodynamical 
time scale of the cloud ^ tens to hundreds of milli- 
seconds and longer. If the cloud is optically thick to 
Compton scattering, time variations on time scales 
shorter than the random walk time of a photon through 
the cloud ^ rr/c (r =- optical depth) may be lost (F. K. 
Lamb, private communication). In particular, sub- 
millisecond time variations in signal, originating very 
near the hole (Sunyaev 1972), might be hopelessly 
smeared out by scattering in the translucent cloud. 

2. Assumption (¿>) is seriously wrong. With a a 
function of 2 rather than a constant in the time- 
dependent case (eq. [1]), a stable, stationary, thin disk 
is possible if a falls at least as fast as 2-1 in the inner 
region {less efficient viscosity). Such an a leads in turn 
to a 2(r) that increases steeply toward the hole. For 
example, (Cunningham 1973), equation (1) might be 
replaced by 

ttf = ßP0 , ß = const. , (6) 

even when Pr^> Pq. (Perhaps this relation is preferable 
for a self-limiting magnetic viscosity, since gas is frozen 
to the Æ-field while radiation is not.) The stationary, 
thin-disk model resulting from equation (6) is stable 
and is much like current models except that 2 is much 
greater in the inner region (typically 25 times greater 
at r = IOGMbhA2). The thickness, 2h, is still <2 X 
105 cm. This dense disk is quite optically thick and is 
probably immune to thermal or magnetic disturbances 
on length scales ~h) hence, chaotic variations in the 
X-ray signal are likely to be negligible. 

Observations (Schreier et al. 1971) of Cygnus X-l 
(and similar sources which have been advanced as 
black-hole candidates) favor alternative (1), since the 
observed signal is chaotic on all time scales from tens of 
seconds to ^50 milliseconds (instrumental limit). For 
either alternative, we believe that the prospects of 
seeing characteristic (<ms) time variations originating 
very near the hole are poorer than has been generally 
supposed on the basis of current models (Sunyaev 1972) . 

The same instability arises in a disk around an 
unmagnetized neutron star. For a magnetized neutron 
star, a disk does not extend inside the magnetosphere 
(Pringle and Rees 1972); there is no inner region, hence 
there is no instability. 

We are grateful to colleagues at the California 
Institute of Technology for discussions, especially 
K. S. Thorne. 
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