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Rotating, stationary models of elliptical galaxies are constructed using a Maxwellian distribution function 
modified by an energy cutoff. The Liouville equation and a nonlinear Poisson equation are solved simul- 
taneously by an uncommon technique. The computed models are bounded and have many of the standard 
observed features. Comparison is made with NGC 3379. 

I. INTRODUCTION 

BECAUSE of their smooth appearance and evident 
simplicity, elliptical galaxies would seem to be 

natural choices for the application of classical stellar 
dynamics. This very simplicity, however, limits the kind 
of observational material that one can extract. One 
therefore needs rather accurate photometric data in 
order to distinguish between the various possible 
theories. Many ellipticals show a very high degree of 
central condensation while the outer envelopes, the 
regions where theories are likely to differ, may have 
intensities considerably below the level of the night 
sky, which, for instance, is the case in NGC 3379 
(Miller and Prendergast 1962). There are theoretical 
difficulties as well. Since we know very little about the 
evolution of large stellar systems, we have to stop short 
of finding a distribution function and the 
collective gravitational potential One usually 
offers relaxation arguments, declares encounters un- 
important for short times, and perhaps one makes a 
few other idealizations, then constructs a stationary 
model. All such models so far are spherical with one 
exception (Lynden-Bell 1962), for in spite of all these 
simplifying assumptions, there are still difficulties in 
making stationary, rotating models. 

We shall also assume that / and \¡/ are time in- 
dependent, that is, the model so constructed is station- 
ary, and we assume moreover that all stars have the 
same mass. We note that very little can be learned about 
/ from observations, unfortunately, at least in the case 
of NGC 3379 (Miller 1963). The customary approach 
has been to take a good guess at • • * ) where 
Ei, E2, • • • are integrals of motion for a single star; this 
is also our approach. 

II. FORMULATION 

Concerning the distribution function, let us take 

/(£,/) =<* expf - E+ßj\ (1) 

where E and J are the energy and angular momentum 

integrals for a single star of mass m, a and ß are con- 
stants, and cr is a dispersion parameter. In choosing a 
one-particle distribution function we are motivated by 
the relatively small color change A(£ —F)~0.06 ob- 
served in NGC 3379 from the center outward. In the 
case of NGC 3115 the rather large color change indicated 
that a one-population model is probably insufficient 
(Miller and Prendergast 1968). 

As it now stands, / is Maxwellian in velocity space. 
Let r and v denote the position and velocity vectors. 
Then if is the potential per unit mass, the integrals 
of motion take the form 

where the subscript refers to the 2 component. Since / is 
given as a function of the integrals of motion, it satisfies 
Liouville’s equation a fortiori (usually called Jeans 
theorem), and the problem now is to find a solution to 
the nonlinear Poisson equation V2^=47T7¿(r,i/'). The 
equation is nonlinear because the density d is given by 

d(r,\p)=mi f(E,J)dv, (2) 
J E<-C 

where d\ is the 3-dimensional volume element in 
velocity space and C>0 is a constant, the cutoff energy. 
We impose the usual boundary condition that i/'—» 0 as 
r—»00. Models so constructed are called self consistent) 
thus, each star moves in the smoothed, collective gravi- 
tational field of all the other stars. This is not the only 
way to construct self-consistent models but it is 
evidently the simplest. Also, we do not consider a 
possible third integral of motion when specifying /. 
The existence of a third isolating integral will restrict 
the orbits to a still smaller subset of the energy surface. 

The cutoff of the distribution function / for energies 
greater than —C is of the “sharp” type, in contrast 
to the “gradual” type obtained, not by truncating f 
at E=—C, but by allowing / to go smoothly to zero. 
This has important consequences at the outer envelope. 
At any fixed r the inequality E^ —C defines a spherical 
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MODELS OF GALAXIES 675 

region in velocity space given by 

over which the integral in (2) is taken. We observe 
that when 

C 
¿(r)+-=0, (3) 

m 

we have fl2=0 and hence no orbit can extend beyond the 
surface defined implicitly by (3). It is convenient to 
call this surface the boundary of the galaxy and we 
note that the boundary is not known at the outset. At 
any rate there is no evaporation problem because every 
star has energy — C<0 and therefore none can 
escape the system. It is evident that some kind of 
cutoff is necessary for a Maxwellian distribution because 
arbitrarily large velocities are not physically meaningful, 
nor are the infinite radii and infinite masses obtained 
by some of the earlier theories. If one still insists on an 
/ of the form in Eq. (1), then a more refined type of 
cutoff for a particular galaxy could, for instance, take 
into account the potential fields of the various neighbors 
of the galaxy concerned, but then in this case one is 
no longer justified in considering an equilibrium situa- 
tion, in general. For the sake of constructing a definite 
rotating, equilibrium model, we have therefore intro- 
duced the sharp cutoff. 

Thus, we are led to seek a solution ^ of the nonlinear, 
elliptic partial differential equation, 

V2^/=4:Trym f aexp( E-\-ßj\dv, 
J e<-c ' w<72 / 

with the boundary condition ^—>0 as r—>oo. In 
addition, we also prescribe the condition > —A/m 
as r —» 0, where ^4 > 0 is a given constant ; that one can 
do this is not obvious. In any case, one must solve the 
Poisson equation in the interior of the “free” boundary 
surface, the Laplace equation in the exterior; at the 
free surface itself, \¡/ and its normal derivative must be 
continuous. It is not possible to consider the interior 
and exterior problems separately. Before proceeding 
further, we eliminate the various unessential constants 
by the common device of a dimensional analysis. 

III. DIMENSIONAL ANALYSIS 

Asterisk subscript denotes cgs-dimensioned quantity 
(constant, variable, operator); no subscript denotes 
dimensionless quantity. We consider for given ^4^>0 
the following problem for \¡/*: 

Vî|iV^=47rYî|cw^ Í cl* exp( 

i/'* —> —Ajm* as r* 0, 0 as r* —>oo. 

A scalar magnification (r*,m*,/*) —* (s,w,¿) of the 
independent variables will now be made according to 

rHe:::=E;jcS I 
m*=M*m k (4) 

where Z*, M*, T* are certain cgs-dimensioned units of 
length, mass, time to be chosen presently, while s, m, t 
are real quantities, usually called the dimensionless 
variables. It is easy to see that all other constants, 
variables and operators must transform according to 
(4). For instance, a*=Z*_67ya, ^*=Z*2F*_V, and 
V*2=Z*~2V2. Consider in particular 

y*=L**M*~~lT*~2y, 

OTjc =: Z;j; ^(7, 

m*=M*m. 

We can eliminate three constants at once by putting 
w=(r=Y = l. It follows that the scale factors are 
Z* = m*Y*ö-*-2, — T* = m*y*a*~z and the dimen- 
sionless problem becomes 

VV=47ra / exp(-E-\-ßJ)dv, (5) 
J E<-C 

\¡y —> —A as s —> 0, —> 0 as s —>oo, (6) 

where E=^v2+\f/ and /= (s x v)2. Of course 

A*=L*2M*T*~2A, 

etc. The free surface is now described by ^(s)+C=0. 
Presumably, because of the cutoff in the distribution 

function, the configuration has a finite dimensionless 
radius R. For convenience in the numerical work we 
rescale the radial coordinate so that the model lies 
within the unit sphere in the new variable. 

Introduce the potential 

I/(r)=^(Er)+C. 

We observe that the free surface is now described by 
U(r)—0 and that 1 implies that O^Rr^R. The 
dimensionless problem for U, which we will treat 
numerically, is the following: 

V2U=4:TraR2 exp C exp(—^fl2— UA-riI)dy, (7) 

as r—>00, U—>C—A as r-±0, (8) 

where /= (r xy)2, rj=ßR while a and v have the same 
meaning as before. We note that C—A must be negative 
and this implies that ^4 >C>0. 

At this point we encounter two subtleties of this 
problem. Suppose we assign values to C and to rj, and 
the combination aR2 and attempt to solve (7). The 
solution of this problem does not appear to exist. 
Rather it seems that (7) is an eigenvalue problem with 
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676 PRENDERGAST AND TOMER 

r 

ciR2 as an eigenvalue to be determined if C and rj alone 
are given. The second subtlety occurs when we consider 
a sequence of models with 17 = 0, C increasing. It is 
found that no solution exists for C larger than a certain 
maximum value, corresponding to a particular value of 
U at the origin, and to a particular degree of central 
condensation. We know, however, that the spherically 
symmetric problem with rj = 0 has solutions for any 
degree of central concentration, which can easily be 
found by integrating an ordinary differential equation 
from the center outwards for assigned U at the origin. 
We have done this and found that C is not a monotonie 
function of the central potential. It appears, then, that 
we must prescribe U at the origin, treat AiraR2 exp C 
as an eigenvalue and determine C a posteriori when and 
if a solution is obtained. 

IV. EIGENVALUE PROBLEM 

Let r, 0, (p denote spherical coordinates and vr, ve, v# 
denote the corresponding velocity components. We 
may then write /= (f X^)2=^^ sin 6. If we put 

p(r,0; U)= exp(—Usin d)dvrdvedv<Py 

A=47rcJ£2 exp C, 

then we have to deal with the eigenvalue problem for 
À and U(r,d), 

V2I/=ApM; 17). (9) 

By forcing the free surface to reside within the unit 
sphere, we may no longer prescribe both conditions in 
(8), for these conditions now become dependent as 
will be shown in the Appendix. We prescribe instead 

17(0,0) = P, I7(1,7t/2)=0, (10) 

where Z)<0, and the second condition is simply the 
statement that the free surface has an equational 
radius of one. An iterative solution of this free-boundary, 
eigenvalue problem is given in the Appendix. Our 
numerical results indicate that Eq. (9) together with 
boundary conditions (10) is a well-posed problem. 
Naturally, y must also be given. 

V. RESULTS 

Two parameters are needed to specify the dimension- 
less model uniquely, the central potential D, and the 
rotation parameter 77. For a range of values of these 
two parameters, solutions U(r,d) of Eq. (9) satisfying 
boundary conditions (10) were found numerically on a 
grid of eight angular points O^0y^7r/2 and about 50 
radial points O^r*^ 1. Of course the eigenvalue X was 
also computed. From the solution U (r,6) the dimension- 
less density \p(r,6; U(r,d)) was computed on the same 
grid of points as well as other quantities such as the 
projected density and rotation curves. 

Figures 1 and 2 show the potential U and density 
Xp for typical cases. A homologous sequence of models 
was found in the range — 1^Z)<0, as one could expect 
from the power-series expansion of the density (by a 
standard device, the expression for p can be written as 
a single integral). Central condensation becomes greater 
as the potential well becomes deeper; and as the rota- 
tion parameter is increased from zero, the models 
become progressively fatter; 7? = 0 gives spherical 
models. 

Figure 3 shows typical isophotal contours obtained 
by projecting the density Xp along the # axis and assum- 
ing constant mass-to-light ratio. The contours look 
more or less elliptical in shape. It is difficult to produce 
more pancake-looking contours because this sequence 
naturally terminates at the point where the angular 
momentum is so large that the models fly apart. In 
general, this point was reached at an axial ratio of about 
3 to 1. Also, our numerical scheme was best suited for 
round objects. At certain values of D it was even 
possible to produce a density minimum at the center 
by spinning the galaxy fast enough (large 77), but we 
were unable to manufacture doughnuts. 

For various rotation parameters 77, Fig. 4 gives the 
ellipticity. These curves are in general agreement 
with observed ellipticity variation for ellipticals (Liller 
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r 
Fig. 2. Relative density: When 77 = +3.0, the two curves lie much 

closer together; they coincide when 77=0. 
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MODELS OF GALAXIES 677 

1960). A common feature is that isophotes become 
more spherical in the outer envelope, a feature that is 
not surprising. The curves are not supposed to suggest 
that € should go to zero at the center of the model. 

Some rotation curves are given in Fig. 5. The rota- 
tional velocity (vf) vanishes at the edge of the galaxy 
because of the cutoff, and the need for the cutoff has 
already been emphasized. In a rotating coordinate 
system these results will be different but we did not 
investigate this. 

In Fig. 6 we give computed brightness curves for 
three values of the central potential D, all for rj = 3. 
The axial ratio of NGC 3379 is about | which corre- 
sponds roughly to rj = 3. The idea is to match the com- 
puted and observed brightness curves, thus obtaining 
a value for D to match NGC 3379. That this can be 
done at all is rather a bit of luck, due mostly to the 
linear portion of both brightness curves (King 1966). 
Z)=—8.0 is the best fit, although a much better one 
should be obtained at about Z)= —10.0. Unfortunately, 
we did not compute the case D- —10.0; it required a 
much finer grid of points at the center because of the 
sharpened density peak. At any rate a spherical model 
will practically suffice for NGC 3379. We only point 
out the method used in making a match; in this case 
there probably is not much room for a serious mismatch. 

For the case 79= —8.0,77 = +3.0, which corresponded 
most nearly to NGC 3379, Fig. 7 gives the dispersion 
ratio ((V) —(^)2)/(flr2). It does not change much 
throughout the computed model. Therefore the mea- 
sured dispersion in NGC 3379, which is 187 km/sec 
at the center and in the line of sight (Burbidge, Bur- 
bidge, and Fish 1961), might be typical for the galaxy 
as a whole. 

Because the model is stationary one expects the 
virial theorem to hold, and we found this to be the 
case numerically. A dimensionless virial theorem 

Fig. 3. Isophotes for a moderately flattened model: When 
î7 = +3.0, the isophotes are nearly spherical (see Fig. 4). 

Fig. 4. Ellipticity e for three values of the rotation parameter r\. 

4KE+2PE—C Mass=0 was found to hold to within 
three or four significant figures, thus providing another 
numerical check besides the obvious ones. Of course 
KE includes the kinetic energy of rotation. 

Finally, we consider the total mass in cgs units : 

M*T=m*a* f exp( — E*+ß*J*\dY*dT*, 

where dr* is the element of volume. Writing 

M* = L*y*-1(r*2, a* = L*-6T*za, 

etc., one can easily derive 

RL* r 
M^T = <T^y^r1 \ I pdr, 

where XJ'pdr is the mass computed in the dimension- 
less variables. The expression on the right does not 
contain m*. If one knows the distance to the galaxy, 
then the scale factor RL* can be read off the observed 
brightness curve by comparison with the computed 
brightness curve. Assigning a value to cr* then deter- 
mines M*T. 

Fig. 5. Rotation curves for moderate flattening. 
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678 PRENDERGAST AND TOMER 

Fig. 6. Computed brightness: In the case Z>=—8.0, the 
slope of the linear portion of the curve is about — f, the same as 
for NGC 3379. 

Of course this method of determining the total mass 
has its own weak assumptions, one of them being the 
identification of the measured dispersion with the 
number o*. We also assume that the distribution func- 
tion is approximated by (1). 
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APPENDIX 

Equation (9) can be solved numerically by iteration. 
Determine £/(w+1)(r,0) from U(n)(r,6) according to 

V>U(n+»=\Wp(r,e;UM(r,6)), (Al) 

where X(w) must also be determined at each iteration 
step and where each iterate UM(r,6) satisfies the 
boundary conditions, 

U^(0,0)=D] 

C/(w)(l,7r/2) =0 J 
(A2) 

To solve (Al) numerically one can proceed as follows : 
expand Uin+1)(r,6) and p{n)(rß)=pLrß> in 

Legendre polynomials, 

00 
P(n>(r,&) = J2 Pk(n>(r)Pk(ß), 

&=o 

U^(r,d) = Z^M(r)Pk(ß), 
k=0 

where ^4 = cos 6 and the sums are over even indices k. 
Substituting the expansions for p(w) and into 
(Al) one sees that the Laplacian separates, and an 
application of Legendre’s equation leads to 

1 dr du¿n+l)-\ uk^n+l) 

 r2 \-k(k+\)  
r2, dr\- dr A r2 

a linear equation for Uk{n+1)(r) in terms of pk^n){r). The 
linearly independent solutions of the homogeneous 
equation are rk and r-*-1 so that by the variation-of- 
constants formula, 

a(w) f r 
Uk{n+l)(r)= \rk s1~kpk(n)(s)ds 

2¿+ll Jro 

sk+2pk(n)(s)ds+Akrk+ • 
Bk 

rk+l 

where r0, r0', Ak, Bk are constants to be determined as 
follows : since U(n+1) must be well defined as r —»oo ? then 
^(w+1)(oo)=0 for & = 2, 4, • • • so we must have 

Ak — sl~kpk('n){s)ds, 

and similarly since U(n+1) must be well defined as r —» 0, 
then Uk{n+l)(fy =0 for k = 2, 4, • • • so we must have 

Bk=- 
pro' 

J 0 
sk+2pkM(s)ds. 

Fig. 7. Dispersion ratio: Note that (zv) = 0 and that (vr2) = (ve*) 
because of symmetry in Eq. (1). When 77 = 0 the dispersion ratio 
is 1 everywhere. 

The latter relation must also hold for ß=0 for otherwise 
w0

(n+1)W would have a singularity at r = 0. A0 is 
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MODELS OF GALAXIES 679 

determined from the condition u¿n+l)(G)=D, 

^4o 
D 

X(w> 
spoin)(s)ds. 

Let us write 

C(n)=lim ¿7(n+1)(/',0)‘ 
r->co 

Taking the limit in (A3) it follows that 

Summing uk
{nJtl){r)Pk(p) over even indices k, one finds 

for the solution to (Al) 

=£>+X(n) ( sp0
(n)(s)ds f i2po(n)(i)^l 

rJo J 

k=2 2k+ll 
sl~kpk(n) (s)ds 

Í 

— f ifc+2pÄ
(w)(i)^l. (A3) 

rk+1 Jq J 

If we consider the second of the conditions (A2), then 
from (A3) we find 

C(”>=ZH-X(w) spo(n)(s)ds. 

This shows how conditions (8) become dependent 
when one introduces the eigenvalue X, for we expect 
C(w)—»C as n-*co. 

A Gauss-Legendre quadrature was used to evaluate 
the integrals in (A3) so this automatically picks out the 
rays 6j for the grid. Except for evaluation of the density 
p(n), all numerical operations are reducible to matrix 
multiplication, so the process is rather efficient. Typical 
running times on the IBM 360/75 were two seconds per 
iteration. About 40 iterations were required for con- 
vergence to four figures. 
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