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ABSTRACT 

This is the first in a series of papers which will describe a survey of the later stages of evolution of 
massive stars, beginning at helium burning and proceeding through the final hydrodynamic stages. In 
this paper, (1) the motivation and astrophysical background for the survey are developed and discussed, 
(2) tie methods and approximations to be used are described, (3) the initial models for the survey are 
developed, (4) the techniques to be used are compared with other investigations of helium stars, (5) the 
“single-star” approximation is examined by explicit comparison with published evolutionary sequences 
of core helium burning, (6) the relation between helium core mass Ma and total mass M is calibrated, 
and (7) helium-burning nucleosynthesis is reexplored using a revised rate for 3a —>■ 12C and various values 
for the rate of 12C(a, 7)160. The latter results are fitted by a simple function of Ma and of 0a

2 for the 
7.12-MeV level in 160. 

I. INTRODUCTION 

This is the first paper in a series dealing with the thermonuclear evolution of massive 
stars, beginning at helium burning and proceeding through the final hydrodynamic 
stages. Section II contains a discussion of the theoretical framework within which the 
investigation will be conducted. Sections III and IV describe in some detail the input 
physics and certain mathematical constraints used in constructing the evolutionary 
models, with emphasis on the first (helium burning) stage. Section V will present the 
results of evolutionary calculations of helium burning, with emphasis on comparison 
with previous work, and on aspects of importance for nucleosynthesis theory and for 
further evolution. 

II. theoretical framework 

Historically the observational testing of evolutionary models of stars has primarily 
involved a comparison of the theoretical and observational H-R diagrams. Massive 
stars are rare and evolve swiftly; observational H-R diagrams emphasize stars which 
are numerous and evolve slowly. Nevertheless, massive stars may be of more importance 
to astrophysics than their small numbers would suggest. Their large luminosities imply 
large rates of nucleosynthesis; they may be the primary site of nucleosynthesis in a 
galaxy. If this is true, then the observed nuclear abundances (which seem similar to 
those of the solar system for a surprising variety of locations) may provide important 
clues as to the evolution of massive stars. 

This is the first in a series of papers which will be concerned with the evolution of 
massive stars, with emphasis on the thermonuclear aspects of that evolution. Of particu- 
lar interest are the final state of these stars and the composition of any matter ejected. 
It is hoped that comparison of these theoretical models with observation will provide 
new insight into nucleosynthesis and the evolution of massive stars. 
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682 W. DAVID ARNETT Vol. 176 

Such a program is limited by the theory available, by the quality of experimentally 
determined parameters which must be used, and, in this case, by the computer time 
available. As befits an initial survey of a complex problem, this investigation will use 
simple, standard techniques whenever they do not appear to distort the essential 
physics of the situation. Besides requiring less time and money, such an investigation 
is easier to interpret and can serve as a firsti iterative’’ step, to be followed by a more 
sophisticated analysis. Of course, a considerable effort has been made to keep the 
models as realistic as possible within the framework of these constraints. 

The thermonuclear evolution through each burning stage must be considered care- 
fully. At a given instant the energy-generation rate is of primary importance, but the 
resulting abundances are vital for a correct treatment of subsequent evolution. In the 
general case errors can accumulate and can even be amplified. As a massive star evolves, 
more and more nuclear reactions become possible during each burning stage. The limit 
of this increasing complexity is a thermal-equilibrium state in which the use of statistical 
mechanics makes the theory simple again. Unfortunately we will be concerned pri- 
marily with the difficult intermediate regime, and must consider carefully the complexity 
of the reaction kinetics. By using the evolutionary properties of realistic nuclear reaction 
networks (computed for simplified astrophysical situations), it is possible to define 
useful “abbreviated” (or “equivalent”) networks. These very small networks are 
designed to approximate the evolution of major abundances reasonably well, but be 
swiftly soluble by computer. Using such approximate networks with a stellar evolution- 
ary code gives a first guess at the density-temperature (p-T) history during that burning 
stage (the adequacy of the thermonuclear approximations can then be checked by 
evolving a realistic reaction network over the same p-T history). 

In order to complete the program outlined above it will be necessary to evolve 
stellar models from a stage in which the hydrostatic approximation is valid (i.e., 
mechanical inertia neglected) to a stage in which the hydrodynamic motion is violent 
(for example, explosion or gravitational collapse). This poses no small difficulty. By 
its very nature the hydrostatic approximation suppresses hydrodynamic behavior. 
Further, any implicit scheme of numerical hydrodynamics which can take time steps 
large compared to the local sound-travel time must also suppress hydrodynamic modes 
to some extent. There is a fundamental problem here: models evolved to the onset of 
hydrodynamic instability with the hydrostatic approximation may be superficially 
plausible, yet completely misleading. Considerable care must be taken in joining hydro- 
static and hydrodynamic computational schemes. 

Initially we are concerned with the hydrostatic case. Following the simple and most 
common approach, we assume spherical symmetry. The numerical technique was 
chosen so that in subsequent hydrodynamic stages the same physics (e.g., equation of 
state, opacity, nuclear reactions, convection theory, etc.) and the same difference 
equations could be used to the maximum extent possible. The explicit scheme of numeri- 
cal hydrodynamics which was chosen is similar to that of Christy (1964). For consistency 
in zoning, the hydrostatic scheme of Henyey et al. (1959), but without the special 
variables, was adopted. These references provide a general basis for constructing and 
solving difference equations; they describe some of the basic mathematical methods 
used, but not the input physics. 

A considerable reduction in the effort expended can be obtained if we consider only 
that part of the star which has been processed by hydrogen burning. Hydrogen burning 
is the most exhaustively investigated aspect of stellar evolution and as such hardly 
needs to be repeated here. After core hydrogen burning we have an evolved core and a 
hydrogen-rich envelope. This envelope can be neglected if we can represent the hydrogen- 
burning shell by imposing appropriate boundary conditions on the evolved core. The 
pressure and temperature at the hydrogen-burning shell are so small compared to the 
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values in the core that they will be considered to be zero. There are two possible problems 
with such a “boundary condition” procedure, however. 

First, the hydrogen-burning shell processes matter so that the mass of the core is not 
constant. After core hydrogen burning a massive star spends most of its remaining time 
in core helium burning. Let us estimate the change in mass of the helium core during 
this stage. If the average luminosity due to hydrogen burning in the core-hydrogen- 
burning stage is denoted by Lh(H), then the lifetime of core hydrogen burning is 

fe = XvQkMJLkÍB) , (1) 

where (>h is the energy release per unit mass of hydrogen consumed, Xh is the hydrogen 
abundance, and Ma is the mass of the helium core at hydrogen depletion. Similarly, 
during core helium burning, we have 

taLft(a) = XysQyíÜMa , (2) 

where LH(a) is the average luminosity due to hydrogen burning in the core-helium- 
burning stage. We have 

bMa/Ma = [Lyl{ol)/LH(H)][/a//h] , (3) 

but Stothers and Chin (1968) find for masses in the range M = 15-100 MQ that LH(a:) ~ 
Lh(H) and /H/^—9, so dMa/Ma^0.1. In a preliminary investigation such as this, 
such a small change may be ignored, provided Ma is not near some critical mass. Ac- 
cordingly we must restrict our investigation to Ma 1.45 Me (the Chandrasekhar 
limit) if the constant-core-mass approximation is to be valid. This implies a total 
stellar mass of M > 9 Me or so. The evolution of less massive stars has already been 
considered in some detail (see Arnett 1969, 1971a; Paczyñski 1970a, b; and references 
therein). 

A second possible problem with this “boundary condition” procedure involves the 
intrusion of the surface convection zone inside the hydrogen-burning shell. Stothers and 
Chin (1968) found that such a process would reduce the core mass for massive stars 
(M > 15 Mq) for late evolutionary stages. In obtaining this result they assumed that 
the radiative flux is constant in a chemically homogeneous, radiative zone. Sugimoto 
(1970a) has pointed out that this approximation breaks down when neutrino loss is taken 
into account because then the radiative time scale for the base of the envelopes is no 
longer negligible with regard to the evolutionary time scale for the core. Sugimoto 
(1970Ô) finds that consideration of this effect suggests that the core-envelope mixing 
is small during carbon burning and probably negligible in later stages, at least for stars 
of M/Mq = 12 and 30 (MJMq = 3 and 10). Also, although Paczyñski (1970a, 1971a) 
found such mixing for M/MQ — 7, he did not find it for M/MQ = 10 and 15. As a first 
guess, subject to revision, we assume that core-envelope mixing may be neglected for 
massive stars. 

The foregoing discussion suggests that the advanced evolution of massive stars may 
be investigated by evolving initially pure helium “stars” with zero boundary conditions 
at the “surface.” There are two particular advantages in such an approach. First, 
since the evolution of pure helium stars (and of helium burning in massive Population I 
stars) has been explored in detail by several investigators, it can be ascertained how well 
the computational techniques employed here will reproduce the standard results for a 
standard case. The importance of such checking of computer codes to be used to in- 
vestigate new and exotic situations cannot be overemphasized. Second, the nucleo- 
synthesis occurring in core helium burning can be reexamined in the light of new nuclear 
data for the triple-alpha reaction and of continued uncertainty in the rate of 12C(a, 
y)160. A discussion of some of the implications of the evolutionary models to be pre- 
sented here has already appeared (Arnett 1971¿>). 
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684 W. DAVID ARNETT Vol. 176 

III. MICROSCOPIC INPUT PHYSICS 

a) Equation of State 

Except where stated otherwise, the equation of state used in this investigation has 
three components: (1) a blackbody radiation gas, (2) a Maxwell-Boltzmann gas of 
anoninteracting,, ions, and (3) a positron-electron gas of noninteracting fermions. The 
positron-electron component was included in tabular form; variable order interpolation 
(second and third) was used. As the complexities of the equation of state are irrelevant 
for helium burning, a more detailed discussion will be deferred until more advanced 
stages of evolution are considered. See also Arnètt (1969). 

b) Opacity 

The conditions to be explored involve high temperatures, and low to moderate 
densities. Even under conditions more favorable for the process than these, electron 
conduction is not important (Arnett 1969). The dominant source of opacity is Compton 
scattering. Since we begin at helium burning, and neutrino energy loss dominates above 
Tg > 0.5 {Tm = r/10™ ° K), we are interested in the range 0.05 <T% < 0.5. Following 
Sampson (1959), the opacity for electron scattering in this range is 

= W(1 + 2.2T9) , (4) 

where KTh is the Thomson opacity. In order to approximately correct for the small 
contribution from bound-free and free-free interactions, the expression 

K* = 75.3 (E Z¡2 F<) ^ (r6)-
3-6 (5) 

was used (cgs units). Here Z* is the proton number of species i, is the number of nucleons 
per electron, and is related to the number density Ni by 

Ni = paYi, (6) 

where is Avogadro’s number and p is the mass density. The “mass fraction,, Xi 
is just YiAi, where Ai is the nucleon number of species i. The numerical factor in ex- 
pression (5) comes from examining the tables of Cox, Stewart, and Eilers (1965) in the 
appropriate range of p and T. This choice of Kk appears to have no significant effect on 
this investigation. 

c) Neutrino Radiation 

The analytic fitting formulae for energy loss by neutrino radiation of Beaudet, 
Petrosian, and Salpeter (1967) were used throughout. Neutrino radiation from nuclear 
processes will be discussed explicitly as part of the thermonuclear evolution as the 
need arises. Neutrino radiation was unimportant during helium burning. 

d) Nucleosynthesis 

The equations governing the change in abundance of the dominant nuclei during 
helium burning may be written as: 

(7) 

(8) 

(9) 

(10) 

Ÿtt = -M««a]F„3 - F„(Fc[12Coí]7 + F0[
16Oa]7) , 

Fc = ilotaa] YJ - FaFc[12Ca]7) 

F0 = F„(Fc[12Ca]7 - Fo[16Oa]7), 
and 

Fn. = FaFo[16Oà]7, 
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where Ft- is defined in equation (6), the reaction rates are specified in the notation of 
Fowler, Caughlan, and Zimmerman (1967), and 20Ne(a, Y)24Mg is assumed to be 
negligible (an excellent approximation, see below). Recent experimental results of 
Professor C. A. Barnes suggest a revision of the rate of the triple-alpha reaction (W. A. 
Fowler, private communication) : 

[aaa] = 2.13 X l(F6p2(r8)-
3 exp (-44.10/7^) s"1 (11) 

(see also Austin, Trentelman, and Kashy 1971). This revision reduces the rate at any 
given temperature. The rate [12Ca]7 for the reaction 12C(a, y)160 is taken from Fowler 
et al. (1967) ; in evaluating this expression a value for the reduced alpha width, in the 
7.12-MeV level in 160, of da

2 = 0.085 was used. This width is quite uncertain at present, 
so the effect of using different values of 0«2 was explored (see Arnett 19716 for discussion 
and references). The reaction rate [16Oa]r for 160(a, Y^Ne has recently been reinvesti- 
gated by Toevs (1971; Toevs et al. 1971 [TFBL]). This differs from the older values 
used by Deinzer and Salpeter (1964, due to Reeves) by 

lo8” (TÏSi7™Kë) — 0-!> _ <'•22(3/7'.) . (12) 

Now, from equations (9) and (10) it can be shown that little “Ne will be produced un- 
less 

[16Q«]7 
[12C«]t 

> 0.1 (13) 

or so. Using the Toevs et al. (1971) value of [16Oa]Y and the Fowler et al. (1967), value of 
[12Ca]7, equation (13) is an equality at r8 ^ 3.1. By the time the central regions of a 
star can reach this temperature, however, 4He is almost entirely consumed, so little 
20Ne should be formed. In the range 2 < Ts < 3, equation (12) gives 

(old value/TFBL value) ~ 4 . (14) 

Using this and noting that equation (10) is linear in [160ûj]7, we can estimate the 20Ne 
production on the basis of the models of Deinzer and Salpeter (1964). At Ma = 100 MQ, 
the most massive star we will consider, the mass fraction of 20Ne would have been 
X(20Ne) ^ 0.07. At Ma = 30 X(20Ne) 0.03 would have been obtained. These 
estimates agree with recent calculations of Vidal, Shaviv, and Koslovsky (1971). As 
will be seen later, such small abundances of 20Ne have no significant effect on subsequent 
evolution (this might not be true if 0a

2 0.085, however). Therefore, we take [16Oa]7 

to be small during helium burning. 
In solving equations (7), (8), and (9), it must be ensured (1) that nucleons are con- 

served and (2) that abundances of nuclei go smoothly to zero as they are depleted. The 
latter requirement suggests that a differencing scheme which is partially implicit be 
used, at least for 4He. 

Define: 

A = %[aaa\ Fa
2, B = [12Ca]7Fc , and C = 1 + ôt(3A + B) , (15) 

where ôt is the integration time step and the F¿ refers to abundances at the beginning 
of that time step. The reaction rates are evaluated with the best current guesses for p 
and T at the end of the time step, although centered values might be as good or better. 
Then 

^ = - YM + B)/C , (16) 
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Ya{A/$ - B)/C, (17) 

and 

= yaB/C , (18) 

where the ÔF’s are the changes in abundance over 5/. This scheme of differencing is 
fast and stable; even though the 12C equation (eq. [8]) was not differenced in a fully 
backward manner, no difficulties were encountered as Fc went toward zero. Unless 5/ 
is chosen to be suspiciously large, the scheme is more than accurate enough. From the 
point of view of the mathematics of nucleosynthesis, helium burning is easy; many 
other schemes could be devised which would work. 

This formalism conserves nucleons identically. Since = 1, it must 
also be true that 

S^-ôFi = 0, (19) 

which may be verified from equations (16), (17), and (18). In converting 4He to 12C, 
the energy released per gram of fuel consumed is çi = 5.85 X 1017 ergs g-1, and for 
12C(a, 7)160 is Ç2 = 4.31 X 1017 ergs g“1. Therefore, the rate of energy generation may 
be written as 

e = 4Va^ç1+ 16Fa^q2. (20) 

IV. MACROSCOPIC PHYSICS AND MATHEMATICAL CONSIDERATIONS 

a) Stellar Evolutionary Equations 

Sugimoto (197(k) has pointed out that some generalizations of the Henyey et al. 
(1959) method give rise to difficulties when advanced evolutionary stages (e.g., carbon 
burning) are investigated; he suggests a special formulation which avoids the difficulty. 
It appears that solution for the radiation flux Lr becomes unstable in the limit of rapid 
evolution (i.e., small time steps). Since such difficulties were also avoided in the formula- 
tion used here, a brief discussion of some aspects of this formulation may be of interest. 
Such discussion is also suggested by the unconventional treatment of convection. Let 
us denote a spatial difference by A and a time difference by 5. Then the evolutionary 
equations are , x 

(21) 
Aw 

3 V 
= 0 

5E 

•• _i_ Gm i a AA r + —r+A-— = 0, 
r* Aw 

(22) 

(23) 

L- A(F + B) = 0, 

where A = 4tit2, V = 1/p. Further, we have 

p _ ac A A(T*) 

3 K Aw 

B = -u(AE + PAV)/V 
and 

(24) 

(25) 

(26) 

Here u is the “convective speed” (see below). Other symbols not defined above have 
their conventional meaning. The independent variables are T, p, r, and L—that is, 
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temperature, density, radius, and luminosity. The luminosity includes a convective 
flux B, as well as a conductive and radiative flux F. With the acceleration r set to zero 
and appropriate designation of B, these equations are essentially the standard equations 
of stellar structure. Composition change is computed in a parallel (coupled) calculation 
by the technique described previously. The equations are linearized (using “zone 
boundary-zone center” differencing like Christy 1964) and solved as described by 
Henyey et al. (1959). 

It should be noted that setting r to zero suppresses pulsational instability, which 
could occur for homogeneous helium stars of mass M > IS Mö (Stothers and Simon 
1970). This is justified by the assumption that outside the helium region is a hydrogen- 
rich envelope, which would damp the instability. 

b) Treatment of Convection 

It is desirable to use a technique of calculating convective motions which (1) reduces 
to a conventional formulation during slow evolution and (2) avoids pathological fluxes 
during rapid evolution. This may be accomplished by properly defining the “convective 
speed” u (a scalar) in equation (26). By using the generalization of mixing-length 
convection theory discussed before (Arnett 1969, eq. [11], with the factor 2 in the right 
place), we have 

¿ = (<**ml>2 - 0/(20 , (27) 

where l is the mixing length (taken to be one pressure scale-height) and (^ml) is the 
usual time-independent expression for the convective speed in mixing-length theory. 
Using a backward difference in time, an estimate for the new convective speed is 

= b2 + (^ml)2 + 2w(0y]1/2 — y, (28) 

where y = l/bt and u{t) is the convective speed at the beginning of the time step. 
Convergence difficulties arise if the convective speed is reduced too abruptly ; by taking 
the new estimated convective speed to be 

u(t + bt) = 0.9w* + 0.10 , (29) 

where u** was u{t + bt) for the previous iteration, this problem disappeared. 
In helium burning, («ml) l/bt so u (wml), and u{t + bt) approaches u rapidly. 

Since (^ml)2 is proportional to AJE + PA F, a nearly adiabatic gradient is set up when 
convection occurs (i.e., AP + PA F approaches zero). The results are virtually identical 
to those obtained using the usual prescription in this case, as was desired. However, more 
than 7 significant figures are required in the arithmetic; the scheme worked well with 12 
significant figures. 

The technique just described is not intended to represent a solution to the difficult 
problem of time-dependent convection; it was devised primarily on the basis of its limit 
behavior, not on the basis of valid physics. Even within this conceptual model of con- 
vection a more realistic (but more complicated) technique could be devised. Nevertheless 
this technique is much to be preferred over the standard time-independent one for those 
last, rapid phases of evolution where the standard scheme does not “turn itself off,” 
but predicts pathological fluxes (e.g., convective speeds greater than light and other 
nonsense). 

Finally, one further aspect of the treatment of convection should be mentioned: it 
involves the question of whether, in the actual computer algorithm, the mixing of com- 
positions occurs during or at the end of the iterative cycle. In the former case mathe- 
matical instabilities can occur (Iben 1965) which are related to the position of convective- 
radiative boundaries. This is a complex problem (Paczyñski 19705) ; for simplicity the 
compositions were mixed after the iterations were complete. 
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c) Convergence Criteria and Time-Step Choice 

Of the four independent variables T, p, r, and L, the luminosity L is unique in that it 
refers to a flow of energy, and is therefore a time derivative^ If L is not a directly observ- 
able quantity (as it is not for the problem considered here), its physical importance lies 
in the product Lbt (see eq. [22]). Therefore, while the last iterative corrections for Ty p, 
and r were required to be less than a given fraction (10~4 or 10~5) of their final value, 
the last iterative correction to L was required to be less than a fraction of the maximum 
of the pair L and E&m/8t. The latter expression ensures that energy is conserved to 
good accuracy,1 but allows dL to have a less stringent convergence criterion in the 
case of small 8t (rapid evolution) when ôL has little importance. With this criterion no 
convergence problems occurred (see also Sugimoto 1970a). 

The time steps were chosen so that the expected fractional change in T and p were 
less than some small value (usually 0.01 and 0.03, respectively). It is worth noting at 
this point that in the late stages of stellar evolution time derivatives become more impor- 
tant, so that instead of solving a series of eigenvalue problems in space (“stellar struc- 
ture”), it is preferable to think of solving an initial-value problem in space and time 
(“stellar evolution”). Accordingly, although convergence could be obtained with larger 
time steps, they were kept fairly small for a more accurate integration in time. The time- 
step constraint on composition change was 

bt < Cn 
Yj + OA/Aj 

Yi 
(30) 

for each of the species i, where Ai is the nucleon number of nucleus i and Cn was usually 
0.01. This constrains abundant species to change by less than 1 percent per time step, 
and the mass fraction Xi of less abundant species (X¿<£;0.4) to change by less than 
0.004. Further, the time step could not increase by more than a factor of 2, and for no 
convergence in 10 iterations the time step was reduced by 0.7 and the calculation 
attempted again. Usually convergence was attained in one to three iterations. 

Over the inner 95 percent of the star, an automatic rezoning was performed so that 
(1) no zone was greater than about 0.03 of the stellar mass and (2) the fractional change 
in density in adjacent zones was less than a prescribed value (chosen to give about five 
zones per decade). The mass in the inner zone was 0.001 of the total stellar mass, and 
the change in mass of adjacent zones was smooth. This gave a minimum of 35 mass 
boundaries. 

While there are many descriptions of stellar evolutionary codes in the literature, 
nevertheless many discussions of stellar evolution (especially of exotic stages such as 
those to be discussed here) are of considerably reduced value because some details of the 
calculation are unclear. It is hoped that the foregoing discussion is sufficiently explicit. 

V. RESULTS OF HELIUM BURNING 

a) Comparison of the Evolution of Helium Stars and Helium Cores 

Following the line of reasoning of § II, it was decided to examine the evolution of 
stars of mass MJM0 = 2, 4, 8, 16, 32, 64, and 100, having a composition initially of 
pure 4He. Except where stated otherwise, 0«2 for the 7.12-MeV level in 160 was taken to 
be 0.085. Although strictly speaking these objects would correspond to the hydrogen- 
depleted cores of extreme Population II stars, after helium burning the distinction be- 
tween Populations I and II is not so important. A detailed consideration of the important 
question of differential effects between the evolution of massive stars of metal-poor and 

1 Strictly speaking, E should be the thermal energy density; otherwise the expression is not appropriate 
for high degeneracy of electrons. For example, the expression r(d£/dr)y has proven satisfactory for the 
situations to be investigated here. 

Also an independent ‘‘energy check” is continuously performed to monitor accuracy. 
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metal-rich initial composition will be deferred (although this investigation can provide 
some insight into that question). 

The initial models were w = 3 polytropes with central temperatures less than 108 ° K. 
The evolutionary paths in the temperature-density plane of the centers of these stars 
are shown by the solid lines in figure 1. The curves are labeled by MJMq. The locus 
of points corresponding to the ignition of the triple-alpha reaction is indicated by a 
dashed line. The models of lower mass show an S-shaped crook at triple-alpha ignition. 
This is due to the development of a convective core. For lower-mass models the con- 
vective gradient differs more strongly from the radiative gradient, and the consequent 
structural rearrangement is more pronounced. 

Also plotted in figure 1 are selected evolutionary points for the centers of some models 
of Population I stars. The most extensive investigation of helium burning in massive 
stars is that of Stothers (1966) and Stothers and Chin (1968), in which the evolution of 
stars of mass M/M0 = 15,30, 60, and 100 was considered. Also shown are representative 
points in the evolution of the M/MQ = 7, 10, and 15 models of Paczyñski (1970a, 
1971ô). 

Figure 1 illustrates the point made in § II, that is, helium stars mimic the behavior 
of helium cores of the same mass if that mass is not near some critical value. The evolu- 
tion of the stars of M/M0 = 30, 60, and 100 rapidly converges to that of the helium 
stars after helium ignition. When 4He is nearly exhausted (Xa~ a few percent), the 
helium cores of these stars are Mc/M0 = 13, 30, and 55 respectively. These values are 
close to MJMq = 16, 32, and 64, as the similarity of evolution suggests. Further, the 
15 Mq model of Paczyñski, which has a core mass MC/MQ ^3.9 at helium depletion, 
follows the evolution of the MJMq = 4 helium star after helium ignition. The exception 
to the rule of similarity of evolution is the MJMq = 2 helium star, which begins 
helium burning like Paczyñski’s 10 MQ star but evolves more like his 7 Mq star as 
helium is depleted. At that point the carbon-oxygen core mass is closer to that for 

Fig. 1.—Evolution of central temperature and density during core helium burning. The heavy 
solid lines, labeled by Mu/Mq, refer to models of this investigation. The locus of points for ignition of 
helium burning is shown as a dashed line and labeled “3a ignition.,, The 30 Mq model of Stothers (1966) 
is represented by crosses; the 15, 60, and 100 Mq models of Stothers and Chin (1968), by solid circles, 
solid inverted triangles, and pluses, respectively. Paczyñski^ (1970a, 1971b) 7, 10, and 15 Mq models 
are denoted by open squares, triangles, and circles, respectively. 
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Paczyñski’s 7 MQ star. As the mass of the helium core is about the same as the Chan- 
drasekhar mass limit for electron-degenerate objects, small changes in core mass can 
cause qualitative differences in the evolution. The assumption of constant core mass 
begins to break down for stars in this mass range (M > 10 Mö). A better representation 
of the hydrogen-burning shell is necessary for lower-mass stars. 

In figure 1, the evolution of a 15 If© star is indicated as calculated by Stothers and Chin 
(1968) and by Paczynski (1970a, 19715). The paths do not agree due to the differing 
sizes of the helium core. Because some of the assumptions of Stothers and Chin (1968) 
regarding the input physics (equation of state, opacity, etc.) may be suspect for a star 
as small as 15 MQ, the Paczyñski model has been adopted. 

It is interesting to compare also the calculations of Iben (1966) for 15 Me, Chiosi and 
Summa (1970) for 20 MQ, and Simpson (1971) for 15 and 30 MQ. To avoid cluttering 
figure 1, these models were not plotted. These predictions for the size of the convective 
core during helium burning are all smaller than the Stothers-Chin results, and agree 
better with Paczynski. The difference might also represent the theoretical uncertainty in 
the mass of the helium core at this stage of evolution, however. 

Despite these inconsistencies in stellar evolutionary results, it is of considerable con- 
ceptual assistance to have a table relating helium star masses, if«, to the masses of 
stars, M, which will develop equivalent helium cores. Such a listing is given in table 1. 
Besides the ambiguity for Ma/M0 = 2, the entry for MJMQ = 100 is especially un- 
certain because it was obtained by extrapolation. As other calculations of hydrogen and 
helium burning in massive stars appear, table 1 can be recalibrated. The entries for M 
are clearly not accurate to the number of significant figures given, but do suggest the 
range of variation implied by published models. 

b) Comparison with Other Calculations of Helium Stars 

The evolution of helium stars has been considered by a number of authors; the work 
of Deinzer and Salpeter (1964), Paczyñski (1971a) and Divine (1965) is chosen for 
detailed numerical comparison here. Table 2 lists a number of properties, as calculated 
in this paper and by the authors above, for the “initial main sequence” for helium 
burning. There are three main reasons for differences in the results of this paper: (1) 
the input physics was different (primarily opacity and [aaa]), (2) the “initial main 
sequence” (i.e., when L = J*0

M edm for the first time) was not chosen precisely, and (3) 
the outer zone was fairly large, containing about 1.2 percent of the mass. The first 
effect is small, tending to give higher Tc and pc; such behavior is indicated in the table. 
The second effect causes L to be too large (but not by much, say 10 percent); this 
behavior is also evident. The large outer zone affects the outer radius R and thereby 
the effective temperature (Te oc R~l/2). If instead of blindly using the difference equa- 
tions, the last zone is integrated analytically (assuming p & Tz and constant opacity), 
a better estimate of R (and Te) is obtained. These corrected values appear in parenthesis 
in table 2. The extent of the convective core Mc is not too accurately determined be- 
cause of relatively coarse zoning; an estimate of the error for Mc/Ma is given. It seems 

TABLE 1 

Equivalent Total Masses 

MJM0 M/M0 MJMq M/M0 

2 
4 
8 

16 

(7 to 10)? 
—15 

20 to 24 
34 to 40 

32. 
64. 

100. 

70 to 80 
110 to 125 
160 to 185 
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TABLE 2 

Comparison of Helium-Star Computations 
(on “helium-burning main sequence”) 

Source 

Quantity 

Deinzer and 
Salpeter 

(1964) 
Divine 
(1965) 

Paczyñski 
(1971) 

This 
Paper 

l/lq. 
R/Ro 

1.49(4) 
0.467 

log re  4.971 

log Tc. 
log Pc. 
Mc/M, 

8.218 
3.040 
0.492 

1.62(4) 
0.5023 

4.965 

8.219 
3.044 
0.431 

1.61(4) 
0.512 

4.959 

8.215 
3.046 
0.453 

1.70(4) 
0.401 

(0.491) 
5.019 

(4.957) 
8.227 
3.056 
0.43+0.02 

l/lq. 
R/Rq 

log TV 

log Tc. 
log Pc. 
Mc/M 

8.47(4) 
0.7635 

5.0538 

8.2562 
2.8044 
0.5962 

8.00(4) 
0.757 

5.049 

8.252 
2.790 
0.602 

8.52(4) 
0.61 

(0.79) 
5.102 

(5.047) 
8.263 
2.815 
0.61 + 0.02 

certain that more similar zoning and input physics would give virtually identical 
models of the helium-burning initial main sequence. Even as they stand, these models 
are in good agreement. 

Using the more accurate integration of the outer zone as described above, a com- 
parison of the evolution in the theoretical H-R diagram of the models of this paper and 
those of Paczyñski and Divine was made. Figure 2 shows the evolution of Paczyñski’s 
4, 8, and 16 MQ models by solid lines, Divine’s 6 MQ model by a dashed line, and the 
4, 8, and 16 MQ models of this paper by lines of filled circles. Basically the agreement 
is quite good, but the differences are significant. First, the Divine model is intermediate 
in behavior between these models and Paczyñski’s. For the same mass Ma, the size of 
the initial convective core is nearly identical for all three calculations (using logarithmic 
interpolation to establish a comparison for Divine’s model). However, during helium 
burning Paczyñski’s convective cores grow by 30, 21, and 12 percent of their initial 
size for Mcc/Mq = 4, 8, and 16 respectively. Divine finds an increase of about 9 percent 
for Ma/MQ = 6, which is less than half as large an increase as Paczyñski’s results would 
imply for that mass. Probably because of the relatively coarse zoning employed in this 
paper at the outer edge of the convective core, no increase in the convective core was 
found. This is of relatively minor importance for helium burning since the main effect, 
that of a small change in the size of the carbon-oxygen core for a given mass ikf, has 
already been taken into account by the technique used to derive the equivalent masses 
in table 2. Moreover, it is not expected that the evolution of a convective core in a later, 
neutrino-dominated regime should exhibit the same sort of core growth as in the photon- 
dominated regime discussed here. This core growth is related to semiconvection, and 
reflects the composition dependence of the opacity (Paczyñski 1970£; Robertson and 
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Fig. 2.—Comparison of the evolutionary calculations of helium stars in the H-R diagram. The 
bolometric magnitude and effective temperature for models of this investigation are represented by filled 
circles. The evolution of the 6 MQ model of Divine (1965) is denoted by a dashed line, while Paczyñski’s 
(1971a) results for Ma = 4, 8, and 16 Mq are represented by solid lines. The growth of the convective 
core causes Paczyñski’s models to travel farther to the blue before hooking back. 

Faulkner 1972). In a neutrino-dominated situation the thermal structure would be 
independent of the opacity and (to the extent Urea processes can be neglected) the 
composition. 

While many aspects of the arguments given above deserve further investigation, it 
appears that the computational techniques and astrophysical approximations used here 
are adequate for the purposes of this survey. 

c) Evolutionary and Structural Properties 

Some interesting properties of helium stars at the point of helium ignition (or more 
precisely, near the “helium-burning main sequence^) are listed in table 3. The central 
temperature (Tc) and density (pc) are given in units of 108 ° K and 103 g cm“3, respec- 
tively. The evolution after the establishment of the convective core may be approxi- 
mated by 

Pc * Tc
n , (31) 

TABLE 3 

Properties of Helium Stars near Helium Ignition 

Pc/K)3 g L/Ma (ergs 
MJMq rc/108°K cm-3 n g"1 s"1) 

2   1.52 2.37 2.38 2.5 (3) 
4  1.69 1.14 2.46 9.2(3) 
8  1.83 0.653 2.59 2.3 (4) 

16  2.02 0.454 2.66 4.2 (4) 
32  2.08 0.296 2.74 6.2 (4) 
64.  2.20 0.220 2.81 8.0(4) 

100...... 2.25 0.179 2.89 8.9(4) 
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where the value of n in table 3 was chosen by fitting the numerical models at core helium 
abundances of Xa ^ 1 and Xa ^0.1. Growth of the convective core could modify n 
somewhat. The luminosity L of such stars is only a slowly varying function of time, and 
is given in table 3 as the ratio L/Ma in cgs units. In these units the solar light-to-mass 
ratio, Lq/Mq is about 2 ergs g^1 s_1. Neutrino losses were always less than 1 percent of 
photon energy losses. Using the method of Fowler and Hoyle (1964), and table 3, it is 
possible to conduct a reasonably accurate investigation of helium-burning nucleosynthe- 
sis without having to reconstruct detailed models of the stellar structure. This is partic- 
ularly useful when the effect of a newly measured cross-section is to be found. 

Table 4 contains several evolutionary characteristics of helium burning in these 
stars. The aevolutionary^ time 4voi, defined as that interval between helium ignition 
and depletion to the Xa ~ 0.01 level, is given in units of millions of years. Since the 
luminosity is a slowly varying function for these stars, equality of energy liberated and 
energv radiated implies 

—(tMér- 

where q is the average energy release per gram of 4He consumed, L/Ma is given in table 
3, and the fractional size of the convective core Mc/Ma is given in table 4. The “error 
estimates^ quoted for Mc/Ma refer only to those obvious errors due to finite mass 
zoning. The changes in /evoi due to growth of the convective core, changes in the rate 
of 12C(o!, y)160, or variation in luminosity can easily be estimated from equation (32). 

The gravitational binding energy, per unit mass, of a hydrostatic star of mass Ma is 

<$> = jfaf{2,P/(>-E)dm, (33) 

integrated from w = 0 to Ma. This quantity is only a slowly varying function of time 
during core helium burning; the value of <£ at helium ignition, in units of 1016 ergs g-1, 
is quoted in table 4. Notice that the gravitational binding energy is small compared to 
the thermonuclear fuel reserve of these stars. 

Because of the uncertainty in the value of the reduced width 0a
2 of the 7.12-MeV 

level in 160 [and therefore the rate of 12C(a, t)160], it is of interest to investigate the 
variation of the characteristics of these models with 0a

2. The features of this variation 
can be illustrated by a simple argument. For a thermally static star, the rate of nuclear 
energy generation at the center of the star obeys 

€C oc L/M , (34) 

to reasonable accuracy (see Fowler and Hoyle 1964, for a detailed discussion). Also, 

ec oc X*puTs (35) 

TABLE 4 

Some Evolutionary Characteristics of Helium-burning Stars 

MJMq ¿evoi/106 years Mc/Ma (B (K)16 ergs g l) 

2  2.07 0.31 + 0.02 0.86 
4   0.84 0.43 + 0.02 0.96 
8  0.51 0.61 + 0.02 1.08 

16  0.36 0.76 + 0.02 1.21 
32  0.28 0.86 + 0.03 1.26 
64   0.23 0.90 + 0.03 1.30 

100  0.22 0.93 + 0.02 1.34 
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and using equation (31), we have 

€(* OC Xc?T8+Un . 

Since L/Ma~ const, for a given mass, 

log + un) log T + const. (36) 

This behavior is shown in figure 3. The solid heavy line represents the evolution of the 
MJMq = 8 star, with 0a

2 = 0.0425. After the helium abundance drops, equation (36) 
gives an oversimplified description of the evolution because equation (35) must be 
modified to include 12C(a, y)160, and primarily because equation (34) must also include 
compressional work. The evolution predicted by equation (36) is represented by the 
heavy dashed line. 

The details of the evolution are changed, for example, if (1) Ma is changed, and (2) 
0a

2 is changed. The latter effect is the smaller. The evolution for Ma/M® = 8 and 0a
2 = 

0.340 is denoted in figure 3 by crosses, and differs little from the 0«2 = 0.0425 case. 
The evolution for Ma/M0 = 4 is denoted by solid circles, and for MJMq = 16 by 
solid triangles. In both these cases 0«2 = 0.085. As far as temperature evolution is 
concerned, an error of only 10 percent in the size of the convective core is as important 
as an enormous change (a factor of 8) in 0«2. From comparisons of this type it is con- 
cluded that the p-T history of core helium burning is insensitive to changes in 0«2. 

£) Nucleosynthesis 

While the precise value of 0a
2 for the 7.12-MeV level in 160 does not much affect the 

p-T history of helium burning, it is of crucial importance for nucleosynthesis. The 
reduced width 0«2 determines which of the two major constituents, 12C and 160, is the 
dominant product of helium burning. Figure 4 illustrates this point for the MJMq = 8 
star; the fraction by mass of 12C is shown, as a function of 4He remaining, for several 
values of 0«2. For 0a

2 < 0.04; the fraction by mass of 12C is Xc > 0.5, while for 0a
2^ 

0.3 there is almost no~12C left when 4He is depleted. Notice that Xc decreases very 
rapidly for small Xa. This can be understood from equation (8) : the production of 12C 
is proportional to Xa

z while its destruction goes as Xa. For small X«, destruction becomes 
relatively more effective. Also note that figure 4 resembles figure 2 of Deinzer and 

Fig. 3.—Variation of central temperature with 4He abundance. A heavy solid line represents the 
evolution of Tc (in units of 108 ° K) for Ma = 8 Mq and 0a

2 = 0.0425; the heavy dashed line represents 
eq. (36). The evolution for Ma = 8 Mq but 0a

2 = 0.34 is represented by plus signs. Changing 0a
2 causes 

little change in Tc for a given Xa, but changing Ma has a large effect. The evolution for 0a
2 = 0.085 but 

MJMq = 4 and 16 is shown by filled circles and filled triangles, respectively. 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
7 

2A
pJ

. 
. .

17
6.

 .
68

 IA
 

No. 3, 1972 ADVANCED EVOLUTION OF MASSIVE STARS 695 

1.0 .8 .6 Xc* * *2 0 

Fig. 4.—Variation of 12C abundance with 4He abundance, with various values of 0a
2, for Ma = 8 Mq. 

Note the rapid decrease in 12C abundance as 4He becomes rare. 

Salpeter (1964), where their parameter is not 0«2 but Ma. Increasing the mass Ma 

changes Tz/p in such a way as to increase the rate of 12C(as, 7)160 relative to 12C, 
and therefore has an effect similar to increasing 0«2. 

Figure 5 summarizes the results of nucleosynthesis in core helium burning for various 
values of 0«2. These results are very similar to those of Deinzer and Salpeter (1964). 
Since even for Ma/MQ ^ 100, little 20Ne is produced, a plot of Xc also gives an approxi- 
mate value of X0, the mass fraction of 160, since Xo ^ 1 — Xq. For a given 0tt

2, Xc 
is almost linear in log Ma (at least for Ma/MQ > 2, see however Deinzer and Salpeter’s 
figure 3 for Ma < 2 M0). Also, for a given mass, Xc is nearly linear in log 0«2. There- 
fore, if we define m = Ma/M0 and x = 0a

2/O.O85, we find 

Xc ^ 0.60 - 0.667 log * - 0.267 log m. (37) 

When equation (37) gives a negative Xc, it should be taken to mean Xc = 0. A discus- 
sion of some implications of this result has been published (Arnett 19710). 

In Population I stars it is expected that previous CNO cycling will have produced 
some 14N (of order of 1 percent or so). During core helium burning these nuclei can 
undergo some interesting nuclear processing. Such thermonuclear evolution can be 
calculated separately because it affects the energy-generation rate for these stars even 
less than 12C(a, y)160 does; consequently it will not be discussed here. As mentioned 

Fig. 5.—Final fractions by mass of 12C as a function of Ma/Mo for various values of 0a
2. The solid 

lines represent smooth interpolation of calculations for Ma/MQ = 2, 4, 8, 16, 32, 64, and 100. 
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above, new stellar-structure models need not be recalculated for such an investigation. 
As an aid to applying the technique of Fowler and Hoyle (1964) as well as for use in 
their own right, details of the history of p, T, Xa, and Xc are tabulated for a few in- 
teresting values of .Ma in the Appendix. 

VI. SUMMARY 

This is the first in a series of papers which will describe a survey of the later stages of 
evolution of massive stars. In this paper, we have (1) developed and discussed the 
motivation and astrophysical background for the survey, (2) described the methods and 
approximations to be used, (3) developed initial models for the survey, (4) checked the 
techniques to be used by comparison with other investigations of the evolution of helium 
stars, (5) examined the “single-star” approximation (of replacing helium cores by helium 
stars of the same mass) by explicit comparison with published evolutionary sequences, 
(6) calibrated the helium-core mass Ma as a function of total stellar mass ilf, and (7) 
explored helium-burning nucleosynthesis in stellar cores with the revised triple-alpha 
rate and various values for the reduced width 6a

2 for the 7.12-MeV level in 160. These 
latter results were expressed as a simple analytic function of 0«2 and Ma. 

This work was supported in part by NSF grant GP-32051, and the early phases by 
GP-18335 and GP-23459. A generous gift of computer time by Professor Fred Hoyle and 
the Institute of Theoretical Astronomy is gratefully acknowledged. Discussions of 
convection theory with Professor Raymond Talbot, Jr. were most helpful, and thanks 
are due Professors William A. Fowler and Charles A. Barnes for helpful discussions of 
their work on nuclear reaction rates. 
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APPENDIX 

In the course of this investigation it was necessary to make quantitative comparison 
of the evolutionary results obtained here with those of others. In several cases this was 
extremely difficult because properties of the evolutionary sequences were presented only 
in graphical form, and often with a choice of scale that rendered quantitative comparison 
untrustworthy. For this reason, and to aid in the investigation of secondary nucleo- 
synthesis during helium burning, some numerical data concerning the history of core 
helium burning for Ma/M0 = 4, 8, and 32 are presented in Table Al. In this table, 
MODEL refers to the number of time steps elapsed since the beginning of the sequence, 
t refers to an elapsed time (in seconds), Tc is the central temperature and pc the central 
density, and Xa and Xc are the fractions by mass of 4He and 12C, respectively. 

TABLE Al 
HISTORIES OF CORE HELIUM BURNING 

MODEL t/sec. p/g cm -3 

M = 4 Mq 

83 
93 

103 
113 
123 
133 
143 
153 
163 
173 
183 
193 
203 

M = 8 1^ 
1 

10 
20 
30 
40 
50 
60 
70 
80 
90 

100 
110 
120 
130 

3.11(11) 
3.78(11) 
4.46(11) 
5.26(11) 
6.60 (11) 
1.66(12) 
9.91 (12) 
1.76(13) 
2.18(13) 
2.50(13) 
2.78(13) 
2.90(13) 
2.92(13) 

4.59(11) 
4.90(11) 
5.24(11) 
5.67(11) 
6.38(11) 
8.54(11) 
4.71(12) 
8.11 (12) 
1.08(13) 
1.30(13) 
1.49 (13) 
1.64(13) 
1.69(13) 
1.71(13) 

1.27 
1.40 
1.55 
1.67 
1.69 
1.69 
1.76 
1.87 
1.97 
2.11 
2.34 
2.62 
2.88 

1.38 
1.51 
1.67 
1.80 
1.83 
1.83 
1.89 
1.97 
2.06 
2.18 
2.35 
2.61 
2.93 
3.28 

6.86(2) 
9.11(2) 
1.14(3) 
1.24(3) 
1.17(3) 
1.14(3) 
1.23(3) 
1.42 (3) 
1.63(3) 
1.97(3) 
2.65(3) 
3.76(3) 
5.29(3) 

3.26(2) 
4.34(2) 
5.68 (2) 
6.71(2) 
6.67(2) 
6.52(2) 
6.98(2) 
7.67 (2) 
8.59(2) 
9.95(2) 
1.22(3) 
1.67(3) 
2.37(3) 
3.35(3) 

1.0 
1.0 
1.0 
9.97(-1) 
9.93(-1) 
9.60(-1) 
6.80(-1) 
3.97(-1) 
2.38 (-1) 
1.20 (-1) 
3.47(-2) 
4.80(-3) 
1,17 (-4) 

1.0 
1.0 
9.98 (-1) 
9.97 (-1) 
9.94(-l) 
9.80 (-1) 
7.48(-1) 
5.32(-1) 
3.60(-1) 
1.96(-1) 
1.05(-1) 
2.81(-2) 
3.90 (-3) 
1.69 (-4) 

1.74(-6) 
7.21(-5) 
1.03(-3) 
2.73 (-3) 
6.77 (-3) 
3.91(-2) 
3.07(-1) 
5.31(-1) 
6.14(-1) 
6.15(-1) 
5.24(-l) 
4.48(-1) 
4.34(-1) 

8.50(-4) 
9.20(-4) 
1.35 (-3) 
2.36 (-3) 
5.93 (-3) 
1.80 (-2) 
2.40 (-1) 
4.22 (-1) 
5.39(-1) 
5.87 (-1) 
S.54(-l) 
4.34(-1) 
3.68 (-1) 
3.58 (-1) 

M = 32 
73 
83 
93 

103 
113 
123 
133 
143 
153 
163 
173 
183 
193 
203 

1.83(11) 
1.98 (11) 
2.16(11) 
2.38(11) 
3.22(11) 
1.98 (12) 
3.81(12) 
5.30(12) 
6.58(12) 
7.72(12) 
8.68(12) 
9.08 (12) 
9.19(12) 
9.22(12) 

1.54 
1.70 
1.87 
2.04 
2.08 
2.14 
2.22 
2.33 
2.45 
2.63 
2.92 
3.27 
3.66 
4.07 

1.23(2) 
1.65(2) 
2.19(2) 
2.83(2) 
2.96(2) 
3.18(2) 
3.53(2) 
3.98(2) 
4.62 (2) 
5.64(2) 
7.65 (2) 
1.07(3) 
1.51(3) 
2.09(3) 

1.0 
1.0 
1.0 
9.99 (-1) 
9.87(-1) 
7.88(-1) 
5.68(-1) 
3.88(-1) 
2.42(-1) 
1.24(-1) 
3.09 (-2) 
7.82(-3) 
7.92 (-4) 
2.36 (-6) 

3.68(-6) 
8.73(-5) 
2.62(-4) 
1.04(-3) 
l.ll(-2) 
2.02(-1) 
3.83(-1) 
4.85 (-1) 
5.09(-1) 
4.45 (-1) 
3.04(-l) 
2.20 (-1) 
1.98 (-1) 
1.96 (-1) 
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