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SUMMARY 

This paper presents a method of computing the evolution of low mass stars 
from the main sequence to the helium flash. Many such computations are 
handicapped by the fact that the hydrogen burning shell source becomes very 
thin at a relatively early stage of evolution, and this means that either a very 
short time step is needed on the red giant branch, or else that some special 
method must be introduced. The present method has neither handicap: the 
same procedure is used whether there is a thin shell or not, and the time step 
can be chosen so that the overall structure of the star changes by a fixed small 
amount per step. About 100 or 150 steps are necessary to evolve a star to the 
helium flash. The basic features of the method are that the structure equations 
are solved using a non-Lagrangian mesh, so that a thin shell if it exists can 
move slowly through the mesh, even if it moves rapidly with respect to the 
mass coordinate; and that the composition and the mesh are solved simulta- 
neously with the structure equations, giving greater stability and self-consist- 
ency. Although the work described here does not take account of convective 
mixing of composition, it is suggested that a simple generalization of the 
equations used here would give a reasonable treatment of both convective 
and semi-convective mixing, if they occur. 

I.INTRODUCTION 

Since the work of Hoyle & Schwarzschild (1955) many people have been con- 
cerned with the computational study of the evolution of low mass, usually Popula- 
tion II, stars. Such work is often handicapped to a greater or lesser extent by the 
principal feature of low mass stars once they become giants, the appearance of a 
particularly thin shell source of nuclear energy surrounding the inert, nearly 
isothermal, largely degenerate helium core. In contrast to more massive stars, 
where the thickness of burning shells is seldom much less than 10“2 M0, low mass 
stars on the giant branch may have shells whose thickness approaches io-4 M0 as 
the core approaches the helium flash, i.e. as the core mass approaches 0-4 to 0-5 M0. 
In many types of evolutionary computation the choice of time step is determined, 
directly or indirectly, by the consideration that the shell source should not consume 
more than a fraction, say 10 per cent, of its mass in one time step. This clearly 
implies a large number of time steps before the core can grow to 0*4 or 0-5 M0. 
However, it is remarkable that as the shell becomes thinner its structure, and the 
structure of the star as a whole, becomes in many ways simpler to study analytically 
(Weigert 1966; Eggleton 1967; Paczynski 1970). Indeed, it is possible to determine 
quite accurately the structure of the shell and neighbouring regions and in fact of 
the whole star without following the evolution step by step. The only aspects of 
the evolution of low mass red giants which depend appreciably though not greatly 
on earlier stages of evolution are : 
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1. The temperature distribution in the helium core (and even this can largely 
be determined by an analytic procedure, Eggleton 1968). 

2. The composition of material exterior to the shell, which may have been 
processed by nuclear reactions in the early life of the star, and by the deep 
convective envelope (Iben 1968). 

It is therefore clear that a method must exist which will enable one to follow the 
evolution of a low mass red giant with comparatively few time steps, say fifty or a 
hundred between the bottom of the giant branch and the onset of the helium flash. 
The method we describe does this, but it has the desirable feature that it works 
independently of whether there is a thin shell or not—it is not necessary to take 
special action, or introduce special approximations, when the shell source becomes 
very thin. 

For the time being, this method ignores a feature which is important in more 
massive stars, though it is not important in stars of ~ o-gM 0, at least until they reach 
the horizontal branch. This feature is mixing of composition due to convection. 
Although an outer convection zone is an important feature of low mass stars, the 
interior where nuclear reactions occur is normally radiative. There may be con- 
vective cores of ~ 1 or 2 per cent of the star’s mass on or near the main sequence, 
but these have little effect on the star’s structure, and disappear very quickly once 
the star leaves the main sequence (Demarque, Mengel & Aizenman 1970 to be 
published). The only convective mixing that affects composition occurs at the base 
of the giant track, when the outer convective envelope penetrates down to a region 
where the composition was previously affected by nuclear reactions. The effect of 
this is to decrease the hydrogen content of the envelope by a few per cent. The 
small discontinuity in composition which results from this will affect the star’s 
evolution somewhat later, when the burning shell reaches it. We do not include the 
effect of convection on composition in this paper, although we believe it can be 
included by means of a slight modification of equation (22) below. This modifica- 
tion is briefly outlined in the last section of this paper. 

2. THE COMPUTATIONAL METHOD 

The equations of structure, with respect to mass as independent space variable, 
for a star with no nuclear reactions except hvdrosren burning:, are 

d log P 

dm 

d log T 

dm 

d log r 

dm 

dL 

dm 

where the symbols have their usual meaning. € is the energy generation rate of 
hydrogen burning alone, and V is the logarithmic gradient of temperature against 
pressure. The recipe used for calculating V in convective or radiative regions is 

Gm 

Atty^P' 

¿iog P v 

dm ' ’ 

Atty^p 

Du P Dp 
e~ev~Di+^Dt’ 

(1) 

(2) 

(3) 

(4) 
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given in the Appendix. Throughout this paper ordinary derivatives represent 
differentiation with respect to a space variable at constant time; D/Dt represents 
the Lagrangian time derivative, i.e. at constant mass coordinate; and dots will be 
used later to represent non-Lagrangian time derivatives. Boundary conditions at 
the centre are 

r = L = 0 when m = o; (5) 

and at the surface we use the simple forms 

L = 7racr2TA and Px = g when m = 7%, (6) 

where x is the opacity and g the gravity. In a radiative region the equation which 
determines the change of composition, and hence the evolution of the star, is 

° = W£, (7) 

where R is the reaction rate, related to e by 

e = EXR. (8) 

E is the energy per gram available from hydrogen burning (6.3.1018 erg g“1). 
To integrate these equations by a finite difference technique we must first 

decide on a way of distributing mesh points which will ensure that within each 
interval no quantity of physical importance varies by a large amount. A good choice 
of mesh would be one which minimizes an expression of the form 

Í: E{A(Í)-A-1(Í)}2. (9) 
*=2 i 

where/(*) is the ith function whose variation from step to step we would like to be 
small, and Ä is a suffix labelling the mesh points (& = 1, 2, ... N). If we introduce 
a variable q which varies from o to 1 through the star, with equal increments 
between mesh points, and if we approximate expression (9) by an integral, we have 
to solve a variational problem 

Since the quantities df^jdm can be supposed to be known functions of m, this 
variational problem has a simple solution which can be written as a pair of differen- 
tial equations 

with boundary conditions 

q = o at m — o, q = 1 at m = m%. (13) 

We thus have six differential equations to solve, with three boundary conditions 
at each end. Numerically, it is easiest to solve them if they are written with q as 
the independent variable, since we take equal intervals of q. 
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We have to choose the functions so as to give the most suitable mesh for a 
star. It is clear from equations (11) and (12) that in a region where /W say is 
changing rapidly while the other functions are not, this recipe gives a mesh at equal 
intervals of/W. In the outer layers of a star, equal intervals of log P are usually 
convenient; in the energy generating region, whether it is a shell or not, equal 
intervals of L would be convenient; and in an inert core, where neither of these 
quantities changes rapidly, equal intervals of mass are convenient. This suggests 
that a suitable choice for equation (11) would be 

where the ci are coefficients determining the relative importance of the three 
terms. Such a choice works, but we have found from experience that a somewhat 
better choice is the simpler but similar one 

dq 

dm 
= <¿ 

d log P 

dm (15) 

which is the form of equation (11) if 

y(i) = log P+^2¿h + ^3^; /(í) = o for i i. (16) 

Lh is the luminosity due to hydrogen burning alone. This specially simple case, 
with only one non-zero function, is sufficiently trivial that it could be solved more 
easily than by using the equations (11) and (12), but we prefer to keep the generality 
that these equations possess. Convenient choices of the coefficients ci are 

d = o¿i/log (Pc/Ps), (17) 

c2 = oc2lLS9 (18) 

cs = ocz/m^y (19) 

where suffices c, s represent the centre and surface. The are constants of order 
unity which determine how much of the mesh is devoted to different regions of the 
star. It is simplest to use surface and central values from the previous model in an 
evolutionary sequence rather than from the current model. The structure of a 

model ought to be independent of the choice of mesh for a sufficiently refined mesh, 
and we find that changes of oct by factors of 2 or 3 produce changes in the model of 
2 or 3 per cent, for a ioo-point mesh. Figs 1 and 2 illustrate the structure of slightly- 
evolved and highly-evolved models using a mesh chosen in this way (except that 
equation (16) was slightly modified to put mesh points closer together in the 
ionization zones). 

Clearly with such a choice of mesh the mass coordinate at a given mesh point 

will vary with time as the star evolves, so that we need to write 

Df 

Dt 
i # • (20) 

where dots represent differentiation at constant q. This recipe is easily applied in 
equation (4) since the derivatives du/dm, dp/dm are in principle known functions 
of the physical variables at a point. Some care must be taken in applying it to 
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Fig. i. The structure of a Population II star of o *8 M 0 when hydrogen is just becoming 
exhausted at the centre. Broken tines refer to model 38 of our sequence, solid lines to model 43. 
The changes in P> p, and T are small and are not shown. Mass is in solar units, P and p 
in c.g.s, units, and T4 is in units 0/ 104 degrees. 

Fig. 2. The structure of the same star as in Fig, 1, once it approaches the helium flash. 
Broken lines refer to model 105 of our sequence, solid lines to model no. 
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equation (7). We find it convenient, and believe it to be necessary, to write equation 
(7) as two equations 

dX 

dm 
(21) 

o = XR+X-£m. (22) 

These equations have no boundary conditions but there are two extra equations 
derived in the next section which have the effect of boundary conditions. The total 
problem is the solution of eight simultaneous equations at each mesh interval, 
with six boundary conditions and two extra conditions. 

3. THE DIFFERENCE EQUATIONS 

At each mesh point, including the centre and surface, eight quantities are 
‘ guessed \ In principle, these could be log P, log T, log r, L, m, 0, AT, £, although 
in practice it is more convenient to guess quantities of which these are functions 
(see Appendix). The four structure equations (i)-(4) and the two mesh equations 
(11) and (12) can be replaced by difference approximations of the form (using q as 
independent variable) 

+(ff) ! 
2 \\dm dqjk \dm dq/k-i) (23) 

with/replaced by log P, log T, log r, L, m or <£, and with dm/dq given by equation 
(15). The time derivatives in equation (4) are given by equation (20) with 

A-A<0> 
At ’ (24) 

where / is replaced by u, p or m. is the value of fa in the previous model. 
The differences are not properly centred in time, and so are less accurate than 
equation (23), but this type of differencing contributes greatly to stability. 

The remaining two structure equations (21) and (22) cannot be replaced by the 
difference approximation (23) because they become unstable, once a thin shell 
develops, as we explain shortly. It appears to be necessary to write them in the 
form 

o = h{Xk+XkRk - hmk) (26) 

where Ä = 1 at the centre (the extra factors in (26) are of course not necessary, but 
are convenient in making this equation similar to the others). The following argu- 
ment shows why this form can be both stable and accurate, whether or not there is 
a thin shell source. 

For stars with only one energy source there are two time-scales of importance 
to equations (25) and (26), the nuclear and shell time-scales: 

tn — EXm^/Ln', ts — Rm 
1. (27) 

Rm is the peak value of the reaction rate P. On or not far off the main sequence 
tn~ iotSy but near the top of the giant branch tn~ io4£s. The star as a whole evolves 
on the nuclear time scale tn, while ts can be interpreted (when a shell source is 
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present) as the time the source takes to consume its own mass of fuel. Our problem 
is that we wish to use time steps which are determined by tn (say 1 or 2 per cent 
of but such steps can be very large compared to ts and this often implies 
instability in equations such as (26) unless care is taken. 

Equations (25) and (26) are equivalent to 

Xk+RkXk- = o- (28) 

(29) 

(30) 

(31) 

Putting 

and 

Xk = (Xk-Xk«»)lto, 

Am* = m*Ai, 

8m* = h(dmldq)k, 

we can solve equation (26) for Jf* in the form 

v _ xkm+xk+1skte 
k i+RkM+SkM’ [3) 

where 
SkAt = AmjcISmjc. (33) 

The order of magnitude of the terms RjcAt, Skàt can be easily estimated using the 
definition (15) of the mesh, and the definitions (27) of the two time scales tn, ts. 
We see that RkAt <At/ts; while |ÄA^| <Atlts near the main sequence, and is 
<At/hts once a thin shell develops. In the latter case Sk will clearly be positive in 

the shell source, although it may be negative and much smaller in the envelope. 
We take A~o*oi and At~htn, the latter being true throughout the evolution except 
during the phase of rapid core contraction when At may have to be somewhat 
smaller. Consequently we see that near the main sequence the denominator of 
equation (32) is nearly unity while on the giant branch it is large and positive. The 

important point is that the denominator never vanishes or drops near to zero. 
When SjcAt is negative it is small compared to unity : when SkAt is large compared 
to unity it is positive. Consequently equation (32) can always give physically 
sensible values of Xjc. 

By contrast, suppose that instead of equation (25) we use the apparently similar 
difference formula 

(34) 

Then equation (32) is replaced by 

X*«»-X*_iSfcA¿ 

i +i?*At-5*At ' (35) 

The denominator of this expression will go through zero at two points in the shell 
source, once it is thin (unless At~hts rather than htn). This is clearly a numerically 
unstable situation. The case that the difference equation is properly centred like 
equation (23) is harder to analyse, but it is still numerically unstable though not so 
badly. 

We must of course consider the accuracy of the approximation as well as its 
stability. Obviously any first-order approximation such as equation (32) will be 
accurate so far as time dependence is concerned if At is so small that both RjcAt 

as 
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and I Sic&t\ are substantially less than unity. This is clearly true on or near the main 
sequence, with At~htn. Once a thin shell develops we have RjcAt^> 1, SjcAt^> 1 in 
the shell, and equation (32) takes the limiting form 

X* = 
Ric+Sjc 

(36) 

This can be seen after a little manipulation to be a difference approximation of 
order h to the differential equation 

-dX=e¡E. (37) m 
dm 

But this is just the approximation which on physical grounds (Eggleton 1967; 
Paczynski 1970) we expect to hold in a thin shell. So we expect the equations (25) 
and (26) to be more or less equally accurate (to order h) whether the nuclear source 
occupies the interior of the star or a thin shell. 

Note that when equations (25) and (26) are written down for each mesh interval 
(£ = 2, 3, . . . iV) the value of ^ does not appear anywhere, since its coefficient 
ñiN in equation (26) is zero, taking the star’s mass to be constant. Thus we can 
arbitrarily take = o. Also the 2N-2 equations do not include equation (26) 

evaluated at k = 1. Hence two ‘ boundary conditions ’are 

| = o at m = m#, (38) 

Jt+XR = 0 at m = o. (39) 

We now have the right number of equations to close the system. 
It is convenient to solve all the equations by means of a general procedure, 

which will solve a set of equations of the form 

= o, {i = i, 4) (40) 

Htt)-Hh-ii)-KßiG(tt) + (1 - ßi)G{fk^)} = o, {i = I, 8, k = 2, N) (41) 

and Hi{fNi) = o. (¿=5,8) (42) 

The suffix / runs from 1 to 8 in all these equations. 
One of the functions Fi> appropriate to equation (26), happens to be identically 

zero. The weights ßi appropriate to equations (25) and (26) are o and 1 respectively, 
and can be 0-5 for the other equations. These equations can be solved by the 
standard procedure of guessing the /¿/, evaluating the LHS’s of equations (40), 
(41), and (42), evaluating the derivatives of the LHS’s with respect to each guessed 
quantity (the derivatives can be evaluated analytically, but it is more convenient 
though slower and less accurate to do it numerically), and then solving for the 
errors in the guesses by the Newton-Raphson formula. Using a general procedure 
like this results in a very compact programme, which is a desirable feature. A more 
detailed description of how the structure equations are actually formulated in the 
programme used here is given in the Appendix. There are presumably a large 
number of equivalent ways in which they could be written, within the general 
framework described above. 

4. RESULTS AND COMMENTS 

Because this method involves solving eight simultaneous equations rather 
than four, it is naturally somewhat cumbersome when applied to the early stages 
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of stellar evolution when, as is well known, the ordinary treatment involving only 
four equations is quite adequate. This inefficiency is exaggerated by the fact that 
the whole star, including the convective envelope in which the complications of the 
mixing length theory and partial ionization are important, is solved simultaneously. 
It would be more efficient if the complications of the atmosphere at temperatures 
lower than say 105 degrees were avoided by integrating the atmospheres separately 
and tabulating boundary conditions at 105 degrees as functions of true surface 
quantities. Nevertheless, by including the whole star on the same basis great 
programming simplification is achieved, and there is the slight advantage that the 
structure of the atmosphere can be displayed simultaneously with the rest of the 
star. Solving for the entire structure slows down the calculations not only because 
of more complicated formulae in the outer layers, but also because the convergence 
may become rather poor, if the surface convection zone is narrow and strongly 
superadiabatic. 

Once the star reaches the Hayashi track the method of Section 2 comes into its 
own. We find that typically 60 models are needed between the main sequence and 
the base of the giant branch, and a further 60 from there to the top of the giant 
branch, when helium burning sets in. This is dictated by the fact that roughly 

Fig. 3. Evolutionary tracks for a model of o • 8 M G, with values for a = IjH 0/1 • o and 1*5. 
A zero-age model interpolated from Iben & Rood (1970) is shown by the open circle. An 
early evolutionary sequence from Demarque et al. (1970 to be published) is indicated by the 
crosses. The zero-age main sequence for our Population II composition is shown, and also 
a preliminary computation of a 2*3 M 0 star. Heavy dots indicate every tenth model of the 
sequence. 
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equal amounts of fuel are consumed in these two stages. Each model demands one 
or two iterations, depending on the accuracy specified, and for a ioo-point mesh 
each iteration requires ^25 s on an IBM 360/44 machine. Thus an evolutionary 
sequence requires about 60 min from the main sequence to the helium flash, if 
fairly low accuracy (~ 1 per cent) is demanded for each model. Two evolutionary 
sequences for a star of Population II type are given in Fig. 3, and one of them is 
tabulated in Table I. 

Table I 

Evolution of a 0-8 Mo star with X = o-js, Z = o*ooi, l/H = 1 *5 

(1) 
Model 

i 
10 
20 
30 
40 
So 
60 
70 
80 
90 

100 
no 

(2) 
log L 

-0*342 
—0*2l6 
-0*005 

0- OQÓ 
0*253 
0*400 
0*652 
1- 293 
1*852 
2*304 
2*665 
2*954 

(3) 
log Te 

3-765 
3-777 
3*789 
3* 800 
3* 801 
3*789 
3-723 
3*695 
3*671 
3*649 
3*629 
3*613 

(4) 
log r 

-0*332 
-0*293 
— o•242 
— 0*182 
— 0*107 
— 0*009 

0 • 249 
0*625 
0*953 
1 *224 
1*443 
1*683 

(5) 
age 

o*o 
0*540 
0*970 
1*270 
1*470 
1*570 

638 
670 
679 
682 
683 
683 

(6) 
Xc 

0-75 
0-45 
0*23 
0*08 
o*oo 

(7) (8) 
Afcore log pc 

— 2 * 007 
— 2 * 224 
— 2*491 
— 2 * 780 
— 3*124 

3*554 
4*584 
5*137 
5 * 396 
5 * 574 
5*7i4 
5*832 

0*095 
0*164 
0*231 
0*288 
0*339 
0*387 
0*432 

(9) 
log Tc 

7*096 
7*148 
7*212 
7*293 
7*347 
7*368 
7*483 
7*556 
7*646 
7*73i 
7*810 
7-883 

(10) 
Mce 
0-794 
0-798 
0-799 
o*8oo 
o*8oo 
o*8oo 
0*619 
0*331 
0*328 
0-365 
0*402 
0*445 

(ii) 
AM 

0*09 
o*n 
o*i8 
0*20 
0*15 
0*08 
0*011 
o•0025 
0*0012 
o•0007 
o•0005 
0*00035 

Column (1) is the model number, (2) the luminosity in solar units, (3) the effective 
temperature, (4) the radius in 1011 cm, (5) the age in 1010 year, (6) the fraction of hydrogen 
at the centre, (7) the helium core mass in solar units, (8) the central density, (9) the central 
temperature, (10) the mass fraction at the base of the convective envelope, and (11) the mass 
in the burning zone in solar units (nuclear luminosity 4- peak energy generation rate). 

Since this paper is intended to present a numerical method, we do not intend 
to discuss the astrophysical significance of the results obtained so far. It is sufficient 
to say that the procedure seems capable of following the evolution of low mass stars 
to the helium flash with considerable efficiency, and thus of providing with com- 
paratively little trouble theoretical results with which observations of globular 
cluster stars can be compared. However, the results presented here for a star of 
o*8 MQ with X = 0*75 and Z = o*ooi, and l/H = 1 can be compared with the 
results of Demarque et al (1970 to be published), which are also shown on Fig. 3. 
A comparison can also be made with the work of Iben & Rood (1970); we deduce 
values for the same composition and mass from their work by interpolating linearly 
in X and logarithmically in stellar mass. Their zero-age model is also plotted in 
Fig. 3. Our values differ from Demarque et aL by about 10 per cent, and from Iben 
and Rood by about 3 per cent. 

To follow the evolution of low mass stars beyond the helium flash, and of more 
massive stars beyond the main sequence, it is necessary to include the mixing effect 
of convection on composition, an effect which has not been included in the present 
work. We suggest that the following diffusion-type equation may represent quite 
well the effect of convective mixing: 

DX 

Dt 
\-RX. (43) 
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The diffusion parameter o should of course be zero in a radiative region; while in 
a convective region we would expect from a dimensional argument that 

where v is the velocity of convective motion, which can be obtained from the 
mixing length theory, and l is the mixing length. The mixing length theory gives 
the result 

pvZ~F(Vr-Va)lVry Ar ^ Aa, (45) 

where F is the energy flux per unit area. Vr and Va are the radiative and adia- 
batic gradiants, defined in the Appendix. In an ordinary convective region, where 
Vr-Va~i the quantity o is very large, and this implies that dX/dm is very 
small, and can be taken to be zero. However, equation (43) also admits a semi- 
convective type of solution, since if o<Vr—Va<^i we may obtain solutions 
where dX/dm is not small. Although equation (43) appears as an equation 
determining X, it may equally be thought of as helping to determine <7, in view of 
the fact that it is solved simultaneously with the other structure equations. It 
is clear that equation (43) conserves nuclei, however it distributes them, so 
that it may well be a reasonably satisfactory means of dealing with semi-convection, 
at least until we have a better understanding of the instability which is interpreted 
for the time being as giving rise to semi-convection. 

Clearly equation (43) represents only a slight modification to the equations of 
structure as we treat them in this paper. In equation (22) for composition changes, 
the LHS, which is zero in a radiative region, has to be replaced by d(a¿;)/dm; but 
the equation is still of the form which is represented by the general difference 
equations (40) to (42), and so can be solved by exactly the same procedure. 

We have only made two applications so far of equation (43). In one of these we 
followed the evolution of a low mass star including the effect of mixing when the 
convective envelope eats down into the deep interior. For the o*8 Mö star shown 
in Fig. 3 we found that the surface hydrogen abundance was reduced from 0*75 
to 0-735. The effect on the evolutionary track is not noticeable, although there is a 
temporary slowing down of evolution as the burning shell reaches the region where 
the composition was mixed by the envelope convection. Curiously enough it 
appears that as the convection zone penetrates down into the region of varying 
composition a semi-convective zone should appear, for much the same reason that 
semi-convection is required in massive stars (Schwarzschild & Harm 1958) when 
evolving off the main sequence; that is, the opacity depends on composition in such 
a way that the radiative gradient wants to be larger just inside the radiative zone 
than just inside the convective zone, leading to a contradiction unless the discon- 
tinuity of composition is smoothed out over a finite region. 

The second application was a preliminary attempt at a star with a convective 
hydrogen burning core. A model of 2*3 solar masses and the same composition 
(X = 0-75, Z = o-ooi) as the low mass star was evolved until helium burning 
began. The result is also shown in Fig. 3. The computations took nearly twice as 
long as for the low mass star. This can be explained partly by the fact that the star’s 
structure changes much more during evolution, particularly in crossing the 
Hertzsprung gap, and partly by the fact that the time steps were sometimes 
unnecessarily small, due to our inexperience in applying this method to such a star. 
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Very few modifications were required to the method described in Sections 2 and 3, 
apart from the modification implied by the use of equation (43) as described above. 
This lends weight to the belief that equation (43) will also be able to deal with the 
potentially important semi-convection regions which can be expected during the 
helium burning phase (Paczynski 1970). A fuller discussion of the possibility of 
treating convection and semi-convection by using a diffusion equation will be 
given in a later paper. 
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APPENDIX 

SOME DETAILED COMPUTATIONAL CONSIDERATIONS 

i. Because d log Pjdm, d log r/rfm are singular at m = o it is convenient to use 
variables m2/3, r2 instead of m, log r, since near m = o functions such as log P, 
log T can in principle be expanded as Taylor series in one or other of these variables. 
It is not necessary to expand these series, since the above choice of variables 
automatically ensures this behaviour. Consequently we can approximate the 
differential equations by difference equations right down to m = o, and apply 
boundary conditions exactly at this point. This is rather simpler than the common 
technique of expanding the solution in a small sphere and applying matching 
conditions at its surface. Writing m2/3 = jlg and r2 = x, we have 

and 

dlogP _ 3GM2i 

d¡x 877 \#/ P’ 

dx _ 3 YjuA1/2 i 

dfjb 477 \#/ p’ 

(50) 

(51) 
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for /x > o, with 

(52) 

as There is however some difficulty over the best choice of luminosity 
variable to go with this. The obvious choice, L2/3, is not satisfactory because L may 
be negative in some regions. We tried a number of possibilities, and found that the 
most satisfactory choice was simply L itself. We have 

_ 3 i/2 

^   etotal 
dii 2 

This is quite well behaved at the origin, but it is not very accurately represented 
there by a difference equation of the form of equation (22). However, the more 
general expression (41), with the appropriate ß equal to f instead of |, gives a 
reasonably accurate difference approximation to equation (53) at the innermost 
zone, and remains quite accurate for zones further out. 

2. The equation of state for a gas, in which some constituents may be partially 
ionized and in which the electrons may be partially degenerate or relativistic or 
both, is rather more easily written in terms of temperature and the electron degener- 
acy parameter ifs (chemical potential -^kT) than in terms of say density and tem- 
perature, or pressure and temperature. Not only are pressure, density and internal 
energy explicit functions of e/r, T (and composition) via the Fermi-Dirac integrals 
when the gas is wholly ionized; when there is partial ionization near the stellar 
surface the populations of different states of ionization are explicit functions of 
ifj, T via formulae of the type 

n+ œ+ -f-x/lcT 

n (x) (54) 

In the present work pressure ionization, and its effect on the partition functions œ 
and the ionization potential was disregarded, except in so far as it was assumed 
that at temperatures above 106 degrees all matter is ionized, whatever the density. 
Only the ionizations of hydrogen and helium were included—other elements were 
assumed to be fully ionized throughout. Furthermore, only the ground states were 
included in the partition functions. The quantities P, p, U and Va, and their 
derivatives where necessary, were calculated explicitly as functions of i/j, T and 
composition. The Fermi-Dirac integrals were calculated by fairly simple analytic 
formulae which approximate the integrals and their derivatives to about o*i per cent 
over the whole range of i/j, T. 

3. Opacities were taken from a program kindly lent by Dr Paczynski. This 
uses tables of radiative opacities from Cox & Stewart (1970) and conductive 
opacities from Hubbard & Lampe (1969). It also includes opacity from molecules 
at the lowest temperatures. Neutrino loss rates, and energy generation rates for the 
PP and CNO, triple o¿ and iV14, a reactions were also obtained in tabular form from 
this programme. 

4. In convective regions the value of V = ¿ log T/d log P was obtained from the 
formulation of the mixing length theory given by Baker & Temesvary (1966), which 
can be written thus : 

V =Va + (Vr-Va)Y(Y+A), (55) 
where 

Va = (d log T/d\ogP)s, 
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V - ^PL 
r lönacGT^m 

(56) 

and 

A-i = 
cpPpx r* ¡P 
„„rnz T\Vr Va) 2\/z acTs Gm\p 

1/2 

A y3+ Y2+AY = I. 
4^ 

(57) 

(58) 

For and A<^i second order approximations for V as a function of A were 
used. In the intermediate regime the unique positive root of equation (58) was 
calculated explicitly. The mixing length ratio oc = l/Hp was normally taken as 
1*5, and occasionally as i*o. In radiative regions (Vr< Va)V is given simply by 

V = Vr. (59) 
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