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SUMMARY 

This paper presents an algorithm by means of which composition changes 
in stars due to nuclear reactions, convection and semiconvection can be 
relatively simply calculated. The algorithm is based on a simple physical 
picture of convective mixing as a diffusion of convective cells throughout a 
region of a star; however it is not essential to the method that this physical 
picture be exact. We attempt to show that the method tends, in a limiting 
sense, to give results which are identical with the * standard * treatment of 
mixing by convection or semiconvection, for a wide range of possible physical 
models of convective mixing. The essence of the method is the simultaneous 
solution, in an implicit difference scheme, of equations governing both the 
structure and the composition changes in a star. One defect of the method 
as it was employed here is discussed, and some solutions suggested. Qualita- 
tive results are presented for a 14 M© main sequence star and a 0*775 M® 
horizontal branch star. 

I. INTRODUCTION 

During the lifetime of a star, its composition, i.e. the relative abundances 
of different elements and isotopes, changes basically because of nuclear reactions 
in the deep interior. However, at a given point in a star, for instance at a given 
mass coordinate, the changes in composition with time may be due either to 
nuclear reactions or to convective mixing; and in certain circumstances it may 
be necessary to invoke the concept of semiconvective mixing (Schwarzschild & 
Härm 1958; Paczyñski 1970). The purpose of this paper is to describe a numerical 
procedure by which these three composition-changing processes can be included 
rather simply in an evolutionary calculation. The method is based on a highly 
qualitative physical picture of convection and semiconvection as a diffusion 
mechanism. Although such a diffusion mechanism may be capable of giving quite 
an accurate description of mixing, given a reasonable theory regarding the velocity 
and mean free path of convective elements, we seek to show that numerical results 
of quite sufficient accuracy can be obtained using expressions for the rate of 
diffusion of composition which have no relation to physics but are chosen only 
for numerical convenience. 

Let us define s and c to be sets of functions which describe the structure and 
composition distribution respectively in a star. Notionally, we can write differential 
equations of the form 

f-/M] « 

t - * ^ <2> 

23 
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for the composition and structure distributions, where /, g are functionals (which 
cannot, of course, be written explicitly as functions of s, c). For a finite time-step 
A* we can approximate equations (1) and (2) in an ‘ explicit ’ fashion 

Ac = f[s, c] At (3) 

Ai = £[>, c] At, (4) 

where s> c, are the structure and composition at the beginning of the interval. 
However, the nature of nuclear burning, of hydrostatic equilibrium and of diffusion 
processes including the diffusion of heat through the star and the diffusion of 
composition through convection regions, is such that we would expect an ‘ implicitJ 

method, i.e. the simultaneous solution for Ac, As of the equations 

Ac = f[s+As, c+ Ac] At (5) 

As = ^[s+As, c +Ac] At, (6) 

to be more reliable. For sufficiently small At, both the implicit and explicit formula- 
tions give much the same accuracy, but in the explicit scheme errors tend to 
grow exponentially with time, unless At is taken unreasonably small, whereas in 
the implicit scheme errors tend to be damped exponentially. 

Computational methods of which we are aware tend to be a mixture of implicit 
and explicit treatments. For instance, the scheme 

Ac = f[s, c] At (7) 

As = ^[s+Ai, c +Ac] At (8) 

gives the composition changes explicitly, while solving for the structure implicitly. 
A more reliable procedure is to iterate towards a solution of equations (5), (6), 
for instance thus: 

Acra = /D +A%_i, c+Acn_i] At (9) 

= g[s+Asn, c +Ac?J At. (10) 

This scheme will be started with an initial guess A$o, Aco, which might be zero, 
for instance. If such a scheme converges at all, we would expect it to converge 
to the solution of equations (5) and (6). However, even if a solution of the implicit 
equations exist, there is no guarantee that equations (9) and (10) will converge 
to it; and while they generally do converge when semiconvection is absent, there 
appears to be some difficulty, or a complete lack of convergence, when semi- 
convection arises (Paczynski 1970). On the other hand, solving the fully implicit 
scheme, equations (5) and (6), should not have this difficulty, since no iteration 
is involved at this level (but note that an internal iteration is normally involved, 
since equations such as (5) and (6) together, or (8) by itself, are usually trans- 
cendental and have to be solved by some such iterative procedure as Newton- 
Raphson). It is our experience that a totally implicit scheme, which involves 
solving simultaneously for both the structure and the composition, can be very 
effective, particularly when semiconvection arises. 

In a previous paper (Eggleton 1971) hereafter referred to as Paper I, the author 
has outlined a method for computing stellar evolution in which composition 
changes are calculated implicitly. In Paper I this technique was used only for a 
star in which there was little or no convective or semi-convective mixing, and 
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it was shown that in this simple case the method was very effective in dealing 
with thin shell sources of nuclear energy in low mass red giants. Paper I also 
outlined a possible modification to the method which would allow both con- 
vection and semiconvection to be incorporated very simply. In the present paper 
we show that this modification does in fact work in some circumstances, and 
probably would have worked in all circumstances had we not made an unfortunate 
error which will be described in due course. The method is applied here to two 
stars: one is a massive star (14 M0), in which a linked convection/semiconvection 
zone appears for a short time during the rapid collapse of the helium core towards 
helium burning; the other is a putative horizontal branch star of 0.775 M0, in 
which a substantial semiconvection region surrounds the fully convective helium 
burning core during much of the star's lifetime on the horizontal branch. The 
evolution of the chemical composition of these stars is crudely illustrated in Figs 

i and 4. 

2. CONVECTIVE AND SEMICONVECTIVE MIXING 

We have already outlined in Paper I the method used here, and so we begin 
by elaborating on the treatment of convection and semiconvection as a diffusion 
process. Let us define, in the standard way, three temperature gradients Va, Vr 

and V (each being a gradient of log T against log P): 

V a 
8 log T\ 
d log P/ s, composition 

= ixPL 

i67racGmTA (12) 

V = Vr if Vr < Va 

=: Va4-P(Vy —Va) if Vy > Va. (r3) 

Va, which generally lies in the range 0.05 < Va < 0.4, is the adiabatic tempera- 
ture gradient; Vr, the ‘radiative gradient’, is the temperature gradient which 
would be necessary to carry all the heat flux if convection were incapable of carrying 
heat; and V is the actual gradient that the star adopts, assuming (in convection 
zones) that the flux of heat carried by convection is given by some local formula 
such as the mixing length theory of Böhm-Vitense (1958) provides. We shall 
refer to the quantity Vr —Va, which determines whether the region is stable or 
unstable to convection, as the ‘ superadiabaticity ’. The function F in equation 
(13) is in principle known, given some local theory of convective heat transport. 

We suppose that the mixing of composition by convection is given by an 
equation of the form 

— (a — 
dm \ dm/ 

DX 

Dt 
±XRx-Sx (h) 

where X is the fraction by mass of a particular nuclear species, XRx is the rate 
at which it is being burnt, Sx is the rate at which it is being produced by other 
reactions (if any), and a is a diffusion coefficient depending on the superadiabaticity 
of the material. Ordinary derivatives are used for derivatives with respect to a 
space variable such as the mass coordinate w, and D/Dt implies a Lagrangian time 
derivative, i.e. a derivative following the motion (we assume spherical symmetry 
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throughout). Equation (14) clearly also applies in radiative zones provided we 
take 

a = o if Vr < Va. (15) 

We shall shortly attempt to show that equation (14) also can be made to apply in 
semiconvection zones, provided the function a is suitably chosen. 

A mixing-length theory of convection would suggest that, on dimensional 
grounds, 

or ~ z;/(477r2p)2 (16) 

where v is the velocity of a typical convective element and / is the mixing length. 
The Böhm-Vitense mixing length theory, as described by Baker & Temesvary 
(1966), leads to the following estimates 

l — ocHpy (17) 

a.(Vr--Va). 
cPr 

XP2H¿ 
(18) 

where Hp is the pressure scale height, c is the velocity of light, Pr is the radiation 
pressure, x is the opacity, and oc is presumed to be a constant of order unity. 
In surface convection layers this formula should be reasonable except very close 
to the surface, where supersonic velocities may be indicated, and where radiative 
heat loss from rising elements to the surrounding medium has to be considered. 
In central convection zones we need to make the following reservations: 

1. Hp tends to infinity at the centre, so perhaps it should be replaced by some- 
thing which tends to a finite value at the centre; 

2. The entire convective core is anyway only one or two pressure scale heights 
in depth; 

3. Near the boundary of the core, the mixing length is presumably at most 
the smaller of olHv and the distance from the boundary. 

Ignoring these considerations for the moment, we can estimate g in typical 
stellar cores, and compare it with the dimensional quantity w#

2/i#, where 
is the star’s mass and t* is its life time in the current evolutionary phase. Using 
equations (16), (17) and (18) with typical values for stellar interiors and with 
a = i, we estimate that 

IO« <^2 < 1010. (19) 

Higher values are appropriate to stars on the lower main sequence (which, how- 
ever, do not usually have convective cores), intermediate values to the helium 
cores of horizontal branch stars, and lower values to upper main sequence stars. 
These values indicate that the typical mixing time of convective cores is ~ 1-10 
years for all these types of model. Further order-of-magnitude arguments applied 
to equation (14) indicate that the gradient of composition within a convective 
core is given by 

* dX m*2 

nr ~ 
dm Gtife 

(20) 

so that the abundance of a species is constant within the convective core to about 
one part in 106 to 1010, depending on the type of model. This justifies the usual 
assumption that the composition is homogeneous within a convective core. Of 
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course, in a rapid phase of evolution such as a helium flash, this kind of estimate is 
not applicable. 

Typically, then, equations (16), (17) and (18) give 

<7 ~ 108 a4/3(Vr—V^)1/3 (21) 

We now note that, despite the large coefficient in this equation, o can be small 
and mixing slow provided Vr—Va is sufficiently small, i.e. 

o- ~ if Vr-Va ~ io~24. (22) 

This is a semiconvective type of situation, where mixing can build up rather 
than wipe out a composition gradient during the star’s nuclear life time. For such 
a situation to occur, it is necessary that the radiative gradient be very closely 
equal indeed to the adiabatic gradient. However, we must bear in mind that the 
mixing length theory can hardly be applied directly to semiconvective zones. 

Near the boundary of a convective core, it is probable that the value of a, 
usually assumed constant and of order unity, drops, in view of the consideration 
mentioned above that the mixing length should not be greater than the distance 
to the nearest boundary. We believe it is reasonable to assume that a -> o as 
Vr—Va o at the boundary. Such behaviour is mimicked by the simple formula 

a ~ ao 
vr-va 

Vr 
(23) 

where ao is the ‘ standard ’ value well inside the core (typically (Vr—Va)/Vr ~ 0*5 
to 0*95 at the centre). If we insert this behaviour into equation (21) we arrive 
at 

io8(^)4/3(V'—V«)5/3*»*2/**- (24) 

This naïve formula also allows the possibility of semiconvection, but now it is 
only necessary that Vr—Va ~ 10-5 in such a region. We do not pretend to have 
a formula for a which will be at all exact, but we suggest that on the one hand 
there is great uncertainty in this quantity, and on the other hand it is not necessary 
to have a physically correct expression in order to obtain sensible answers. It is 
clear that there will be no measurable difference between a semiconvection zone 
where Vr—Va ~ io~5 and one where Vr~Va ~ io-24. In this paper we adopt 
a value for a which is chosen for numerical convenience, and which is 

a = K(Vr-Va)2ni*2lt*, (Vr > Va) (25) 

where values for K that have been used are io4, 105 and 106. While this gives 
slower mixing in fully-convective regions than we would expect on physical 
grounds, the difference between a composition which is constant to one partin 
105, say, and a more realistic one which is constant to one part in 1010 is not 
significant.* Equation (25) gives mixing in semiconvective zones which is rather 
slow: a superadiabaticity of io-2 or io~3 is required to provide the necessary 
mixing. Even so, this means that the model departs from Schwarzschild’s criterion 

by only one per cent or less, and we do not feel that this is a significant discrepancy. 

* The reason for choosing K < 106 is largely the exigencies of using single precision 
(about seven decimal places), although we are not confident that double precision (about 
sixteen decimal places) would automatically make it possible to use larger values of K. 
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In the limit K — 00, we can expect to recover the ‘ standard * formulation, that 
dX/dm = o in convective regions, and that Vr = Va in semiconvective regions. 

We assume in this paper that Schwarzschild’s criterion (Schwarzschild & Härm 
1958) for semiconvection is the correct one; evidence for this is outlined by Spiegel 
(1969). However, the method could presumably be adapted equally to a stability 
condition such as Ledoux’s (1947), which requires that 

Vr > V I ß dlogjx 
a+4-3ßd\ogP’ 

(26) 

for convective instability is the mean molecular weight of the material, and 
ß the ratio of gas pressure to total pressure). 

3. EQUATIONS OF STRUCTURE AND EVOLUTION 

The four standard equations of stellar structure, along with the equations for 
change in composition, can be written 

d log P _ Gm 

dm \7ty^P 

dlogT _ ¿log P ^ 

dm dm ' 

d log r __ i 

dm ^7rrdp 

dL _ P Dp 

dm ~ "Dt+-p*Dt-€: 

dX = Ç 
dm 

(27) 

(28) 

(29) 

(30) 

(31) 

A. 
dm 

DX 

Dt 
bXRx. (32) 

Here X represents a composition variable which will be hydrogen in a region 
where hydrogen burning is important, helium in an inner region where helium 
burning is important, and carbon or oxygen even further in where their burning 

is important. Of course, we could in principle write down one pair of equations 
like (31) and (32) for every nuclear species of interest, but this gives a large number 
of equations to be solved simultaneously; and in most cases, though not all, it is 
found that only one nuclear reaction dominates at a given time and a given position 
in a star. We find that a single variable X whose significance changes between 
regions of different nuclear burning works well. For more detailed results it would 
be better to use two sets of equations like (31) and (32), with two composition 
variables each of which can represent different elements at different positions in 
the star. But for the present paper, where only qualitative results are obtained, 
the present approximation is adequate. 

In equations (30) and (32) ex is the rate of production of energy from the 
appropriate JV-burning reaction, and i?x is the rate at which the particles are 
consumed by this reaction. Generally 

ex = XExRx, (33) 
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where Ex is the ergs per gram available from the nuclear reaction. The quantity 
£, defined by equation (31), is the gradient of composition. V in equation (28) 
is the local temperature gradient, determined by equations (11), (12) and (13) in 
the previous section. 

In Paper I we have described in some detail a method for dividing a star up 
into convenient zones. This method reduces simply to adding a further pair of 
differential equations to the set (27)-(32). The method leads to a value for the 
mass coordinate m at a given mesh point which varies with time. Essentially 
the mesh points are automatically placed at equal intervals of the strange but 
useful function 

qoz —0*02 log P+o-i X+(w/m*)2/3. (34) 

This choice pushes mesh points close together in regions where X changes rapidly 
(such as thin burning shells) or where P changes rapidly (such as the surface, 
or the outer layers of an inert, degenerate core). While the method is very effective 
for its purpose, it is not essential to an understanding of the main burden of 
this paper, which is the interaction of the four structure equations (27)-(3o) 
with the two composition equations (31) and (32), so we will not refer to it further. 

The method we use for replacing equations (27)-(32) by difference equations, 
and then of solving these difference equations, has already been described in 
Paper I. In that paper we were only concerned with the situation o* = o (no con- 
vective mixing), so it is rather fortuitous that the method described there for 
differencing equations (31) and (32) turns out to be suitable for the problem of 
convective and semiconvective mixing dealt with here, but with one reservation 
which we discuss shortly. In essence, we write 

Xk-Xic-i = èic-i§mic-i (35) 

Okèk-ak-lèlc-l = {(Xjc-Xjc(0))l&t +XjcRx, k) ^Wk- (36) 

Here k is an integer which runs from 1 at the centre to, say, N at the surface; 

hm]c is the quantity h{dm¡dq)ic of Paper I, equation (26); 0*5 (Swfc-fSwfc-i) is 
the mass contained in the zone under consideration; and X]^ is the value of 
Xic'm the previous model, a time step Ai earlier (but if the mesh is non-Lagrangian, 
allowance must be made for the change of mass-coordinate with time at each 
mesh point). When <7 is non-zero (in which case it is usually large) equations 
(35) and (36) represent a very stable way of differencing a diffusion equation 
(Richtmeyer 1957), and lead to a solution with f small so that X is nearly constant, 
as expected. On the other hand, when o is zero equation (36) is simply an equation 
for Xjc with solution 

Y — X*(0) 

k i+Rx,kte 

which is also a very stable way of calculating the new composition; and equation 
(35) then simply determines the composition gradient £. In a semiconvection 
zone equations (35) and (36) are too intimately linked with the structure equations 
to be treated separately, but their effect is partly to determine a, and hence the 
slight degree of superadiabaticity. The composition X is then determined partly 
through Vr, since it is the dependence of Vr on composition (via the opacity) 
which generally is responsible for semiconvection. 

It is a pleasant feature of the method that it is not necessary to put a mesh 
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point precisely at the boundary of a convective zone. The equations are quite 
capable of solution even if the boundary Vr = Va lies somewhere in the middle 
of an interval, so that o* = o at one end of the interval and a # o at the other. 
One may of course wonder about the accuracy in such a situation, but we cannot 
see any reason why an interval which contains a boundary should be substantially 
less accurate than one which does not. Furthermore, it is not necessary to know 
in advance whether semiconvection will appear; the method simply puts in semi- 
convection if it arises. 

There is a slight asymmetry in the difference equations (35) and (36), which 
leads to a problem in connection with the 14 M0 model. The asymmetry is due 
to the fact that in equation (36) the composition gradient £, which is an average 
across one zone, is multiplied by the value of a at one end of the zone rather than 
by an average across the zone. We ought to multiply by, say (or^ + cr^fij/z, 
but in that case the difference equation (36) would no longer have the simple 
character that we assume for convenience, i.e. that it contains only values at one 
end or other of the interval. The asymmetry does not matter in a zone which is 
convective at both ends or radiative at both ends, or which is convective at the 
inner end and radiative at the outer end, but it can lead to a physically unrealistic 
situation in a zone which is radiative at the inner end and convective at the outer 
end. In Section 4 we illustrate this difficulty, and in Section 5 we suggest some 
means of overcoming it. 

The boundary conditions appropriate to equations (35) and (36) have to be 
considered. These equations, for which £ = 2, 3, ... iV, do not contain the 
value because of the way they are differenced. Hence, can be given any 
value we choose, e.g. 

ÎN = O. (38) 

Now, equation (32) leads to an overall conservation statement 

^ dm+^ XRx dm = o, (39) 

since the flux cr£ of composition clearly vanishes at each end. However, if we 
sum equation (36) over all values of £, we will only get a good finite difference 
approximation to equation (39) provided 

= {(Xi-X^IAt+XtRz, (40) 
2 

This single condition essentially contains two conditions, since on the one hand 
if the centre is radiative (01 = 0) we have 

o = (Xr-X^IAt + XiRx, 1 (41) 

which simply gives the change in composition in the absence of convective mixing; 
while on the other hand if the centre is convective so that a is large, we have 

£1 o, (42) 

since 8tni is a measure of step size and can in principle be made arbitrarily small. 
The exact boundary condition for a convective centre would of course be £ = o, 
since there can be no flux of composition through this boundary, by symmetry. 
The two boundary conditions (38) and (40) are accompanied by four standard 
boundary conditions (Paper I) for the structure equations, so that there are three 
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boundary conditions at the centre and three at the surface. A numerical procedure 
for solving the finite difference equations which approximate the differential 
equations has already been outlined in Paper I. A more detailed description is 
being prepared, and will be available on request. 

4. RESULTS 

In an attempt to create a simple stellar model in which semiconvection might 
occur, we constructed a 14 M 0 star on the zero-age main sequence and evolved 
it, in the hope that it would develop a semiconvective region of the type described 
by Schwarzschild & Härm (1958). It did not do so, although we believe it was 
very close to doing so. This may have been partly due to the fact that notwith- 
standing the star’s high mass we gave it a Population II composition, since tables 
of opacity for such a composition were readily to hand. However, when the star 
had exhausted its hydrogen throughout a substantial core, the comparatively 
rapid collapse of the core led to structural changes which produced convection 
in the region of composition gradient left behind by the contracting convective 
core. Such a situation is bound to lead to semiconvection, as we show shortly, 
and the numerical results did indeed show a convection zone with a semiconvection 
zone adjacent to it and further out in the star (Fig. 1). Once helium ignited at the 
centre both zones died out, and the star stabilized at a point in the Hertzsprung- 
Russell diagram midway between the main sequence and the giant branch. 

Whereas the hydrogen convective core had grown smaller during evolution, 

Fig. i. The evolution of a 14 M©, Population II star, from the main sequence to the 
formation of a carbon core. Time steps are plotted horizontally, space steps vertically. 
The time steps are not equal; the mass steps are not equal, and are not the same at different 
times. Convective and semiconvective regions are denoted by c and s. Density of dots 
indicates roughly the steepness of the composition gradient. Diagonally striped regions 
indicate where nuclear burning principally occurs. The composition profile at the dashed 
vertical line {model 73) is shown in Fig, 3. 
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the new helium convective core grew larger, although not rapidly. This might 
have given rise to a semiconvective situation like that described by Paczynski 
(1970), but did not. However, this is in accord with Paczynski’s conclusion that 
such semiconvection occurs only in lower mass stars (<j Mö). When helium 

was exhausted in the centre, the core contracted rapidly until it became slightly 
degenerate, and the star moved rapidly to the red giant region. We continued 
the evolution for part of the phase of growth of the carbon core, but found that 
our coarse mesh (97 mesh points in the whole star) was becoming inadequate. 

Let us consider in more detail the onset of convection in the region of com- 
position gradient left behind by the contracting hydrogen burning core. In most 
regimes of pressure and temperature (although not all) the opacity coefficient is a 
function of composition. Because of this, if a star decides to become convectively 
unstable in a region where there is a composition gradient there is bound to be a 
semiconvective problem. This is illustrated in Fig. a. 

Fig. 2. A convective region tries to form in the middle of composition gradient: (a) the 
composition profile is flattened by convection, but no semiconvection is allowed, ib) the 
resultant superadiabaticity shows that such a picture is not self-consistent, (c) and (d) show 
two self-consistent pictures (depending on the details of the model) which incorporate 
semiconvection. 

Fig. 2 (a) shows a composition gradient which, we suppose, has been wiped 
out over some region by convection, producing a discontinuity of composition at 
each end. In Fig. 2 (b) we attempt to show the resultant superadiabaticity, assuming 
that opacity (and hence Vr) increases with increasing X. Clearly the result is not 
consistent with the assumed composition profile, since it shows that part of the 
convective region is subadiabatic. We assume the following propositions: 
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1. Mixing of some sort occurs whenever Vr —> o, and not otherwise. 

2. The rate of mixing, and hence the superadiabaticity Vr—Va, goes to zero 
as the boundary of a convective region is approached from inside the region. 

3. Mixing can and must continue until a steady state is reached. 
If these are accepted, we conclude that the only possible steady state is (depending on 
details of the model) either the dotted or the dashed configuration illustrated in Fig. 
2 (c) and (d). The solution may or may not contain a fully convective portion 
with an almost flat composition profile, but it must contain a semiconvective 
region towards its outer boundary, where the composition gradient is continuously 
adjusted as the star evolves to maintain a very small superadiabaticity. 

Step number 
40 45 50 

Mr/M0 

Fig. 3. Details of a computed model where convection occurred in the middle of a com- 
position gradient. See the discussion in the text. 

In Fig. 3 we plot an actual model from our evolution of a 14 M Q star. We 
observe that there is indeed a semiconvective region in the outer part of the 
zone. The superadiabaticity Vr-Va in this region is of the order of o*oi, which 
is larger than would probably be the case in an actual star, but we feel that it is 
still adequately small. However, the inner boundary of the fully convective region 
is obviously unsatisfactory, for Vr-Va does not tend to zero as we approach 
the inner boundary of the region from inside the convective portion. This would 
suggest that there should be convective overshooting, mixing material still further 
inwards. It appears, from a close (though perhaps not conclusive) examination 
of the difference equations (35) and (36) that the asymmetry referred to above in 
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the treatment of a has the following effect: it implies that the inner boundary 
of a convective region is defined by the condition that Vr—-> o as we approach 
the inner boundary through the radiative region, not through the convective region 
as we would like. It can be seen from Fig. 3 that the computer solution does 
appear to satisfy this incorrect condition. 

This mistake emphasizes, if emphasis is needed, the danger of replacing 
differential equations of unusual character by difference equations without very 
careful consideration. Although the mistake is by no means implicit in the method 
as a whole, it proved rather difficult to remedy within the framework of the specific 

computational procedure we have been using so far. We outline methods for 
dealing with it in the next section. Since the main object of this work was to 
investigate the semiconvective zone which can occur in helium burning cores, 
and since this mistake is not relevant to that problem (the convective core has 
no inner boundary) we have chosen to ride rough-shod over it so far. 

Fig. 4. The evolution of a 0*775 M ® star with an initial helium-burning core 0/0*502 M@. 
The symbolism is the same as in Fig. 1. The composition profile at the dashed vertical 
line {model 163) is shown in Fig. 6. 

Fig. 4 illustrates the evolution of a star of 0*775 M0 with initially a helium 
core of 0*502 M0. Helium burns in the core, producing a central convective 
region of o-n M0 initially. As the helium burns to carbon, the opacity increases 
(at a given temperature and pressure) because carbon gives greater free-free 
scattering. The luminosity generated in the core also goes up, and the two effects 
both act to make the convective core grow in size quite rapidly. The effect of 
free-free scattering becomes progressively greater as the core boundary moves 
out to lower temperatures, and beyond a certain point it becomes sufficiently 
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important that Vf—Va, instead of decreasing to zero as it should at the boundary 
appears to have to increase again. This is illustrated in Fig. 5. 

Fig. 5 (a) shows the composition profile near the edge of a convective core 
which has expanded with age. For a suitable opacity function, it is possible for 
the superadiabaticity to have the form (see Paczynski 1970) shown in Fig. 5 (b). 
Since Vr—Va is large right at the boundary, we would expect convective over- 
shooting, which would tend to expand the core still further, mixing helium into 
the carbon-rich core. If once again we make the three postulates mentioned 
above, we conclude that the situation described by the solid lines in Fig. 5 (a) 

y 

v,-v* 

00 

Fig. 5. The boundary of a growing convective helium-burning core: {a) the composition 
profile that would arise in the absence of semiconvection, (6) the resultant superadiabaticity, 
which increases instead of decreasing to zero near the boundary, (c) and {d) show a self- 
consistent picture incorporating semiconvection. 

MM-+- 

and (b) is not permissible, and we appear to be compelled towards the solution 
illustrated by the dashed line in Fig. 5 (c) and (d). A fractionally superadiabatic 
semiconvective region extends out far enough to mix in the amount of helium 
required to reduce the superadiabaticity at the outer edge of the fully convective 
region to almost zero. In Fig. 6 we show an actual model of our 0-775 AT0 star 
in this stage of evolution. It has the character suggested, if we make allowance 
for the coarseness of the mesh. We did not notice any of the fluctuations with 
time of the size of the convective or semiconvective regions (‘ breathing ^ reported 
by Demarque & Mengel (to be published). 

Although the 14 M0 star in its central helium-burning phase also has a con- 

vective core which expands with age the semiconvective solution does not arise 
in this case because at the higher temperatures and lower densities that prevail 

the opacity is almost entirely electron scattering, which is independent of com- 
position so far as a helium/carbon mixture is concerned. 
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01 0-2 0-3 0-4 0-5 0-55 

Fig. 6. Details of a computed model of a growing convective helium-burning core. Allowing 
for the coarseness of the mesh, this is clearly comparable to Fig, 5 {c) and {d). 

5. CONCLUSIONS 

It appears that if convection is treated as a diffusion process in which the 
diffusion coefficient increases with the degree of superadiabaticity, and if further 
this diffusion equation is solved simultaneously with the structure equations, 
then a convenient recipe emerges for dealing with both convection and semi- 
convection. However, the reliability of the method depends, to a somewhat un- 
foreseen extent, on the detailed method by which the composition equation is 
solved. We believe that if the diffusion equation (14) were replaced by something 
equivalent to the following properly-centred difference equation 

+ aTc) 
Xjc+i-Xtc 

8^ä;+1/2 
i(crfc+crfc__i) 

Xjc-X^ 

,^-x^+XtRx^t 

(43) 

then the method would be quite reliable as regards boundaries of convective 
and semiconvective regions, wherever they might be and however they might 
move about. Of course, the finiteness of the mesh would lead to inaccuracy, but 
we see no reason to believe that the inaccuracy would be substantially greater than 
in any other finite difference problem. 
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In our present work we have tried, purely for convenience, to represent all 
the equations to be solved as first order difference equations. This then allows 
a general solution scheme of a simple character to be applied to all the equations, 
giving great programming simplicity. It is not difficult to ‘factorize’ equation 
(43) into first order equations giving the correct centring. For instance 

Xic X]c—\ 

akèk—Gk-lèk-l 

VW i(£fc+Çfc-i) Swfc-i/s 

S/rafc-1/2 (45) 

while not exactly equivalent to equation (43) is properly centred. However, we 
believe that equations (44) and (45) have some instability when applied to a zone 
where <7 = o at one end and or > o at the other. Also, even when a = o at both 
ends, we have shown in Paper I that equation (44) is unstable when applied to 
thin burning shell, unless very small time steps are used. If, following Paper I, 
we insist that equation (44) be replaced by equation (35), then equation (45) 
has to be replaced by equation (36) to obtain correct centring in X\ but then 
the cr’s are not centred the same way as the |’s which they multiply, as we pointed 
out above. The simplest way (but probably not the cheapest way) that we have 
found to obtain correct centring is to write equation (36) as two equations: 

and 

ok*èk-vk-i*£k~i = (** -£r~+XicRi)Smk’ 

°k* = 

(46) 

(47) 

Equation (47) can also be cast, somewhat awkwardly, into the same form of 

difference equation as the other eight. However, three simultaneous equations 
is a rather high price to pay for the simplicity of having them all of the same form, 
particularly when they can be written as a single equation (43), though of a very 
different form. 

Recently a number of authors (Demarque & Mengel 1971 to be published; 
Fricke, Stobie & Strittmatter 1971 to be published; Lauterborn, Refsdal & Roth 
1971, Paczynski 1970) have pointed to the fact that the behaviour of a star in 
the H-R diagram, particularly in the region of helium burning where loops through 
the Cepheid region may or may not occur, is critically dependent on the nature 
of the composition profile in the star. Since semiconvection is frequently associated 
with the helium burning phase we feel it is important to have a relatively easy way 
of dealing with semiconvective mixing, even although at the present time we 
can only make the simplest possible assumptions about semiconvection. While 
the method described here, the simultaneous fully implicit solution for both 
composition and structure changes, may be no better than a standard method 
when semiconvection is absent, we feel it has substantial advantages of speed, 
accuracy and simplicity when semiconvection arises; and unfortunately it is not 
possible to be sure in advance of calculating an evolutionary sequence whether 
semiconvection will arise or not. Furthermore, the method appears to fit reasonably 
well with the method described in Paper I for dealing quickly, simply and 
accurately with thin burning shells. However much further development and 
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experimentation is still required to be sure that there are no further numerical 
traps, such as the one described here, in whatever particular numerical method 
is used to solve the problem. 
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