
19
7O

A
pJ

. 
. .

16
1.

 .
54

IL
 

The Astrophysical Journal, 161:541-551, August 1970 
© 1970. The University of Chicago. All rights reserved. Printed in U.S.A. 

A NUMERICAL EXAMPLE OF THE COLLAPSE 
OF A ROTATING MAGNETIZED STAR* 

J. M. LeBlanc and J. R. Wilson 
Lawrence Radiation Laboratory, University of California, Livermore 

Received 1969 September 25, revised 1970 January 5 

ABSTRACT 
The time history of a star of 7 Mq undergoing gravitational collapse due to iron decomposition is cal- 

culated numerically. The angular velocity assumes a vortexlike distribution which halts the collapse at 
a relatively low density, 1011 g cm-3. The large shear in the velocity field gives an enhancement of about 
100 in the multiplication of magnetic-field energy over the energy multiplication from simple com- 
pression. The combined effect of rotation and magnetic field is to produce an axial jet. At a radius of 
4 X 108 cm where the jet material leaves the calculational grid, the jet carries a mass of 2.1 X 1031 g 
and a total energy of 1.6 X 1060 ergs. The energy is principally kinetic, 1.6 X 1060 ergs, but it also has a 
large magnetic energy equal to 3.5 X 1049 ergs, and only 1.1 X 1049 ergs of internal energy. 

I. INTRODUCTION 

This study was initiated to determine the effect of rotation and magnetic field on the 
collapse of a star by gravitational instability (Colgate and White 1966; Fowler and 
Hoyle 1964). The example corresponds to a possible supernova model which depends on 
the collapse arising from neutrino emission and the thermal decomposition of iron. It is 
assumed that all material in the star has been completely burned to iron prior to the start 
of the present calculations. Briefly, the star is started in an equilibrium configuration, 
and after a few seconds enough energy has been lost by neutrino emission that the star 
starts to collapse. As this collapse proceeds, the temperature of an interior region rises 
above the iron-decomposition temperature, and the collapse rapidly accelerates. The 
rising pressure in the central regions where the iron has been decomposed stops the col- 
lapse, and a region of velocity stagnation starts to grow outward from the center of the 
star. Nonradial motions develop during the collapse due to the increasing centrifugal 
force. These nonradial motions spread the angular momentum per unit mass evenly over 
the star, and the angular velocity approaches a vortex configuration. The shear in the 
velocity generates large magnetic fields along the axis of rotation, and a jet of gas which 
contains large magnetic fields is expelled from the star along the axis of rotation. 

II. MODEL 

The numerical calculations are based on a finite-difference representation of hydro- 
dynamic and magnetic equations specialized to axial and equatorial symmetry. The 
equations are written in cylindrical coordinates i?, 0, Z. 

The equation for the neutrino energy density \¡/ is 

f + v-W) - Sc K1 + ffwi)] + - » + 0!?)/. 

where p, T, and v are the material density, temperature, and velocity, and Ac, A* are 
the coupling and transport mean free paths for the neutrinos. 

The term 1 + J A¿ | | in the transport term of this equation serves to limit the 
maximum transport velocity of the neutrinos. 

* This work was performed under the auspices of the U.S. Atomic Energy Commission. 
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The gravitational potential is determined by the solution of the equation 

VV == 4ctGp . 

This equation is solved over our finite grid with the boundary values fixed by the field 
produced at the boundary by the first and third moments of the mass distribution which 
is interior to the grid. The second mass moment is zero by the symmetry of our problem. 

It is assumed that the material is a perfect electrical conductor; therefore, the mag- 
netic equations for field H and current J are 

^■ = VX(vXH), VH=0, J = (VXH)/4ir 

The momentum equation is 

, (g+..•«)- 

The equation for density is 

pV0 -v( P + 
* 

3 + 4A(|AMM ) 
+ JXH. 

dp 
dt 

+ V-(pv) = 0. 

The equation for material energy E is 

d(pE) 

dt 
+ V-(vpE) = —PV*v - (c/Xc)(ar4 - . 

The pressure is given by the following set of equations: 

P = -Pw-H + PjT + Prad > 

where Pw-h is the material pressure at zero temperature. The fitted equations given by 
Harrison et al. (1965) are used to calculate Pw-h. Pt is the electron-baryon pressure due 
to temperature and is given by: 

PT = 1.7 X WzpNT, N = AZ{\ + 26Z) + 56(1 - 4Z)(1 + Z) , 

= 1 — exp^ 
T + 8888 

)■ 2.58p1/»Z1/3[¿ + \\(A + 1)] 

,4 = 1 + [1 - V(1 + 2ß))/ß, 

/3 = P exp (8888/r)/(4.85 X WP») . 

The units are cgs except for T, which is in keV. In these equations, Z may be thought 
of as the number of electrons per baryon and A as the fraction of baryons in iron nuclei. 

Prad = 4.57 X 1013r*[l + J exp (-510/P)]. 

The thermal energies associated with Pt and Piai are 

Et = 2.56 X lO^WP + 1280(1 - A)}, 

Prad = 1.37 X l(mi +|(1 + 170/P) exp (-510/P)]/p. 

Figure 1 shows the isotherms of this equation of state. The mean free paths of neutrinos 
are given by 
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A* = 1.6 X 1024/p^2 , Ac = 1.0 X 1024/pT2. 

The neutrino mean free paths were determined by estimating the rates of neutrino 
emission from the processes 

P + v<r+n + e* , P + e~ + v , e* + v eT* + v* (scattering) , 

v V <-* e+ -{- e~ , 

and plasma neutrinos in the temperature range 1-10 MeV at the appropriate densities. 
Then a 1/pT2 variation was assumed, and the constant was adjusted to give a best fit 
to the rates of energy loss. This mean free path is inaccurate for low temperatures, but 
at low temperatures the dynamical effects of neutrinos are presumed to be small. 

The difference equations are formed with respect to a moving Eulerian grid of 1600 
spatial zones (40 zones in each direction). The grid is moved in such a manner as to 
minimize motion of material relative to the grid. Because the grid is rectangular, a small 

Fig. 1.—Equation-of-state isotherms. Crosshatching indicates the pressure-density regions passed 
through during the calculation. 

density of 106 g cm“3 has to be placed around the star. The magnetic-field boundary 
condition is set up to represent vacuum outside the grid. 

III. INITIAL CONDITIONS 

For an example, a star oil M0 was chosen. Initially, the star was set in a static equi- 
librium configuration with a central density of 1.2 X 108 g cm“3. Figure 2 shows p as a 
function of T for the central 90 percent of the star’s mass. At this density, the central 
adiabatic y is just f, and with a very small neutrino emission the implosion is able to 
start in a few seconds. 

Three configurations were calculated. First, a purely spherical star was followed 
through its collapse in order to have a standard to gauge the effects of rotation. Second, 
a star with an initial uniform angular velocity of 0.7 radian sec“6 was calculated. This 
angular velocity corresponds to a kinetic energy of rotation of 0.25 percent of the gravi- 
tational energy and a total angular momentum of 4.6 X 1050 g cm“2 sec“1. The third 
calculation had the same angular velocity as the second and, in addition, a polar mag- 
netic field (see Appendix A) whose energy was 0.025 percent of the gravitational energy. 
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IV. RESULTS OF SPHERICAL CALCULATION 

In the spherical nonrotating model, the star begins a rapid collapse after 2.2 sec which 
is halted at about 2.8 sec by the pressure in the central region becoming high enough to 
support the star against gravity. The central density at 3 sec is 1013 g cm“"2. An outward 
shock is produced, but it has insufficient intensity to blow any material out of the grid. 
In Figure 3 the gravitational, kinetic, and emitted (radiated) neutrino energies are 
given as a function of time. The kinetic energy is seen to damp out rapidly, and the star 
settles back into a slow collapse by neutrino emission. 

V. RESULTS OF THE CALCULATION FOR A ROTATING SYSTEM 

In this calculation, the early behavior of the collapse is very similar to that of the 
spherical calculation. However, when the central density rises to about 1010 g cm“"3, the 
centrifugal forces become appreciable and the motion becomes appreciably nonradial. 

Fig. 2.—Temperature as a function of density at zero time 

Collapse is halted at a central density of about 1013 g cm“3. The effect of rotation is en- 
hanced by the nonradial motion in the R- and Z-directions which carries angular mo- 
mentum from regions where it is high to regions where it is low. The angular-velocity 
distribution gradually approaches a vortex configuration. After 3.5 sec, the distribution 
of angular velocity, Í2, can be fitted with a power law: Í2 = 1.6 X lO16/^1*86* The ex- 
ponent of R is either variable or uncertain by about 10 percent. Most of the time the 
maximum of ß is at the first zone above the axis, which has a size of 3 X 106 cm. The 
zoning is not fine enough to determine the nature of the apparent vortex singularity at 
the axis. A little material is ejected from the grid, but its energy is less than escape 
energy. In Figure 4, the gravitational energy, kinetic energy in the R- and Z-directions, 
rotational kinetic energy, and energy emitted in neutrinos are plotted as a function of 
time. It should be noted that the kinetic energy of rotation is higher than that arising 
from a simple radial contraction of the star, and, hence, the effect of rotation on imped- 
ing the collapse is much greater than it would be for uniform rotation. 

VI. RESULTS OF THE CALCULATION FOR A ROTATING MAGNETIZED STAR 

As in the calculation for the rotating star, a vortex on the axis and a toroidal swirl near 
the center are produced during the collapse. The toroidal swirl curls up the field lines 
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Fig. 3.—Energies as a function of time for spherical calculation. GE = gravitational energy, 
RZKE = kinetic energy in motions in the R- and Z-directions; and ERAD = energy radiated out of the 
star. 

Fig. 4.—Energies as a function of time for rotating calculation. GE = gravitational energy; RZKE = 
kinetic energy in motions in the R- and Z-directiqns; ERAD = energy radiated out of the star; and 
0KE = kinetic energy of rotation about the Z-axis. 
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and produces high fields (1013-1015 gauss). These high fields are thought to be the source 
of the axial jet which forms shortly after the initial collapse ceases. The magnetic-field 
energy has risen from 0.025 percent of the gravitational energy to 2.5 percent. Simple 
contraction of a spherical system leaves the ratio of magnetic energy to gravitational 
energy unchanged. Thus, the large shearing motions produce an additional factor of 100 
in the field generation. Figure 5 shows the (R, Z)-shear, 

f 
dVz 

dR 
dVR 

dZ 
dt, 

integrated over the time interval 2.5-2.65 seconds. From this and from Figure A36 it 
can be seen that the bulk of the star is twisted up several revolutions during the tenth 

Fig. 5.—Contours of shear in the (R, Z)-plane integrated from 2.5 to 2.65 sec. Dashed curve contains 
within it one-half of the stellar mass. 

Fig. 6.—Ratio of magnetic-field energy density to material pressure along the axis. 

of a second when the jet starts. In Figure 6 we see the buildup of the ratio of magnetic- 
field pressure to material pressure near the axis. The high-field region at about Z = 
7 X 107 cm is probably the origin of the jet. 

The axial jet at the end of the calculation had ejected 2.1 X 1031 g of material with 
a kinetic energy of 1.6 X 1050 ergs, a thermal energy of 1.1 X 1049 ergs, a magnetic 
energy of 3.5 X 1049 ergs, and a gravitational energy of —4.7 X 1049 ergs (see Fig. 7 for 
rates of flow in the jet). Figure 8 includes the curves for the same energies as Figure 4, 
plus the magnetic energy as a function of time. Typical temperatures, densities, and 
magnetic fields in the jet are, respectively, 300 keV, 106 g cm-3, and 1013 gauss. 

VII. DISCUSSION OF RESULTS 

The spherical problem is of interest in that it is an example of gravitational collapse 
by iron decomposition from which no material is ejected (cf. Colgate and White 1966; 
Schwartz 1967; Arnett 1966). 

The vortex motion produced in the rotating collapse is the most important feature of 
the effect of rotation. The axial symmetry of the calculation forces any convective mo- 
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Fig. 7.—Rate of emission of mass and energies by the axial jet. KE = kinetic energy; MAGE = 
energy in magnetic field; IE = internal energy; and M = mass. 

Fig. 8.—Energies as a function of time for magnetized-star calculation. GE = gravitational energy; 
RZKE = kinetic energy in motions in the R- and Z-directions; ERAD = energy radiated out of the 
star; 0KE = kinetic energy of rotation about the Z-axis; and MAGE = energy in magnetic field. 
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tions to be of such a nature as to smooth out the angular momentum (Bretherton and 
Turner 1968). In a real three-dimensional world it is not clear how long it would take 
for an isotropically turbulent condition to set in, but it should take a few sound-transit 
times. Hence, we expect the behavior in a real system to follow these calculations for 
early times, but at late times the calculations probably overestimate the large-scale 
order in the spatial distribution of the velocity. 

Due to the excessive computer time required to complete the calculations, the follow- 
ing crude method was used to estimate the total amount of material and energy that 
might eventually be ejected by the jet. It is presumed that the primary mechanism of 
the expulsion is the generation of a large magnetic field in a limited region so that the 
material becomes buoyant and rises as a bubble. The rotational motion is distributed as 
Í2 ~ 1/Æ2, which implies a great deal more rotational energy than would arise for a con- 
stant angular-velocity distribution. We shall assume that all the rotational kinetic 
energy is available to produce the magnetic field. The magnetic field is generated near 
the center of the star at a low gravitational potential. The magnetic field energy per 
gram is estimated by taking the ratio of the total energy in the jet to mass in the jet at 
the surface and multiplying it by the ratio of the surface radius R to the mean radius 
(R) defined by the equation (gravitational energy = GM2/(R)). The following values 
are found: (R) = 3.25 X 107 cm, Surface = 3.5 X 108 cm. Total energy per gram in the 
jet at the surface = 1.0 X 1019 ergs g“1. Hence, the energy extrapolated to the (R) is 
1.0 X 1020 ergs. Since a rotational energy of 1.2 X 1052 ergs is available, we estimate a 
total emitted jet mass equal to 1.2 X 1032 g, which carries 1.2 X 1051 ergs of energy. 

Although these numbers could explain some supernova observations, the authors 
have seen no pictures of supernova remnants suggestive of jets. This, of course, could be 
due to the dispersion of the jet by a surrounding envelope. It is not clear from our calcu- 
lations what the history of the remaining material in the star would be. However, the 
star has retained a mass large enough so that it is unstable against further collapse. 

Perhaps of more interest is the bearing these calculations may have on the jets ob- 
served in radio galaxies. The analogous picture for a galaxy would be for the galaxy to 
form out of an initially slowly rotating, weakly magnetized blob of gas that undergoes 
considerable free fall and then is halted by some mechanism. 

One of the authors (J. R. W.) would like to thank D. Sciama and the Department of 
Applied Mathematics and Theoretical Physics, University of Cambridge, for their hos- 
pitality while part of this work was done. We would also like to thank Mr. J. Chase, who 
did much of the program development. 

APPENDIX A 

SPATIAL-CONFIGURATION GRAPHS 

Figure A1 gives the initial configurations of density and magnetic field. Figures A2a, A2b, 
A3a, and A3b show, respectively, the density, the magnetic-field flux parallel to the Z-axis, 
the intensity of the ^-component of magnetic field, and the angular velocity at a time of 2.67 
sec, which is shortly after the jet has emerged to the surface. Figures A4-A6 show the velocity 
vectors associated with each grid point at several different times from the start of bounce 
through the formation of the jet. 
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Fig. Ala.—Isodensity contours in units of 106 g cm”3 at 0.72 sec. 
Fig. A1&.—Magnetic-flux contours parallel to Z-axis in units of 1022 gauss cm-2 at 0.72 sec. 

Fig. A2a.—Isodensity contours in units of 106 g cm“3 at 2.67 sec. 
Fig. A2ft.—Magnetic-flux contours parallel to Z-axis in units of 1022 gauss cm”2 at 2.67 sec. 

Fig. A3a.—Theta magnetic-field contours in units of 1013 gauss at 2.67 sec. 
Fig. A3b.—Iso-angular-velocity contours in radians per second at 2.67 sec. 
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APPENDIX B 

NUMERICAL ENHANCEMENT OF VORTEX MOTION 

The possibility is present that some of the formation of vortex motion along the axis is 
generated by differencing errors. We may write the equation for angular-momentum density A 
about the symmetry axis in a mixing-length approximation as 

r) A 
— + V- (¿F) = V- (IWA) + V- (vcVA) , 

where V is the gross (overall) velocity, v is the velocity associated with a small swirl of size /, 
and ric is the artificial viscosity introduced by finite differencing. This viscosity is approximated 
by 7jc = ARAVj where AR is the zone size and A F is the velocity across the zone. We can relate 
rjc to Iv by rjc « lv/n2, where n is the mean number of zones in a swirl. Most of the velocity 
gradients involve at least five or ten zones (see Figs. A4-A6), and so the errors should be only 
a few percent. The errors incurred during the main collapse are a little harder to estimate. The 
grid system of the difference equations was moved during the collapse in such a way as to 
minimize the net flow with respect to the grid; however, some relative flow is left which adds to 
the differencing errors. 
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