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ABSTRACT 

The interaction between galactic cosmic rays and Alfvén waves in the interstellar medium is investi- 
gated. They may interact adiabatically through magnetic mirror scattering or non-adiabatically through 
gyration frequency resonance. The equations describing the latter are derived. The growth rates for 
the waves are given, and the Fokker-Planck equation for the diffusion of cosmic rays in velocity space 
is derived. These two equations are applied to a model of the cosmic rays consisting of a uniform tube of 
magnetic field with open ends. An equation of spatial diffusion is derived in the limit of strong wave- 
particle scattering, and this equation is compared with the observed properties of the galactic cosmic 
rays to derive a mean free path for scattering of about 10 pc. It is shown that when the interstellar 
damping of the Alfvén waves is included, the waves are probably marginally stable. Finally, a self- 
consistent model is specified in which the sources of turbulence and cosmic rays are given and the cosmic- 
ray densities are to be determined. This model is solved in the crude approximation where all particles 
have effectively the same energy and all waves the same wavelength. It is shown that the cosmic rays 
can have an appreciable effect on their confinement to the Galaxy. It is shown that if the inhomogeneous 
distribution of mass is taken into account, the confinement of cosmic rays is determined primarily by the 
low-density regions between the clouds. An attempt is made to evaluate the efficiency of heating of cosmic 
rays, and it appears that their energy changes very little during their galactic confinement. However, 
because there is a non-linear relation between the source and the cosmic-ray density, the observed energy 
spectrum does not necessarily represent the emitted spectrum. 

I. INTRODUCTION 

The general problem of the origin of cosmic rays divides into two parts. The first part 
concerns the actual origin or injection of the cosmic rays into the Galaxy, while the sec- 
ond part concerns the subsequent behavior of the cosmic rays, their motion and accelera- 
tion in the Galaxy. This paper is concerned with the second part of this problem only. 

It is generally recognized that the cosmic rays propagate along the galactic magnetic 
field. Because of the observed isotropy and age of the cosmic rays, it seems clear that the 
cosmic rays cannot propagate freely along the lines of force but must be continually 
scattered and slowly diffuse out of the galaxy. Further, the scattering cannot be by 
particles since the energies of the cosmic rays are much higher than nuclear binding 
energies and such collisions would destroy all nuclear species heavier than protons. Thus, 
the most likely scattering mechanism is off waves, and this paper is concerned with the 
behavior of particles as they scatter off magnetic inhomogeneities or waves. 

Cosmic rays can scatter off large-amplitude magnetic-field inhomogeneities. This was 
first proposed by Fermi (1949, 1954), who showed that they would be accelerated as 
well. Morrison, Olbert, and Rossi (1954) investigated this process more quantitatively 
and showed that it was difficult to get quantitative agreement with the observed diffusive 
properties of cosmic rays unless the magnetic field was very tangled. They assumed that 
the field was confined to clouds and that the cosmic rays were scattered off clouds. How- 
ever, it now seems likely, not that the field has such a tangled structure, but rather that 
it is more or less uniform over distances of several kiloparsecs with smaller fluctuations 
with scales of order of a parsec (Spitzer 1968; Serkowski 1962). 

Another possibility is that of cyclotron resonance scattering of cosmic rays off small- 
wavelength Alfvén waves. (The Alfvén waves propagate in the cold interstellar medium, 
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and their propagation rate is only slightly affected by cosmic rays.) If the wavelength of 
the Alfvén waves is of order of the gyration radius of the cosmic ray, the Doppler-shifted 
wave frequency seen by the cosmic ray is of the order of its cyclotron frequency. The 
result of such a resonance is that the cosmic ray gets scattered in pitch angle with little 
change in energy. In this paper we concentrate on this interaction between Alfvén waves 
and cosmic rays and show that the scattering rate can be appreciable if there is any 
energy in this wavelength range. Further, we show that the energy in Alfvén waves is 
indeed large, owing to an instability found by Lerche (1966,1967) and whose importance 
has been emphasized by Wentzel (1968) and Parker (1968). These results show that a 
small cosmic-ray anisotropy makes these waves unstable. Such an anisotropy is pro- 
duced naturally in the Galaxy by the cosmic rays escaping out of the Galaxy along the 
lines of force. A velocity of the order of the Alfvén velocity leads to instability. Thus, the 
cosmic rays themselves can produce waves which in turn react on the cosmic rays and 
scatter them. 

The importance of scattering particles in pitch angles by waves was first demonstrated 
by Kennel and Petschek (1966). They considered the effect of whistler-mode scattering 
on the trapped particles in the Van Allen belt. The interaction of high-energy particles 
with Alfvén modes by cyclotron resonance has been considered by Cornwall (1966). 
Tidman (1966) showed that Alfvén waves are efficiently damped by cosmic rays because 
of cyclotron resonance. Jokipii (1966, 1967) calculated the scattering of cosmic rays in 
interplanetary space by Alfvén waves. The general theory for scattering by plasma tur- 
bulence has been worked out by Kennel and Engelmann (1966). 

This paper is divided into two main parts: § II and § III. In § II we develop the physi- 
cal basis for the interaction between cosmic rays and Alfvén waves. By solving the 
relativistic Vlasov equation we compute the linearized growth rate of Alfvén waves in 
the presence of a general cosmic-ray distribution. Then by going to second order, we 
derive a Fokker-Planck equation for the cosmic rays, whose scattering coefficients are 
expressed in terms of the energy density of the Alfvén waves, whose amplitudes we 
assume to be random. The general properties of these equations are discussed. 

In § III the results of § II are applied to the Galaxy and other systems in which 
cosmic rays are found. A model is postulated in which the cosmic rays are assumed to be 
restricted to a single magnetic tube of force of length 2L. In the limit of large scattering 
rates the Fokker-Planck equation is reduced to a one-dimensional diffusion equation 
along this tube of force. A self-consistent problem is then set up in which sources of cos- 
mic rays with their initial energy spectra are given. Also, all sources of Alfvén wave 
turbulence other than the cosmic rays are assumed given. The cosmic-ray densities and 
spectra and the turbulent energy spectra of the Alfvén waves are then to be solved for. 
The cosmic-ray densities depend on the energy of the Alfvén waves, while the energy of 
the Alfvén waves depends on the cosmic rays through their effect on the damping. (In 
the absence of cosmic rays, the damping is by friction between the charged and neutral 
parts of the interstellar gas.) 

This model is solved approximately for the case of homogeneous sources in a uniform 
interstellar medium. The solution is expressed in terms of a standard source of cosmic 
rays, a standard source of turbulence, and a standard cosmic-ray density. It is shown 
that (a) the behavior of the solution (of the density in terms of the cosmic-ray source) is 
different according to whether the source of turbulence is weaker or stronger than the 
standard source and (b) for a fixed source of turbulence the dependence of the cosmic 
rays on their source is non-linear, being different as the source is weak, intermediate, or 
strong (compared with the standard source). This result makes it clear that it is not 
possible to infer the nature of the sources directly from the observed cosmic-ray spectra 
and density without taking into account their confinement. It is further possible to 
calculate the mean age and isotropy of the cosmic rays. 

Using this result, one can compare the self-consistent solution with the region of the 
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Galaxy near us and solve for the sources. Taking L = 3 Kpc, we find that the sources are 
weak and that the density is below the standard one. 

However, if one takes into account the granular nature of interstellar matter, it is 
shown that the main diffusion of cosmic rays occurs in between the clouds, where the 
interstellar density is low. In this case the source of cosmic rays is strong and the tur- 
bulence sources are somewhat indeterminate. 

Finally, the case where the field is not uniform is considered so that we can have 
magnetic pumping (Fälthammar 1963). The amount of acceleration of the cosmic rays 
by this method is then computed. It is found that the amount of acceleration of the 
cosmic rays in the interstellar medium is negligible in the galactic case, although it may 
not be in the other cases. 

II. THE BASIC EQUATIONS FOR WAVES AND COSMIC RAYS 

a) Hydromagnetic Waves in H i Regions 

In this section we give the equations which govern the interaction between the 
Alfvén waves and cosmic rays. The Alfvén waves are carried by the cold interstellar 
medium, and they change their amplitude by ordinary damping and by interaction with 
cosmic rays. We restrict ourselves to the H i regions of interstellar space. These regions 
have two components : the neutral component, made up of hydrogen and helium which 
is not ionized by interstellar radiation; and a charged component of much lower density, 
made up mostly of ionized carbon and electrons (and perhaps a small fraction of the 
hydrogen ionized by cosmic rays). At the wavelengths of interest, the collisions between 
the ionized and neutral components are relatively infrequent and therefore the hydro- 
magnetic waves of interest are essentially carried by the ionized component alone. How- 
ever, occasional collisions between the ionized and neutral components do provide a 
damping mechanism for the Alfvén waves. 

Let us first discuss the nature of the hydromagnetic waves. We assume the interstellar 
magnetic field Ro is uniform and in the z-direction. The ratio of the pressure of the 
ionized interstellar matter to the magnetic pressure is very small (^10~"5), so we may 
neglect it and take the interstellar matter as cold. Therefore, the hydromagnetic waves 
are quite simple. Of the two modes, the magnetosonic has a velocity Va = Bq/(47rp*)1/2 

in all directions, where p* is the density of the ionized interstellar matter, while the 
Alfvén mode has a phase velocity Va cos f, where f is the angle between the direction of 
propagation and Rq. The cosmic rays do not influence the speed of propagation of hydro- 
magnetic waves except for propagation nearly perpendicular to R0, | tt/2 — f | ^ Va/c « 
3 X 10-4, and we disregard waves propagating in this direction. The Alfvén waves are 
linearly polarized except for propagation nearly along R0, f ^ (co/fí¿)1/2 « (F¿/<;)1/2, 
and we disregard propagation in this direction also. 

In addition to the cosmic-ray interaction (which we discuss below) and the collisions 
between charged particles and neutral particles, there are several other possible damping 
mechanisms for the waves. These are resistivity, electron viscosity, electron thermal 
conductivity, and ion viscosity. They are discussed in Appendix A, where it is shown 
that none of them can be important compared with ion-neutral collisions. The effect of 
ion-neutral collisions is discussed in Appendix C. Further, the electric field in the waves 
is almost exactly perpendicular to the magnetic field because of the large electrical con- 
ductivity of the interstellar medium. It is shown in Appendix B that the minute Ez field 
does not lead to any significant modification of the interaction between cosmic rays and 
waves. 

b) The Effect of the Cosmic Rays on the Waves 

We now consider the effect of cosmic rays on the amplitude of Alfvén waves. In order 
to do this, we use a collisionless theory and solve the relativistic Vlasov equation for 
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the distribution function/(r, p, t), where p is the relativistic momentum and r is the 
position, as an expansion in the electric field amplitude £. To lowest order, 

fo = n*ô(j>) + F(p) , (1) 

where n* is the density of the cold charged particles and F is the distribution function 
of the cosmic rays. To first order we can solve for F (assuming E ~ exp [ik^r — ico/]), 
compute the perturbed current, and substitute in Maxwell’s equation to obtain a dis- 
persion relation. The details are the same as given by Lerche (1967). Taking into account 
the low density of cosmic rays, we can neglect them in the real part of the dispersion 
relation, and we have for the two modes : 

co(¿) = 

coÄ = 

r* = 22iry C~) ¿ fd3pv±iô(o}k - 
\ C / n=— co 

X — k±V±/CO . 

The first sum is over all the various species of cosmic rays, and q is the charge, c the 
speed of light, v the velocity, £2 = qBc/e the relativistic cyclotron frequency, e the rela- 
tivistic energy, Jn the Bessel function, ju = cos 0 = p2/p, and the subscript JL refers to 
the component perpendicular to Bq. The upper line refers to the magnetosonic mode, 
denoted by m.s., and the lower line to the Alfvén mode, denoted by a. We have given 
only the real and imaginary parts for co > 0, corresponding to waves propagating in the 
direction of k. (The other root is obtained by merely reversing the sign of co¿.) 

Equation (4) gives the rate of growth or damping of the wave amplitudes produced 
by the cosmic rays. It is clear from the ô-function factor that only those cosmic rays 
which see a Doppler-shifted frequency co* — kzvz which is an integral multiple of their 
cyclotron frequency £2 can resonate with the wave. Since co* = kV a kzvz for n 0, 
we can replace this resonance condition by 

kz = nti/vz « nlrL i (5) 

where — is essentially the cyclotron radius. For ^ ^ 0, the resonance occurs for 
waves with wavelength of order the cyclotron radius (times 27r). 

For w = 0, the resonance condition is that the wave has the same phase velocity as 
the particle. This only occurs for waves propagating nearly perpendicular to 2?o or for 
particles with vz « F¿. It is zero-gyration-radius effect and is in fact the small-wave- 
amplitude limit of the Fermi interaction. We postpone discussion of this resonance until 
the end of § III. 

From the form of equation (4) we see that an isotropic cosmic-ray distribution leads 
to damping if dF/de is negative, but a slight anisotropy can lead to instability, since it 
is enhanced by a factor of order kv/uk « c/Va- To see this more quantitatively, let us 
assume a cosmic-ray distribution, 

F = F o (c) + mFi(€) + í/x2F2(6) , (6) 

F0 = Ki/pm , Fi = K2/p
q, F2 = Kz/p

r, € > €0, (7) 

and zero for e < €0. Let us further consider waves with kx <3C kz so we may replace all 

Uk + ¿r*, 

\kVA 

(UVa cos f 

[Jn'Kx) ,r 

kzvz — nil) j n2Jn
2(x) ^ I 

(2) 

(3) 

dF h dF 
de (¿ui) 

dFl 
da\ ’ 
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Bessel functions by their zero-argument values and drop terms with | n | > 1. Then we 
easily find (for F\, F2 « Fo) 

T(k) = -Pi + r2 

 , (w - 3) ^ 4>(>ei) [ . . c kz (m - 2) Fi(ei)] ® 
(m- 2) Mi’ll*c L ^ VA \ k\ q{q- 2) FoCexlJ ’ 

where Í20 = qB/mnc is the non-relativistic cyclotron frequency of the cosmic rays, mn is 
the proton mass (we assume all the cosmic rays are protons), l>(> ei) is the total cosmic- 
ray flux in particles cm“2 sterad“1 with e > ei, ei = qB/k is that energy for 
which krL~ 1, and m* is the cold ion mass. We denote the isotropic damping by -Ti 
and the anisotropic term by r2. Note that the symmetric anisotropy F2 does not con- 
tribute, its effect being canceled by particles with opposite vz. (It can lead to growth for 
waves with f < [co/Œo]1/2.) We see that the cosmic rays lead to growth of the waves for 
Fi/Fq > Va/c. Thus if F i corresponds to a mass drift of the cosmic rays U, U > Va 
leads to instability of the waves propagating in the same direction. This conforms to a 
simple physical picture. If a cosmic ray interacts with a wave traveling in the same direc- 
tion, it is mainly scattered in pitch angle 6 by Ad but gives a small amount of energy to 
the wave, (Va/c)€A6, For an isotropic distribution the opposite process occurs almost 
equally often and this effect nearly cancels. However, since the absorbing particles are 
slightly more numerous (having less energy) damping of the wave occurs. This gives Fi. 
If the distribution is anisotropic, the cancellation fails by the degree of the anisotropy, 
and the average gain per cosmic ray of the wave is (Va/c)(F1/Fo)€AS. 

c) The Effect of the Waves on Cosmic Rays 

We now turn to the effect of the hydromagnetic waves on the cosmic rays. We assume 
that the waves of different wavelengths and frequencies are random and uncorrelated. 
We write: 

= fF{k^) exp (ik*r — iwt)dkdw , (9) 

and the statistics of the waves are given by 

(E*(k\œ')E(k,œ)) = [Tffk^)k^/kx2 + /ms (*,co)* X B,k X B,/(k X B0)
2] 

X 5(co' - co)5(/e' - k) . 
(10) 

Further, for co > 0, 

= Ii 
5(a) — COfcm.s 
5(a) — cúfca) 

(ID 

so the frequencies are peaked about the natural frequency co¿. The angular brackets de- 
note an average over an ensemble of such systems. Since the energy in a hydromagnetic 
wave is 2c2/VjF times the electrostatic energy, the energy in the waves is 

{¿/VA^fdufdh 
co>0 

(/m.s. +1.) 
2t 

C2 -fm.s.(ft) + /«(*) 
lVfdk 2Ï  

(12) 

We can solve the Vlasov equation to second order in E, and after ensemble averaging 
we can find the effect of the waves on the time development of the cosmic-ray distribu- 
tion. This has already been done by Kennel and Engelmann (1966) for the non-relativis- 
tic case, and we generalize their results to the relativistic case to obtain 

ÔF 
dt 

+ v2 

dF 
dz 

= 4L(V 
dp \ 

(13) 
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where we have kept the convective term along the lines. 5 is an arbitrary source, and 

D = 2irq2 £ fdkfdJ,Ima.Jn'
2 + Ja—2—lá(co - kzvz - 

n=— oo w>0 L X J 

X [(, _ èj) + Íáí c,] [(! _ «. + e,], 

nti) 

(14) 

where ex and ez are unit vectors in the px- and ^-directions. Equation (14) represents 
the Fokker-Planck coefficients for accumulative weak collisions off Alfvén waves. It is 
easy to show that equations (13) and (14) conserve the energy of cosmic rays plus waves 
when combined with equation (12). However, there is no H-theorem, and equation (13) 
is not satisfied by a distribution of cosmic rays and waves in thermal equilibrium. This 
results from the fact that only terms corresponding to absorption and induced emission 
have been kept, while the spontaneous-emission term has been dropped. In practice, 
however, the effective temperature of the waves is much higher than that of the cosmic 
rays, so the spontaneous-emission term is completely negligible. (It is of order of the 
Coulomb-scattering term.) 

An important simplification can be made in equation (14) by dropping the 1 in com- 
parison with kzVz/œ « c/Va- Each bracket becomes (—kzv/oo)ee, and D represents pure 
scattering in 6. Equation (13) then reduces to 

where 

dF , dF 2nd 
M+V*Tz=irQd¿ 

rd - m2) 
l\ß\B0

2rL 
+ *5, 

W = £<s„w 
n^O 

(15) 

<Sn(£*) = ~~~ fd2kx[lm sAJn'Hx) COS2 f + Ja4 . (16) 

The quantities (in(kz)dkz thus represent the energy in waves with kz in dk3 except for 
the Bessel-function form factors in Æx, as can be seen on comparison with equation (12). 

If we drop terms in equation (15) with \n\ \ (corresponding to higher cyclotron 
resonances), assume (§i(4) even in kz, and compare with the standard form of the 
Fokker-Planck equation, we see that the rate of pitch-angle scattering is 

(AÖ2) ^ 7T ^ 87T&2(gi(&2) I 
t 2 B0

2 I Ay=(rLM)-1 

This result has already been given by Jokipii (1966) assuming a time-independent mag- 
netic field db initio (our w = 0 limiting case) and in the small-gyration-radius limit. The 
time-dependent result can be obtained by keeping the extra terms in equation (14). 
(This leads to the additional term (Tr/$){vA/c)2p~2d[p2&dF/dp]/dp in eq. [15]). The 
finite-gyration-radius result has been included in the Bessel-function factors and the 
\n\ l terms in equations (15) and (16). However, in the rest of this paper we essen- 
tially restrict ourselves to his case. 

If we understand as representing the energy “at kz” then we can say that the 
rate of pitch-angle scattering of a cosmic ray is smaller than its cyclotron frequency by 
roughly the ratio of the energy in waves at its cyclotron radius to the magnetic energy. 
One can arrive at this result by a simple physical argument. If we regard all the tur- 
bulence at the cyclotron radius as being lumped into one wavelength, the magnetic field 
makes an angle Ad with ez, with (A0)2 of the order of the above ratio. If we regard differ- 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
 6 

9A
pJ

. 
. .

15
 6

. 
.4

45
K
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ent wavelengths as uncorrelated and note that the particle encounters Í2 waves per second 
and that it is scattered in pitch angle by Ad per wavelength, we arrive at the above result. 

We see from equation (16) that the wave energies enter into equation (15) with a 
weight depending on k±. However, from equation (4) we see that waves with different k± 
have different growth rates, the rate being faster for smaller k±. We thus make the 
simplification throughout the rest of this paper that the weighted-average equation (16) 
has the growth rate given by the k± = 0 mode. This is accurate if the wave amplitude 
decreases rapidly with increasing Æx, as one might expect. 

III. APPLICATION TO GALACTIC COSMIC RAYS 

a) Introduction 

We now wish to apply the results of § II to galactic cosmic rays. We should like to 
arrive at a diffusion theory similar to that of Morrison et al. (1954), but for diffusion 
along the magnetic lines of force. For a model of the cosmic rays we assume that they 
are confined to a tube of force of the galactic magnetic field and along this tube of force 
equation (15) applies. We assume this tube of force has a finite length 2L, after which it 
leaves the galactic disk and goes into the halo, and the cosmic rays are lost. From 
observations (Serkowski 1962; Spitzer 1968) one knows that the field is roughly parallel 
to the arm and closely parallel to the plane of the disk. 

The mean angle the field makes with the plane of the Galaxy, a, is less than 5° and 
could be 0°. If a is 5° and we take 100 pc for the half-thickness of the Galaxy, we would 
have L = 1.1 kpc. On the other hand, if a is very small, we would hardly expect L to be 
larger than 10 kpc, so the value of L is quite uncertain. For the purpose of numerical 
investigations in our model we set 

L = 3 kpc . (18) 

The mean value of B is also uncertain, but for our numerical examples we take 
the field in microgauss, to be 

Bp = ?> microgauss . (19) 

The Alfvén speed for the shorter wavelengths is that of the charged component alone 
(see Appendix C). It is generally accepted (Spitzer 1968) that the main ionized con- 
stituent is carbon, with a relative abundance to hydrogen by number of 5 X 10“4. If p* 
is the density of the charged component and p of the neutral component, 

pVp = 6 X lO"3. (20) 

This value applies in the clouds. In between, the ionized component may be more 
massive because of the ionization of hydrogen by low-energy cosmic rays (Spitzer 1968). 

We take the mean hydrogen density to be nn = 1 hydrogen atom cm-3. These values 
lead to 

Va = 2SBß km sec“1 = 85 km sec”1. (21) 

The gyration radius of relativistic cosmic rays is 

rL = ^ = 3.2 ~ X 1012 cm = 1012y cm , (22) 

where y = e/wnc2. We restrict ourselves to only the proton component of cosmic rays. 
The cosmic rays behave differently at different energies. The mean energy of the rela- 
tivistic cosmic rays is 5 BeV kinetic energy (Ginzburg and Syrovatskii 1964), and for 
our numerical examples we take cosmic rays with y = 10. Thus we are primarily inter- 
ested in turbulent wavelengths of 1013 cm « 1 a.u. 
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In this section we first reduce the Fokker-Planck equation of the last section to an 
equation of spatial diffusion whose diffusion coefficient depends on the wave energy- 
density. Then we apply this diffusion equation to our model for galactic cosmic rays, 
deriving a mean free path by comparison with the observed age. Next we investigate the 
stability of hydromagnetic waves, computing the growth rate produced by cosmic rays 
and comparing with the damping rate produced by friction with the neutral gas. 

Next we attempt to develop our model self-consistently. We assume a given source 
of cosmic rays and of hydromagnetic turbulence. Then we solve for the actual turbulence 
and cosmic-ray energy density. We investigate the non-linear dependence of the density 
of cosmic rays on source strengths and show that there are natural units for these 
strengths such that weaker sources lead to one behavior and stronger sources to another. 
We investigate such things as age, rates of hydromagnetic wave dissipation, and heating 
and cooling of the cosmic rays, on the basis of this model. Finally, we extend the model 
to take into account the observed non-uniform distribution of interstellar matter in 
clouds and the heating effect of large-scale magnetic-field inhomogeneities on the cosmic 
rays. 

b) The Difusión Equation 

From the estimated age of the cosmic rays one knows that they must not stream freely 
along the disk or else they would be lost in a time of the order of 10000 years. Thus, they 
must be strongly diffused, and we take the diffusion term on the right-hand side as the 
dominant one. 

We write equation (15) as 

where 

àF dF d F(1 — ju2) , x dFl , e/ \ 
^ ^ = äi + 5(e’2) ’ 

(23) 

(24) 

Since € is constant, we may regard it as a parameter in equation (23). We regard as a 
large quantity and expand in 1/v: 

F = Fo + Fi + F2 + . . . . (25) 

To lowest order F0 is independent of /z : 

F0 = F0(z) . (26) 

Integrating the first-order equation with respect to p and dividing by v, we have 

dFi 
dp 

v dF0 

vite’ 
and to second order, 

dFc 

dt 
0 , dFi d r(l - M2) dF2-\ , 0 

We get a condition that one can solve for F2 by averaging this equation in p: 

dFp 

dt + / 
dFi\ 5. 

(27) 

(28) 

(29) 
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(30) 

(31) 

1 — M2 , _ pW r (m — ß3)dß 
2v ß 47t202 J <St(rz,M)_1] lôwWirL-1)^ - (32) 

Jokipii (1966, 1968) has also derived an expression for a diffusion coefficient which 
differs from equation (32). The difference arises because Jokipii assumed that Fi was 
proportional to ß. This clearly does not satisfy equation (27) unless v is independent of 
ß. Our expression is generally valid for any v(ß). An important difference between his 
diffusion coefficient and ours is that ours has a singularity at /x = 0 which his expression 
does not exhibit. This singularity might be expected on physical grounds. It is discussed 
below. The quantity X is the effective mean free path, and 

(33) 

One does not know ©(&) without solving a self-consistent problem. However to get an 
idea of ß, we assume @ ^ k~r ~ /xr. Then ß is given in Table 1. 

TABLE 1 

Dependence of ß on r 

r ß 
0  1 
1 . .. . . 3/8 
15   1/6 4 
2   0 

We see from this table that for r > 2, ß is zero. Physically this means that the scattering 
past the angle 6 = 90° is done by very short wavelengths. If there is no energy in the 
short wavelengths, then the particles cannot reverse vz, and the diffusion is infinite. But 
particles with d near 90° are very easily mirror-scattered, so that a cutoff should occur 
for fi near zero in equation (33), and ß actually is not zero. On the other hand, if r < 1, 
the energy in short wavelengths diverges. The value of ß is a major uncertainty in our 
diffusion theory. For this paper we take the value corresponding to r = 1.5, 

ß = 1/6.4 . 

Since the age of cosmic rays is also of interest, one can define F' depending on the age 
r, such that F' is the number of cosmic rays in the age range (It. Equation (23) then 
becomes 
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G = fF'rdT , F = fF'dr , (35) 

we see (r) = G/F is the mean age. One obtains an equation for G by multiplying equa- 
tion (34) by r and integrating over r from 0 to oo, 

dG , dG d ["(I — M2) dG"| , ^ 
dt 

(36) 

which is identical with equation (23) with S replaced by F, and thus by the same pro- 
cedure we obtain 

dG 
dt 

(37) 

c) Cosmic Rays in the Galaxy 

To apply our diffusion equation to cosmic rays in the Galaxy, we need to know D 
(or @) and 5 as a function of 0. For a first comparison, let us take D and S constant. The 
steady-state solution to equation (31) for constant D and 5 and for loss out the ends at 
z = ±L is 

F0 = - z*) , (38) 

so the average age is 

G = 
Fp 
12D 

(5D - z2) , 

<r> = G/F 

For the anisotropy 8 we have, from equations (25) and (27), 

/max /min   ^ dFß   2X3 

/max + /min F0 dZ D — Z2 ' 

(39) 

(40) 

(41) 

The known parameters are 8 and (r) at the Sun, and (r) is given in terms of 2, the 
amount of mass per unit area through which the cosmic rays have passed. 2 is in the 
range 3-7 g cm-2 (Ginzburg and Syrovatskii 1964). We take 

2 = pzj(r) = 7 g cm“2. (42) 

The unknowns are z, the distance of the Sun from the center of its line of force, and X, 
the mean free path. Since the Sun is close to the galactic plane, we assume z L. We 
can solve for X and L: 

A = f P = 0.9Lkpe2 pc = 8 pc , 

25S { 8 \ (43) 

z = |7= 550^pc. 

We can get an idea of the wave energy by combining equations (24) and (32). If we 
take as an index of the energy in the range k, 
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ZcBt? 
167t2í2/3X 

1.9 X 10~207^ 

^■pcß 
erg cm 3 = 4.8 X 10 19 erg cm 3. 

(44) 

The assumption has been made that the magnetic field is essentially stationary over the 
age of the cosmic rays. If the lines of force move out of the Galaxy as a whole, carrying 
the cosmic rays with them, then the lifetimes could be much longer, X could be decreased 
and Ê substantially increased. 

Let us compare our simple model with the stability criteria derived in § II. T is given 
by equation (4). Let us replace the Bessel-function factors by their values for kj. = 0. 
Then the growth rate depends on the anisotropy dF/dp, which is given in terms of 6 by 
equations (25) and (27). It is easily seen that the argument of 6 is unchanged under the 
integration in equation (4), and, further, if Fo is given by the power law in equation (7), 
then the calculation reduces to the same case as that in equation (8), with q = m — 1 
and Fi = —\dFo/dz. If we use equation (38) to express dF^/dz in terms of Fq, we find 
at 2 = Ljl 

r c.r. -Pi + r2 = ^ 
m — 3 p ^ $(>ei) 

m — 2 p nnc 

X 
V ^ {m- l)(w - 3) 3PA Va F0 dz J 

= 0.9 X Í0~np/p*B„yr1A ( — 1 + 
(45) 

sec -i 

= 1.8 X 10-11{-1 + 2.5} = 2.7 X KT11 sec“1, 

where we have taken $ from Table 4 (p. 36) of Ginzburg and Syrovatskii (1964) (we 
choose their case 7 — 1 = 1.4, m = 4.4), and XPc = 8. If this exceeds the damping rate 
of the waves, then these waves will grow with an e-folding rate faster than once every 
1000 years. This will lead to an increased wave amplitude and thus v will increase, leading 
to a longer life than is observed for the cosmic rays. On the other hand, if the damping 
rate is much higher than this, then one must find a source of energy for the turbulence 
greater than 2.6 X 10~29 erg cm-3 sec-1. This is to be compared with the energy lost by 
the cosmic rays (greater than 10 BeV) of 3 X 10-27 erg cm-3 sec-1, assuming a lifetime of 
4.5 million years. Thus the power involved in turbulence is much smaller than the power 
involved in supplying energy to the cosmic rays. 

We now consider the damping rate of the Alfvén waves. It is shown in Appendix C that 

1 / \ f i/0 = 2 wh {Mu ) — , 
Me 

— !.. _ !, (46) 

where a is the cross-section for scattering and z>h is the thermal velocity of the hydrogen 
atoms (mn/mc = 1/12). Taking 0* = 15 X 10-16 cm2, î>h = 1.4 X 105 cm sec-1 (for 
T = 100°) from Spitzer (1968) and = 1 cm-3, we get 

T* = 0.9 X 10“10 sec“1, (47) 

a value in order-of-magnitude agreement with rc#r. 
If we consider the uncertainties associated with the values of the physical quantities in 
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equations (45) and (46), as well as the crudeness of our model, we cannot decide from 
the numbers whether the waves in the Galaxy are unstable or not. 

What would happen if the waves were unstable? The result would be that © would 
grow, and from equations (24) and (32) v would increase and D and X would decrease. 
Because of the large value of z' « 30 yr“1, equation (27) would still be valid, and from 
equation (45) P would decrease, becoming stable. (We assume that F in equation [45] 
does not change in the time for © to change since the time constant for F changing from 
equation [31] is S/F ^ (r ) ^ 106 yr and is much longer than rc r.“

1, so © changes much 
faster than F.) Similarly, if Fc r. < P*, © decreases, leading to an increase in X and rc.r. 
Thus, we expect the amplitude of the waves to stabilize at a level which makes rc.r. ^ P*, 
so the agreement of rc.r. and P* for the Galaxy is not merely fortuitous. The time to 
stabilize is of order Pi“1, as a simple linearized calculation shows. 

d) A Self-Consistent Model 

In the first part of this section we have used the observed properties of galactic cosmic 
rays to determine the diffusive properties of the interstellar medium. Let us now take a 
more general point of view and develop a model which will apply to other objects con- 
taining high-energy particles as well. 

We assume that specific sources of cosmic rays S are specified, as well as sources of 
hydromagnetic turbulence T. We assume also that our model of a uniform tube of force 
of length 2L containing a very partially ionized gas still applies. Then we expect the 
energy density of the turbulence, as well as the cosmic-ray density, to be uniquely deter- 
mined. The level of the turbulence is given by the damping of the waves, which is con- 
trolled by the cosmic rays themselves. On the other hand, the density of the cosmic rays 
depends on the waves through the diffusion coefficient. Thus, we should have a self- 
consistent model. 

The full self-consistent model should lead to an equation of non-linear diffusion in 
energy and 2. We simplify this problem by ignoring diffusion in energy and applying our 
model to one point in space, z = E/2, and one energy, y = 10. We take into account the 
particles at other energies by assuming a power-law spectrum, the waves at other wave- 
lengths by introducing the proper mean value through the parameter 0, and the behavior 
at other s’s by our homogeneous-solution equation (38). This simplification of the self- 
consistent model, while quite crude, enables us to get an idea of the full self-consistent 
problem. 

The relevant equations are as follows: assume that we know © and F at some time. 
Equation (32) gives D = aX/3. Equation (31) then shows how F changes in time, while 
the equation for © is 

~ = 2(r„ r - r*)g + r = 2(r2 - rx - r*)@ + t , (48) 
dt 

where rc r. is given by equation (45) and P* by equation (46). Equations (27) and (32) 
are valid for a time-dependent system, since the time constant in equation (27), z^-1, is 
short compared to the time constant in equation (31), L2/\v. Since T and © refer to 
energy density per unit wavenumber (somewhat unfamiliar units since k is so small), we 
give our results in terms of &6 and kT which are roughly the total energy density in a 
band with kk~k about k. We speak of these quantities as total energy densities at k. 
Then from equation (32) we have 

where 
X = tlIu , 

lÓTT2/? 
U = 

3£o2 

(49) 

(50) 
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If we assume a steady state for F in equation (48), we have, from equations (32), (45), 
and (48)-(50), 

(8T2ßkT/3B0
2) + (a'ßyeN/12»*) (c2/L Va) 

U P* + a(iY/12w*)ßo ’ ^ 

where N is the number density of cosmic rays per unit energy, 

7T , _ 32 m — 2 
a ~~ 4(m — 2) 5 a 9 (m — l)(m — 3)a ’ 

(52) 

and m is the exponent in equation (7). We have expressed <f>(> «) in terms of N(e) by 
equation (7). 

If we again use equation (38) (assuming a steady F), we have at 3 = L/2 

^ = 1 
eS'L2 

Xv ’ 
(53) 

where S' is the source of N, i.e., S' de = 4:Trp2Sdp. We may solve equations (49) and 
(51)-(53) for N. We obtain 

ö vrLN _ &ir2ßkT/3Bo2 + a'ßc2yeN/(Un*LVA) 
9 L2S' r + aSlo(eN/12n*) 7 K } 

a quadratic equation for N. We imagine a fixed model with variable sources of turbulence 
T and cosmic rays S, and we wish to find out how N varies with T and S. This is most 
easily done by expressing S, T, and N in terms of standard values characteristic of the 
model. Set 

eNo = 
i2^*r 

afín 

nn 
= <<™h> = U X 10 -10 wh25 

5. 
cm' 

eSo 

kTo 

8 a Va ciVo 

9a'~T~T 
= 8.0 X 10' -26 #h3/2¿1/2 

Sir2 — T*B( 
a 

rL c 
L VA 

= 6.6 X 10- 
_29 7**h3/251/2 

I'kpc 
ergs cm a sec -i 

(55) 

where in the numerical expressions we assume all the charged particles are carbon 
(m*/m = 12) and w* = 55 X 10-4 ^h, so 5 = 1 corresponds to the galactic value. If we 
set 

N = iV0/, S' = So*, ^ = T4, (55a) 

equation (54) becomes 

or 

l = 1 f 
s i +r 

/2 + (1 - *)/ - *¿ = 0 , 

(56) 

(56a) 

a quadratic equation for/. Thus, Nq, S0, and To are natural units for the problem. 
Let us assume t fixed and ask how/ varies with *. Equation (56) represents a hyperbola 

in the (*,/)-plane, passing through the origin with slope t and having asymptotes/ = — 1 
and / = * + 0 •— !)• It is sketched in Figure 1 for the two cases /<<C 1 and ¿ )>> 1. Let 
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us take the sources of turbulence to be weak (¿<<C 1). Then for a very weak source of 
cosmic rays 

/ = st(s « 1) . (57) 

By comparing with equation (56), we see that both/-terms on the right-hand side are 
negligible, which corresponds to the cosmic rays not contributing to the turbulence. 
The turbulence is given by balancing the source against the damping P*. This gives X 
and thus the diffusion. (This behavior is given by the straight-line portion near the origin 

Fig. 1.—Normalized cosmic-ray density / versus normalized source strength 5 for the case of weak 
and strong turbulent sources: t = 0.2 and t = 5. 

of the hyperbola in Fig. 1.) It can be shown that 

p = p=/, (58) 

so 5 < / corresponds to stable waves. As s increases toward 1, T2 approaches P*. The 
waves are enhanced, since the cosmic rays reduce the effective damping. This decreases 
X, increasing the confinement and thus the number of cosmic rays. This is represented 
by the increasing slope of the hyperbola in Figure 1. For s ^ 1, 

f « ^ (i ~ 1,1 - s > Vt) , (59) 

and the slope increases rapidly until1. In this region / becomes independent of L 
For this regime we have r2 ^ P*, Pi < P*, and the waves are marginally stable at a 
level which keeps them marginally stable. As s increases further Pi becomes larger than 
P*, and Pi and P2 must balance, giving 

f=s-l, s»l. (60) 
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Thus, in summary, we have three regimes in the weak-turbiilence case: 

a) the weak-source regime, 

b) the intermediate-source regime, (61) 

c) the strong-source regime. 

For (a), the waves are damped; for {b) and (c), they are marginally stable, and the den- 
sity and turbulent energy must adjust to keep them marginally stable. For the case of a 
large turbulent source 1, one again gets three regimes: 

a) weak: f = st, s <Zil/t 9 

b) intermediate:/ = \/(st) , 1/t <& s <& t, (62) 

c) strong:/ =$ + /— 1, t<&s. 

From equation (58) one sees that Pi ^ r2 according to whether / ^ s, so if / < s, the 
cosmic rays reduce the damping and increase the turbulence. Being better confined, their 
density is increased. Thus the curve below f = s is convex upward. The curve above is 
convex downward since cosmic rays enhance the damping. 

Two other quantities of interest for our model are the age of the cosmic rays and the 
rate of dissipation of wave energy (which goes to heat the interstellar hydrogen). 
From equations (40) and (49)-(55), 

<«> 

where to is the standard unit of time, 

To = ^Yo = 7,8 x yr. 

For the dissipation of turbulent energy, we find from the same equations 

2r*¿@ _/ kTo, 

(64) 

(65) 

so To is the standard unit for dissipation of energy into the interstellar medium as well 
as for the source of turbulent energy. It is seen from equation (57) that for a weak source 
the energy dissipated equals the source of turbulent energy, tTo, while for a strong source 
it approaches To. (In no case can it exceed the maximum of To and tTo.) Finally, this 
should be compared with the total rate of energy loss of the cosmic rays leaving the 
Galaxy: 

2T*m 
ytnE.c2So 

27a/Vy 
167T \a / 

4 = O.Sd/J^ 
s2 s2 (66) 

The efficiency of conversion of cosmic-ray energy into turbulence energy is thus 

y = 0.56/3¿^ = 0.56/3 < K0.56)/S (67) 

(using equation [56a]), where À€ is the total decrease in energy e during the life of the 
particle. If / < s, the cosmic rays are cooled, as they should be since from the above 
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argument they are enhancing the waves. Since ß < lf they are never cooled by more 
than 15 per cent of their total energy. For/ > s, they are heated, part of the turbulent 
energy provided by T going into them and the rest into heating the interstellar gas. 
The fraction of T going into cosmic-ray heating is, from equation (65), 

TT-O-Ô’ m 

and can be very close to one for s small. 
Although our treatment of the self-consistent model is quite rough, it makes one thing 

clear. The relation between the source S' and the cosmic-ray density is not necessarily a 
linear one, and is different in different regimes, i.e., a weak or a strong source of turbu- 
lence. Further, as can be seen from equation (55), Tq depends on 7, so one can be in 
different regimes at different energies. Thus, if s falls off faster than T/y, one may move 
from a strong-source regime to a weak-source regime, while if T falls off slower than 
y ^ hr1, one may move from a weak-turbulence regime ¿ < 1 to a strong-turbulence 
regime in which the behavior of the cosmic rays (with respect to their confinement) is 
different. Thus a power-law source of both cosmic rays and turbulence need not lead to 
a power-law energy spectrum of cosmic rays, but it will if the regime is the same and is 
linear. Thus, on the basis of a more careful treatment one must exercise some care in 
interpreting the source energy spectrum from the observed spectrum. 

It should be noted that the numerical values given in equation (55) are not accurate 
at very high energies (long wavelengths) since equation (46) was used for T* and this 
equation breaks down for large wavelengths (see Appendix C). T* decreases, and the 
values in equation (55) should be decreased by a ratio of F* to the value given in equa- 
tion (46). This tends to make the effective source s stronger. It is possible that this 
effect, together with a naturally decreasing s, could explain the change in slope of the 
cosmic-ray curve between 1015 and 1018 eV. For example, assume the source to be a 
power-law spectrum which was strong at low energies and weak at higher energies. Then 
if the turbulence source was weak and also had a power law, we see from equations (60) 
and (57) that at low energies/ = s, at intermediate energies/ = st, and at high energies 
f = s again. This would correspond to the observation that at low and high energies the 
cosmic-ray spectrum has the same power law, while in the intermediate range it is 
steeper. 

In what regime are the galactic cosmic rays in the neighborhood of the Sun? This is 
difficult to judge because we have no direct evidence of the size of T and S and because 
the values of other physical parameters are uncertain. However, if we assume = 3, 
Wh = ô = 1, ß = 1/6.4, and LkPc = 3, we get the standard values 

(€AT0)Gal = 5.7 X 10"11 cm~3, (eSo)G*i = 1.7 X 10"25 cm"3 sec"1, 
(69) 

(kTohai = 2.2 X 10"28 ergs cm"3 sec"1, (r0)Gai = 1.2 X 107 yr . 

Then assuming S = 7 g cm“2, € = 10 BeV, we get from equations (55a), (63), and (56): 

/ = 0.20 , f/s = (r )/to = 0.37 , s = 0.52 , / = 0.25 . (70) 

e) An Inhomogeneous Model 

So far we have assumed S' and wh, as well as other parameters, constant in z. We now 
take into account the granular nature of the interstellar matter, in our self-consistent 
model. We ignore the H11 regions of ionized hydrogen. Interstellar matter in H 1 regions 
is concentrated in clouds with densities roughly 10 times the mean density and occupying 
10 per cent of the volume. In between the clouds we take the density one-tenth the mean 
density. In our model we distinguish two regions: A, the clouds, which we assume dis- 
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tributed densely in z; and B, the rest. We set Ma = in A and m = mb^h in B. 
We assume that all other physical parameters of the model, B, n S, etc., are con- 
stant. 

We must now take into account the local variation in z of F, at least distinguishing 
between regions A and B. (We expect heavy damping of waves in the clouds so that @ 
is small and X large there.) If we set 

Èh- 1 F 
dz t(z) 0 ’ 

(71) 

where we expect l to be quite different in the two regions, we can again solve for Fi from 
equation (27) and substitute the result in equation (8) to find Pi and r2. Equation (45) 
is now modified by replacing L by l. Equations (49) and (51) are still valid, with X and y, 
depending on z and L replaced by l. However, equation (53) is not valid, since it was 
derived on the assumption of constant X. Instead, we integrate equation (31) in z to 
obtain 

dEo = çXEo 
dz 3 1' 

(72) 

Now by combining equations (49)-(51) and taking the standard quantities in equation 
(55) relative to region B and setting y = n/m, we find that equation (56) is replaced by 

3 Iß f __t + yrVKlL/Of 
% tz s /i + ¿T1/ 

We can solve equation (73) for l/L and find 

(73) 

(74) 

This is to be combined with equation (72). If we average equation (72) over several 
regions A and B (still for a small range in 2), we find 

dz 4\10 104/ {()■ 
(75) 

Thus, if Ib < 10 4, we have <4 = 4, the regions A can be completely ignored without 
serious error, and the diffusion problem can be solved completely in region B. In this 
case Ib/L = f, and, since/, t, and s are the same in A and B, the condition 4 < 10 4 
becomes at 2; = L/2: 

4 
L 

» 1 
To * (76) 

Since /¿A ~ 100, this condition is satisfied unless s « 1000 or f/st<£ 10-3. Neither case 
occurs in the Galaxy, so we have the result: We can ignore the interstellar clouds com- 
pletely and study the cosmic rays in a uniform medium with the reduced density equal to 
that in between the clouds. This result follows physically from the fact that the damping of 
waves is sufficiently strong in the clouds that the mean free path is long. Combining this 
with the fact that the clouds occupy a small volume, we see that the cosmic-ray density 
should be essentially the same on each side of the cloud. 

In order to compare with galactic values, we have to inquire how the age is changed 
in the inhomogeneous model. It is easy to derive the analogous equation to equation (36) 
for inhomogeneous densities, diffusion coefficients, and sources, and to solve it by an 
integral. One finds that, as far as the aging is concerned, equation (42) holds with p the 
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mean density, so our estimate for r is still valid. However, equations (63) and (64) are 
valid when the standard quantities are referred to region B alone. Thus, if we take 
^b/{n) = No is multiplied by lO""2, So by 10“15, and r by 10“°5. Therefore, new 
values of/, s, and t are 20,17, and 4.5, respectively, although the last is quite uncertain. 
Using these values, one finds from equation (76) = 28, verifying our conclusion 
that region B is the important region for diffusion. 

/) Acceleration of the Cosmic Rays 

So far in our model we have assumed that the magnetic field is uniform with only 
fluctuations due to small-scale turbulence. (We have neglected the n = 0 modes in 
equation [14.]) We now consider the effect of larger-scale fluctuations. We can treat 
these most simply by a non-diffusion theory; that is, we do not assume complete random- 
ness of the larger-scale fluctuations. Since for the larger-scale fluctuations the gyration 
radius of the cosmic rays is small, we can use the conventional guiding-center equations 
for these effects. One rewrites equation (23) with these guiding-center terms’on the left- 
hand side in the ultrarelativistic limit: 

dF 
dt 

+ W 

+ P- 

dF (1 - M2) / , 
dz 2 V 

(1 - M2) d ln B dF 
2 dt dp 

dlnB d In B\ dF 
dz ^ dt ) dfji 

[0^ V S. 

(77) 

The two additional terms on the left-hand side represent magnetic mirror scattering off 
moving large-scale inhomogeneities (Fermi acceleration) and the betatron effect in in- 
creasing and decreasing magnetic fields. Moreover, the small-scale scattering produces 
just the í<collisions,, necessary to make Fermi acceleration and magnetic pumping work. 
To get an idea of the magnitude of the acceleration, let us again pass to the limit in which 
collisions dominate: v^> c d ]n B/dzy d In B/dt. Then we develop F in a series in 1/v as 
in equation (25). FQ is again independent of /x. Averaging equation (77) over /z, we get 
the condition we can solve for Fii 

and 

dFo . ! d ln B dFo 
'W + ^~dTp~dp = o. (78) 

dFi __ nat p dFp __ v dFo 
dp 3 v dp v dz ’ 

(79) 

where a = ln B. In second order we again average over p and use the equations analogous 
to equation (30). Averaging over the time variations of a, we get for the secular rate of 
change of F0, 

dFo = B± 
dt dz 

dFl 
dpi 

D' 
o 0 v 

dp . 

For the case © ^ 5, 

Df — i 
"" 36 

(80) 

(81) 
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and the rate of increase of energy is 

<€> _ , Xco2 ydB\2 

e -Ton c \b/ ' 

463 

(82) 

If we set œ — Wa = 27rF^/X0, 

-^ = 3.1 X IO-^/Ô-^h“1 sec_1 • (83) 

If we set Bß = 3, wh = 0.1 cm“3, X = 8 pc (characteristic of region B), Xo = 1 pc, and 
5B/B « 0.1, we obtain 1.1 X10“16 sec“1. This is to be compared with the age r = 1.4 X 1014 

sec, so the energy change is very small. We can conclude from equations (67) and (83) 
that the observed cosmic rays have the same energy as when they left the source. (How- 
ever, the application of eq. [82] to more compact systems shows that acceleration can be 
very efficient.) 

IV. SUMMARY AND DISCUSSION 

We have attempted to develop a theory of the diffusion of cosmic rays through a 
medium such as the Galaxy which takes into account the effect of hydromagnetic waves. 
One of the key assumptions of the theory is that the model we are treating has a uniform 
magnetic field, at least over many wavelengths. 

We found that two classes of wavelengths are important for the cosmic rays: the short 
wavelengths of the order of the gyration radius for which the waves can interact by 
cyclotron resonance, and longer wavelengths with which the cosmic rays interact adia- 
batically by magnetic mirror scattering and the betatron effect. We treated the first 
class of waves by a stochastic small-amplitude theory. This is developed in § II, where 
we gave the dispersion relation characterizing the effect of the cosmic rays on the waves. 
It was shown that a small drift of the cosmic rays relative to the background interstellar 
plasma of the order of the Alfvén velocity can produce an instability which increases the 
amplitude of the waves. The growth rate is given in equation (4). This instability was 
discovered by Lerche (1966, 1967) and Wentzel (1968). 

By proceeding to next order in the amplitude of the wave, we were able to exhibit a 
Fokker-Planck equation, equation (13), which describes the effect of the hydromagnetic 
waves on the particles. The Fokker-Planck coefficients are given in terms of the energy 
density in (/e,x)-space of the hydromagnetic wave. They are generalizations of similar 
coefficients given by Jokipii (1966, 1967), Cornwall (1966), and others. It is shown that 
the main interaction with the cosmic rays is to scatter them in pitch angle with only a 
small change in energy. This is because the waves are much slower than the particles, 
and the energy change is on the average (Va/c)2 smaller than the change of pitch angle. 
The Fokker-Planck equation is then simplified by expanding it in small Va/c and is 
given in equation (15). In order to apply this equation, one must know the wave ampli- 
tudes. These are given by balancing the growth rate of the waves due to their instabilities 
against the damping rate of the waves due to friction between the ionized and neutral 
portions of the interstellar gas. The instability arises naturally as the cosmic rays at- 
tempt to rush out the ends of the line of force. The combined growth due to cosmic rays 
and damping due to the neutral gas must be balanced against all external sources of 
waves as in equation (48). As the growth rate of the waves depends on the cosmic-ray 
anisotropy, this relation is only an implicit one and must be combined with a diffusion 
equation. In order to carry this out, the simplification of lumping all cosmic rays into 
the same energy and all waves into the same wavelength is carried out. This lumping is 
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carried out by taking the observed spectra for cosmic rays and introducing the parameter 
ß for the waves. 

So far the theory is fairly accurate and is valid for magnetic fields uniform over several 
gyration radii and for waves of not too large amplitude. We now attempt to apply these 
results to the galactic cosmic rays and to other systems in which high-energy particles 
are trapped. This is done in § III. The basic equations for this application are equation 
(4), giving the effect of cosmic rays on the waves, and equation (15), giving the effect of 
the waves on the cosmic rays. To do this, we make a simple model for the cosmic rays 
and the Galaxy, consisting of a single tube of force of length 2L with open ends out of 
which the cosmic rays escape. We write down a diffusion equation, including the wave 
scattering as a collision term. For strong collisions, this can be reduced to an equation of 
spatial diffusion of the standard type, where the diffusion coefficient is given in terms of 
the wave energy density by equation (32). 

With this simplification, a relation between the source of cosmic rays, the sources of 
turbulence, and the density of cosmic rays is derived in equation (54). This is most easily 
investigated by introducing a standard source of cosmic rays So, turbulent energy To, 
and the cosmic-ray density Wo in equation (55). In terms of these quantities the relation 
reduces to equation (56). On the basis of this model one finds two regimes for the tur- 
bulent source (according to whether it is strong or weak compared with the standard 
source). 

Assume a weak turbulent source, and gradually increase the cosmic-ray source S'. 
Then at first the waves are stable to cosmic rays, rc.r. < P*, and the turbulence is inde- 
pendent of the cosmic-ray density N, so the latter increases linearly with S'. As S' and 
N increase further, rc.r. starts to approach P*, the damping is reduced, and the turbulence 
rises. This leads to increased confinement, and N increases faster than linearly with S'. 
As rc r. gets close to P*, the turbulence and density increase rapidly, so the cosmic rays 
are less anisotropic, and the damping due to the body of the cosmic rays becomes com- 
parable to the instability due to anisotropy, r2. When Pi and r2 are large compared with 
P*, a balance between the two of them is reached, and N increases linearly with S' but 
with a larger coefficient. This is illustrated in Figure 1. For strong turbulence, Pi is 
always larger than P2, so the cosmic rays at first rise linearly with the source, then slower 
than linearly, and then linearly again. Thus, the cosmic rays control their own diffusion 
to a certain degree, and it is possible that the observed energy spectrum does not reflect 
the source energy spectrum exactly. 

Our model so far has been homogeneous, with all the interstellar matter smeared out 
uniformly. An attempt is made to treat the actual distribution of interstellar matter in 
clouds by an inhomogeneous model. It is shown that in general the diffusion is faster in 
clouds (due to increased damping associated with this higher density). This leads to the 
consequence that in most cases, as far as diffusion is concerned, one can ignore the clouds 
completely and concentrate solely on the regions between the clouds, treating them by a 
homogeneous model. Thus, the cosmic rays are diffusing in a more rarefied medium than 
is generally supposed. However, the age inferred from the amount of matter through 
which the cosmic rays pass is still the same as for a homogeneous model. 

Finally, an attempt is made in the last subsection to take into account larger-scale 
waves, such as those treated by Fermi (1949) and Fälthammar (1963). The small-scale 
waves now provide a collision mechanism which might make the methods work. It is 
found that for 8B/B ^0.1 and wavelengths of the order of 1 pc the heating of cosmic 
rays in interstellar space is very weak, so they seem to have acquired their energy at the 
source. The model may be applied to the source itself, where magnetic pumping may not 
be small. 

We have presented a very simple model to explore the effects of waves on cosmic-ray 
diffusion. It leaves many things out which could easily be included, and it is treated in a 
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very elementary way. For example, only one species of cosmic rays is included. This 
could easily be generalized simply by introducing many/’s in equation (56), with sums 
over f’s in the numerator and denominator but not on the left. The different species 
should be taken at equal values of rigidity rz,. It should be easy to extend the model to 
non-uniform sources T and 5 and interstellar densities varying in z as the observed 
variation in height above the galactic plane. A more careful treatment of the model, not 
lumping the energies together, should be carried out. Also, an estimate of the turbulent 
sources should be made. The emission of waves by stellar winds and flares is an obvious 
possible source. The energy variation has been treated in only the briefest fashion. How- 
ever, in spite of the defects, we feel the model has demonstrated that the relationship 
between sources of cosmic rays and their density is more intricate than at first supposed, 
but that it is still quite amenable to a quantitative treatment by the methods introduced 
in this paper. 

It is a pleasure to acknowledge many fruitful and helpful discussions with Francis 
Perkins, Jerry Ostriker, Lyman Spitzer, Jr., and Alar Toomre. The work was performed 
under the auspices of the U.S. Air Force Office of Scientific Research, contract AF-(638)- 
1555. 

APPENDIX A 

DAMPING OF HYDROMAGNETIC WAVES IN H i REGIONS 

The simplest way to compute the rate of dissipation of waves is to calculate the entropy pro- 
duction of the waves, multiply it by the temperature T, and equate it to the energy loss of the 
waves : 

2F (Al) 

The details of the calculation are carried out by Braginskii (1965, eqs [8.39]-[8.43]). For Alfvén 
waves he finds 

Joule + r, 
C2k¿ 

\47r0-|| + 
c2kf\ , 
47r<7i/ 2p* 

(¿Ai + ¿iM (A2) 

where the first term is resistive damping, the second is viscous damping, and <r is the conduc- 
tivity, given by 

= ax « 1013r3/2 sec-1 

1.96 
(A3) 

for T in electron volts. The viscosity coefficients are 

where 

j 0.3n*TiTi 

~ m~ Wh*- ’ 

Ti = 3 X 106 

(A4) 

(AS) 

is the ion-ion collision term. The ratio of IVis to F*, the damping produced by ion-neutral col- 
lisions, is 

FvU ¿rW _ ,, , M’,(<r»)coui/whV/2 

F* ~ von ~ < nn(<rv) \ m*J ’ 
(A6) 

where is the ion gyration radius, and (or)coui is the mean velocity times the Coulomb cross- 
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section. But «rcoui ^ 1CU8 for T = 0.01 eV, and n /tib. ~ 10-3, so from equation (46) and k ~ 
IAl we have 

r™ « |10a g « IO-7/e2(BeV) , (A7) 

which shows rvis is completely negligible. Similarly, for k — 10~13 cm-1 we have 

P joule — 10“16 sec-1, (A8) 

which on comparison with P* in equation (47) is completely negligible. 
For magnetosonic waves Braginskii finds 

P = P'Joule + P'vis + P'ther , (A9) 

where P'jouie is of the same order as Pjouie and P'vis is the sum of a term of the same order as 
Pvis and an additional term, 

1^3 = (A10) 

where rjo is the longitudinal ion viscosity, 

rio = 0.96n*TiTi. (All) 
Thus, 

(^T ~ 103^^2coui. (A 12) T n0 6 (av) \m / 

Now Xcoui ^ 1011 cm, so viscous damping of magnetosonic waves is comparable with damping 
by collisions with neutrals for ks. < 10-12. We are mainly concerned with longer wavelengths in 
this paper. Finally, Pther is the damping due to thermal conductivity. It is given by 

Pther = £2p*ÿ^2 “1" k±2Kx) , (A 13) 

where k± and kH are the thermal conductivities perpendicular and parallel to the magnetic field. 
The quantity kl is smaller than k!| by a factor of l/(ßr)2 for each species, so we can neglect it; 
fell is the electron thermal conductivity and is 

„ 3.16/Ze7Ve 

so 

r,*her “3 ©1/2 (7S5)k±ix2cmine {av )coul • (A15) 

Since n*T/p*VA2 is the ratio of the plasma pressure to the magnetic pressure, ß*y which is of the 
order of 10-6, we see on comparison with P'vis that P'ther^ 103/3*r'vis) is negligible. 

It is to be noted that we have assumed a strong-collision limit in treating the damping of 
hydromagnetic waves. This is valid since Xcoui ~ 1011 cm is smaller than the typical wavelengths. 
Thus, the results on collisionless damping such as those given by Barnes (1966) do not apply. It 
is interesting that even if they did, the damping would be smaller than P*. 

APPENDIX B 

THE COMPONENT OF E PARALLEL TO B0 

In the paper we have neglected any component of the electric field parallel to Bo. However, 
because of finite resistivity, etc., there will be a small one, and it is of interest to investigate 
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whether this small component can have any effect on the scattering of cosmic rays. From the 
paper of Kennel and Engelmann (1966, eqs. [2.25]-[2.27]) we see that Ez is more efficient at 
scattering than E±. by a factor of the order of c/Va, so a small component could be important. 

From the generalized Ohm’s law (Spitzer 1962) we have 

1 ^ , . Me dj 
IT Vzpe H — 

n e n e2 dt 

where n* is the plasma density. Now 

k±j± 

kz 

k±c2 dEx 

kzVA
2 dt 7 

so the Ez from finite resistivity, E/, gives 

C Ez* CO f C \ 
"" \v2) a~W° \VlJ 

(Bl) 

(B2) 

(B3) 

Now c/VA~ 3 X 103 and kVA = 10 *îork~ 10 13, so the E^-component can be neglected. 
Similarly, the contribution from dj/dt, Ez1, gives 

C Ez* _ CMeO) 

” VAn*e2E± h 2 X IO“7, (B4) 

so Ez* may also be neglected. 
To find the term due to ^Jpe, we write 

Vzhpe « kzT8n « kzT 1 ¿X (—) . 

Thus the contribution Ez
p is 

(B5) 

(B6) 

so all contributions to Ez are negligible relative to Ex. 

APPENDIX C 

THE PROPAGATION OF ALFVÉN WAVES IN A 
PARTIALLY IONIZED MEDIUM 

Let us consider a gas made of neutrals of atomic mass mo and n singly-charged ions of 
atomic mass m. Then if v0 and v* are the neutral and ionized mass velocities in an Alfvén wave 
with frequency co and wave number k, for the neutrals 

pco2i;0 = —iv*o)p(vo — v*) , (Cl) 

/ = n* {(tvb. ) . (C2) 

We replace the friction between the ions by a simple collision term, and a is the cross-section for 
scattering of neutrals by ions. We assume Mo < m*. 

For the ions we must also include the magnetic force of an Alfvén wave: 

P*C02V* — p*Wk2V* — iv00)p*(v* — Vo) , (C3) 

Vo = n0 {(tvb. ) ^ , (C4) 
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so ï^/Vo = pVpo, where p* and po are the mass densities of the ions and neutrals. The quantity 
cofc2 is the natural frequency of a hydromagnetic wave in the charged medium without the friction 
term (co^2 = UWa*2 or kz

2VA*2 for a magnetosonic or Alfvén mode, B is in the z-direction and 
Va* = #(47rp*)“~1/2. Combining equations (Cl) and (C3), we obtain the dispersion relation, 

(w2 — wft2)co + iva[{\ + e)w2 — a>ft2e] = 0 , (C5) 

where e = p*/p<K 1. Thus, when collisions are not frequent enough to make the neutrals 
move with the ions, and co2 « co¿2. The charged particles move as though the neutrals were ab- 
sent. On the other hand, if co<<C w, the neutrals collide often enough that flo ^ v* and the entire 
medium moves. The increased mass reduces the Alfvén speed, and o) « co¿€1/2 = kB(4:Trpo)~112. 
In between, the particles move independently; the friction is strong, and the waves do not propa- 
gate‘ 

In detail equation (C5) is a cubic equation for co. If e is small, we can solve the equation 
asymptotically. If vQ^>œk, we may neglect the co3 term and obtain 

CO = ± (co*2e -ÿ)' -í!£l, CO* « v0 . (C6) 

If ook ^ J'oa/€, the constant term may be neglected, so that 

j_ / 2 ^02\1/2 IVO .. / w = ± (   2", o)k^> vWt • (C7) 

These two expressions overlap and agree in the overlapping region vq if one ex- 
pands them out. 

Equation (C6) corresponds to long wavelengths (small k and co¿). We see that, as tends to 
zero, the wave tends to an Alfvén wave with the whole medium moving, while the damping goes 
to zero as Po goes to infinity. (Strong collisions tie the two species together and reduce the damp- 
ing.) Further, from equations (C6) and (C7), we see that no waves propagate when 2vQ\^e < 
ook < Finally, for short waves we see from equation (C7) that oo = only the charged 
particles participate in the wave, and the damping is proportional to vq, more collisions increasing 
the friction. The damping rate is 

r* = 
Vo 
2 ‘ 

Using the values given in the text for the interstellar medium, we set 

Xi = 2x = tVa = 0/22b ô-i pc = 0.63 pc 

ki vo\/e 

2w AttVa* Z7T = = o.Oófi^r1 pc = 0.20 pc . 

k2 Vo 

For X < X2, (¿k = kVA*) for X2 < X < Xi there is no propagation; for X > X], co¿ = IzVa0 = 
kB(4:irpo)~li2. 

Note added in proof.—After this paper went to press it was pointed out to the author 
by Melrose and Wentzel that the neglect of the 1 in equation (14) is not valid for small 
anisotropies if all the waves are traveling in the same direction. This is obviously the case 
for those waves created by the cosmic rays. As a consequence, equations (15) and (23) 
are valid only in the frame of reference moving with the waves. For this case one finds 
that equation (31) is modified by an addition of the term Va^F/ôz on the right-hand 
side if the waves are moving to the right (in the rest frame), while the term — Fi disap- 
pears from equation (45). This leads to a slightly more complex treatment of the self- 
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consistent model than is given here. The results for this model given here are valid if 
the diffusion of the cosmic rays is somewhat faster than Va, and also for comparable 
diffusion velocities the solution for N is still valid, but for intermediate diffusion rates 
a more detailed treatment is needed. This will be given in a subsequent paper. 
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