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ABSTRACT 
Beginning with the equations of the convection-diffusion model including energy losses, it is shown 

that the streaming of galactic cosmic rays in the solar-wind cavity can be neglected above a few hundred 
MeV per nucleon. For the case in which the diffusion coefficient is separable into radially and rigidity 
dependent parts, an integral is derived which relates the intensity at points within the cavity to that at 
infinity through an energy-loss parameter. This parameter is a function of energy; it is defined in terms of 
observable quantities and is identified, tentatively, as the mean energy lost by the cosmic-ray particles in 
moving into the interplanetary region. The integral is formally equivalent to that obtained by using 
LiouviUe’s theorem. Experimental data for the modulation of protons and helium ions in 1963-1965 and 
electrons and protons in 1965-1966 are shown to behave as predicted, down to kinetic energies of a few 
hundred MeV per nucleon. The diffusion coefficient was proportional to the magnitude of the charge of 
the cosmic-ray species during these periods, and the analytical results are formally equivalent to those 
obtained for a heliocentric force field proportional to the magnitude of the charge of the cosmic-ray 
species. Making use of the observed lower limits of validity, it is shown that the ¿-folding distance for the 
diffusion coefficient lies between 0.8 and 1.6 a.u., thus setting limits on the radial dependence of the 
scattering process. Estimates are given of the changes in energy loss in the periods 1963-1965 and 1965- 
1966 and of the energy loss at solar minimum. 

I. INTRODUCTION 

In this paper we discuss the solar-cycle modulation of galactic cosmic rays on the basis 
of equations which we have derived elsewhere (see Gleeson and Axford 1967; hereinafter 
referred to as aPaper I”). We derive an integral which is effectively an asymptotic 
solution of the equations valid for sufficiently large energies. This integral, which is 
formally similar to the Liouville theorem, appropriate to the case of modulation by a 
conservative field, is shown to describe the observed modulation of galactic cosmic rays 
rather well at energies greater than a few hundred MeV per nucleon. Since this result 
makes allowance for energy changes of the cosmic rays, it represents an improvement 
over that obtained from the simple convection-diffusion theory, in its range of validity. 

The equations given in Paper I describe the effects of convection and scattering of 
cosmic-ray particles by “magnetic scattering centers’’ carried along by a radially moving 
solar wind, with the assumption of spherical symmetry: 

?b{r‘s) ~ m 

S.VU-^-y^TV). (2) 

Here U{r,T) is the differential density and S(r,T) the radial current density (or stream- 
ing) of the cosmic-ray particles in the kinetic energy range (T, T + dT)-, r is the radial 
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1012 L. J. GLEESON AND W. I. AXFORD Vol. 154 

distance from the Sun; F(r,¿) is the solar-wind speed; k is the diffusion coefficient; and 
a = (T + 2®o)/(2^, + @o) = (@ + @o)/®, with (S0 the rest energy and 6 = T + (S0 

the total energy of the cosmic-ray particles. Sfeady-state equations are appropriate, 
since the relaxation time of the distribution is short compared with the 11-year period of 
the solar cycle; thus the time, /, enters only as a parameter in the solutions. 

Equations (1) and (2) reduce to the Fokker-Planck equation developed by Parker 
(1965, 1966) when S is eliminated between them. Parker (1965) has obtained a formal 
solution of this Fokker-Planck equation, using the method of separation of variables, 
assuming that a and k are constant and that the cosmic rays move without scattering 
beyond a certain distance from the Sun. Jokipii (1967) has generalized this discussion by 
allowing Ac oc Tarh (b < 1). These results are helpful as illustrations of certain aspects of 
the phenomena involved but are not immediately useful in the interpretation of observa- 
tions. 

Here we obtain an approximate but more general solution that can be applied directly 
to the observations with satisfactory results. The procedure adopted is to establish the 
conditions under which S(r,T) can be considered negligible in equation (2) (by using 
analytic arguments supported by observational evidence), to set 5 = 0, and to examine 
some of the consequences. 

It should be noted that the usual terms of the steady-state convection-diffusion theory 
are obtained from equations (1) and (2) by setting a = 0. However, since 1 < a < 2, 
it is clear that there is no sound physical basis for the convection-diffusion theory of the 
solar-cycle modulation of galactic cosmic rays; but it is possible in some energy ranges 
for solutions of equations (1) and (2) to have a similar form to solutions of the usual con- 
vection-diffusion equations with modified V/k. 

Clearly, then, there is no sound theoretical basis for the many attempts which have 
been made to force the observations to fit the convection-diffusion theory by suitably 
adjusting the form of The convection-diffusion theory should not be regarded as 
a valid alternative to the present approximate theory or to the more exact theory based 
on the Fokker-Planck equation. 

II. THE MODULATION INTEGRAL 

A solution of equations (1) and (2) in series form has been obtained by Gleeson and 
Axford (1968; hereinafter referred to as “Paper 11”) • In that solution 5 and U are given 
as functions of (r,T) for the case V = constant, k = Pß exp (r/R), where P is the 
particle rigidity, ß = v/c = (particle speed/speed of light), and Æ is a length characteris- 
tic of the radial variation of the diffusion coefficient. It was assumed that U(r,T) ~ 
5 —> 0 as r —» , and r2S —* 0 as r —> 0. With values of k, R, V, and p appropriate to 
the solar-modulation problem, it was found that 5 is negligible when T > 400 MeV per 
nucleon for protons, and T > 200 MeV per nucleon for alpha particles. At lower energies 
5 becomes significant, and at very low energies the series solutions are divergent. 

In general, it can be shown by order-of-magnitude arguments that, when there are no 
sources or sinks at r = 0, 

7, = s/[vu-W^{aTU)\^VR/K, (3) 

if VR/k « 1 ; this result is independent of the specific details of the model. Thus, if 
VR/k<^ 1, then5 is negligible in equation (2). For the bulk of the particles detected at 
ground level by neutron monitors (i.e., with kinetic energies of the order of a few BeV per 
nucleon), k « 1022 cm2 sec“1, and hence with F = 4 X 107 cm sec“1 we would expect 
VR/k<^ 1, provided that jR < 1 a.u. 

These considerations are verified by observations of the diurnal variation of the 
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No. 3, 1968 MODULATION OF GALACTIC COSMIC RAYS 1013 

cosmic-ray intensity at ground level (McCracken and Rao 1966). These show an anisot- 
ropy of about 0.4 per cent directed at 89?5 ± 1?6 to the radial direction, hence \r)\ < 
0.04. Note that S refers to the radial component of the differential current density S; 
the tangential component is attributed to corotation with the interplanetary magnetic 
field and is not considered here. 

These arguments show that 5 is negligible in equation (2) at sufficiently high energies, 
where VR/k<^ 1. Dropping 5, regrouping terms, and using the total energy ® as an 
independent variable, we find that equation (2) becomes 

K~dr+^F(-®2 ~ ®°2)3/2 [<g((g2 - <g0
2)1/2] = 0 ‘ ^ 

The solution of this equation together with equation (1) (solved by quadrature) can be 
regarded as an asymptotic solution of the correct equations (1) and (2) valid at high 
energies. In § III we discuss how the solution can be used to give a more precise estimate 
of the range in which S can be considered sufficiently small for this procedure to be valid. 

The diffusion coefficient has the form k = where X = \(r,P,t) is the scattering 
mean free path. The rigidity dependence of X follows, because the path of a charged 
particle in a steady magnetic field is completely determined by its initial direction and its 
rigidity. We assume that X is a separable function of r and P such that 

K = ßKi(r,t)K2(P,t) . (5) 

There is no clear evidence that this step is justified, although O’Gallagher and Simpson 
(1967) have concluded that k is separable in this manner on the basis of observations 
made in the range 1.0 < r < 1.6 a.u. during the period December 1963—June 1965. 

With k given by equation (5), equation (4) can be integrated to give 

47t /(r,6,Q 

¿ (ZeP)2 

U(r&t) 

m2 - @o2)1/2 

(r ^ 
-E\[f 

K2(P',t) 
(®'2 - (§o2)1/2 f 

V(s,t) 

SKiiSjt) 
. (6) 

Here Z is the particle charge in units of electronic charge e, J is the differential intensity, 
with 

/(r,®,/) = flU(r,@,0/47r = (¿/47r®)(©2 - ©0
2)1/2tf(g©,0 , (7) 

and H(x,i) is an arbitrary function to be determined from the boundary conditions or by 
matching observations at, say, the orbit of Earth. The determination of H requires the 
form of K2(P,0 to be known, and in general H(xj) will be different for each species. In 
this application /(r,®,/) is to be determined in terms of /(a>,®), the mean differential 
intensity beyond the termination of the solar wind at r = r&(¿). 

We introduce the quantities 

r (p* 7 a — r ^(p S) ^,2 _ go2)1/2 ¿®' (8) 

and the inverse function \l/(£,Z,t) such that, given (Ç,Z,t), then ® = \p(Ç,Z,t). Then we 
define 

<F(r,®,z,/) = ¿a + <¿,z,/) - ® = ^(r + 0,z,o - *(r,z,o . (9) 

The boundary conditions applied to equation (6) now give 

ff(f,0 = (47rA)/(a>,ß)/((S2 ^ (£02) , (10) 
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1014 L. J. GLEESON AND W. I. AXFORD 

and it follows from equation (6) and the above that 

^ /(«>,(£ + $) 

& - So2 (© + $)2 - So2 ‘ 

Vol. 154 

(ID 

This equation specifies the differential intensity at in terms of the undisturbed in- 
tensity at infinity. It is identical in form with the well-known Liouville theorem for 
conservative force fields :J/p2 = constant following the motion, with p = (@2 — (2o2)1/2/c 
the particle momentum. The quantity 4> is the potential energy or energy loss experienced 
in coming from infinity; in the classical Liouville result, is independent of energy, but 
here it is a function of both energy and species. 

The modulation function 4> is completely determined by (j>(r,t) and the form of K2(P,t) ; 
0 and K2 are independent of the species of cosmic-ray particles, but is a function of 
@, (So, Z, and t and is, in general, different for each species. The functional form of 
K2(P,t) can be determined directly from the interplanetary magnetic-field power spectrum 
observed locally (Jokipii 1966). However, <l>(r,t) involves an integral over the region 
beyond Earth’s orbit and thus cannot be evaluated easily. 

Parker (1966) solved the Fokker-Planck equation under the simplifying assumptions 
of K, F, and a(T) constant. With Fr&/Ac <3C 1, he determined the distribution of particles 
at r = 0 resulting from the injection of monoenergetic particles at r = r&. The mean loss 
of energy for particles reaching r = 0 was |ar(Fr&//c), to a good approximation. 

When 4> « @0, i.e., $ <<C f, it follows from equation (9) and the definitions of f and p 
that 

Æs d\¡/ = 
er 

ZeP aT p> V(x,t) 

K2(ivr ~ 3 K{x&t)dx 
(12) 

When K and V are constant and r = 0, this equation yields 4» = ^ar(Fr&//c), the mean 
energy loss given by Parker for this special case. 

This correspondence and the formal correspondence between equation (11) and the 
Liouville theorem make it highly likely that 4» can be identified with the mean energy 
loss of the particles. The approximate expression (12) is a generalization of Parker’s 
result. 

It is possible in principle to determine as a function of time for each species if we 
have available observational data on J at times k,i= 1, . . . , w, say, and K2(P,t) has a 
known but different form at two of these times. This problem is deferred until a more 
complete knowledge of K2(P,t) is available. 

In the remainder of this paper we restrict our attention to the case with K2 independent 
of t. This leads to a simple result which will be very useful if k2 remains approximately 
independent of time over a period of several years in the energy range above a few 
hundred MeV per nucleon, and there is evidence that suggests that this may be so. 

When K2 is independent of ¿, f and $ are also independent of t; then, from equations 
(11) and (9), 

/(r,e,Q +4>M]> 
(Zepy - Mf ((g,z) + *M]}2 - (So2 • i ; 

The quantity J/P2is& function of the single argument f (@,Z) + <í>(g¿)- The modulation 
now arises solely from the spatial term $(r,0, which is a single parameter describing the 
modulation when the conditions on 5, the separability of k, and the time independence of 
K2 are satisfied. 

When this part of the theory applies, we can utilize observations at U, ¿=1,2,..., 
and fixed r to verify a given functional form of /c2(P) by plotting J/P2 against f(@), 
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No. 3, 1968 MODULATION OF GALACTIC COSMIC RAYS 1015 

given by equation (8), at each of these times. If the form of *2 is correct, the curves will 
be of identical shape but displaced along the f-axis as illustrated in Figure 1. The dis- 
placement along the ordinate gives the change in the 
modulation function. A similarly displaced set of curves should be obtained for each 
species, and a crucial check on the applicability of this form of the theory is. that 
A(¡)(r,ti,tj) should be the same for all species. An example is given in the next section. 

IIT. AN APPLICATION TO PROTONS AND ALPHA PARTICLES 

In this section we use observational data to produce curves of the form given in 
Figure 1 and thus show that our result does describe the observations at higher energies 
during some periods at least. The data used are those appropriate to 1963 ( = h) and 1965 

Fig. 1.—Displacement of curves of J/P2 for times h and ¿2, as predicted by the modulation integral. 
Different species have the same displacement in abscissa coordinate at fixed ordinate value. 

( = ¿2) for protons and alpha particles at Earth (r = re) given by Quenby (1967) (see 
Figs. 1 and 2 of that paper for details). We take — P from the result k cc p deduced 
by Gloeckler and Jokipii (1966), using the power spectrum of the interplanetary magnetic 
field. This was shown to be consistent with observations by Gloeckler and Jokipii and 
by O’Gallagher and Simpson (1967) (see also Paper II). 

Since ©2 = (ZeP)2 + (So2, in this case 

(S 
KÁP') 

<$ 

@o2)I/2 

d& (S - (g, 
(14) 

and, accordingly, in Figure 2, //P2 is plotted against ((2 — (So)/Ze on a linear scale, as 
abscissa. It is seen that, except for a region at low energies, the curves for each species are 
of the form shown in Figure 1 and that, in accordance with the theory, the displacement 
of the curves is the same in each case: A0(re,/i,/2) = — 80 MV. This agreement with the 
integral (13) is better than might have been expected from the scatter of the data. 

In this case, with *2 = P, the inversion of relation (14) gives and 4> follows 
immediately from equation (9): 

Mï,Z) = (So + |X|ef , $ = \Z\e<t>(r,t) . (15) 
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1016 L. J. GLEESON AND W. I. AXFORD 

Thus the intensity defined by equation (11) is given by 

®2-®o2 [@+ |Z|^(f,/)]2 - ®o2 * 

This result is precisely that obtained for positively charged particles, assuming a 
heliocentric electric field, E(r,t) = \V{r,t)/K\{r,t) and with (¡>{r,t) the electric potential 
(Emhert 1960; Freier and Waddington 1965). Here it appears as a special case of a more 
general result giving a one-parameter description of the modulation. The formal cor- 
respondence between a scattering process and a heliocentric electric field when S is 
negligible and k oc Pß was established from the differential equations (1) and (2) in 
Paper I, but the modulation integral was not given. 

Vol. 154 

(16) 

Fig. 2.—Curves of J/P2 versus f = ((§ — (&o)/Ze for protons and alpha particles in 1963 and 1965. 
The constant displacement predicted by the modulation integral appears to hold, down to kinetic energies 
of 200-300 MeV per nucleon. Note that the ordinate is proportional to #(£ + 4>). 

The breakdown of parallel displacement which takes place in Figure 2 at approximate- 
ly 300 MeV per nucleon for protons and 250 MeV per nucleon for alpha particles is in- 
terpreted to mean that S is no longer negligible below these energies, and the integral 
(16) is not valid there. This, of course, means that the heliocentric electric-field model 
will break down at these energies, which is consistent with the comments by Freier and 
Waddington (1965) and the deductions of Quenby (1967) and others. 

IV. DETERMINATION OE S 

The integral (6), obtained on the assumption that S is negligible in equation (2), can 
now be used in equation (1) to find an approximate expression for 5, This, in turn, can 
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No. 3, 1968 MODULATION OF GALACTIC COSMIC RAYS 1017 

be used to determine the range of energy over which S is indeed negligible. We require 
KÁr)> K2(P), and V(r) to be known and + 4>) to have been determined at the orbit of 
Earth, r = re, say, from observations of the intensity J, 

With 5 assumed negligible, the integral (6) can be substituted in equation (4) to give 

K ^7 = F(®2 - (S°2)3/2 ¿ ^ • (17) 

Using this result to eliminate dU/dr, we find that equation (1) becomes 

+*)!i • (18) 

Assuming no sources or sinks (i.e , r2S —» 0 as r —> 0), we find that integration of equation 
(18) gives 

- - r* / Sf á GS) <«' - M * (19) 

as an approximate expression for S. Note particularly that S, and hence the modulation 
at a point r = rs, is determined by the scattering throughout the whole range of r: the 
scattering in r > rs appears in <j> and that in r < in the integral above. Thus accurate 
prediction requires k and V to be known over the entire range r > 0. 

The integration of expression (19) cannot be completed at present because we have no 
data on the form of /ci(r). So, instead of determining an energy below which S becomes 
significant, we shall accept the limits and spectra, given in § III, assume that Ki(r) exp 
(r/R), and use equation (19) to obtain estimates of the characteristic length R. 

The streaming S is negligible in equation (2) if 

^(r,®) = S/[VU - iVd(aTU)/d(&] « 1 . (20) 

In Appendix A we use the integral (19) to show that, for the data considered here and 
with ki oc exp (r/R)y 

7?(r,®) — 0.15Z 
3SS0 

©2 - (So2 + 
d log #1 elfx 

d(©7&)J 

X [2X3 - e-*ix(x2X + 2xX2 + 2X3)] . 
(21) 

Here x = r/re and X = R/re, and we have taken k2 — P, k — 1022 cm2 sec-1 at r = rc 

for protons with T = 6 BeV and V = 400 km sec-1. For convenience this is written in 
the form 

77(r,(S) « -0A5ZF1((§:)F2(xyX) , (22) 

with Fi((§) the terms of equation (21) contained in the first set of square brackets and 
F2(x,X) the terms containing x and X. Figure 3 shows the function F2(x,X), and Figure 
4 shows Ei((S) derived from the upper curves of Figure 2. The function Ei(@) increases 
rapidly as T—+0, peaks negatively near T = 2 BeV, and asymptotically approaches 
(1 — t)(So/(S as (S —> oo, 7 ~ 2.65 being the differential spectral index. 

According to our interpretation of Figure 2, S becomes significant below about 300 
MeV for protons, and Figure 4 shows that | Fi(S) | < 2.4 for T > 300 MeV. Requiring 
\r}\ <0.15, say. for5 to be negligible, we find that equation (22) specifies F2(x,X) < 0.4, 
which, according to Figure 3, implies 0.8 <R/re < 1.6. Repeating this analysis for 
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Fig. 3.—^Variation of the function F<2,(x,X) with x for a range of the parameter X = R/re, when k oc 
exp {r/K). The variable x measures the radial distance from the Sun. Curves show approximately the 
manner in which the streaming 5 varies with radial distance for each value of X. 

Fig. 4 —^Function Fi((£) for protons and alpha particles in 1965. The current density is roughly pro- 
portional to Fi((£). When k qc exp {r/R)t then 5 is not negligible for any value of R, if the energy is such 
that F\((0 > 3. 
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MODULATION OF GALACTIC COSMIC RAYS 1019 

alpha particles, we find that F2(x,X) < 0.3 is required; this cannot be satisfied by any 
value of X (Fig. 3). However, we recall that r) may be smaller than the value given by 
equation (22) by a factor of about 2 (Appendix A), and thus the alpha-particle observa- 
tions are also probably consistent with the above range of R. We conclude that R ^ 1 
a.u. and hence that the solar-cycle modulation of cosmic rays is largely confined to a re- 
gion within a few astronomical units of the Sun. 

This analysis sets both upper and lower limits on i?, since, with a fixed value of k at 
r = 1 a.u., small values of R imply substantial scattering close to the Sun, with the cor- 
responding production of large streaming; with large values of R the scattering is more 
spread out, but the streaming becomes important at larger radial distances. These varia- 
tions are reflected in the variations of F2(x,X) in Figure 3. 

V. MODULATION OF COSMIC-RAY ELECTRONS 

The theory which has been developed applies equally well to cosmic-ray electrons 
down to some lower limit of energy, provided that the appropriate modulation parameter 
$ is used. In this section we shall apply our results to simultaneous electron and proton 
observations, again assuming /c2 to be independent of L Some further analytical develop- 
ment of the theory which is required is given in Appendix B. 

Since the first experiments by Earl (1961) and Meyer and Vogt (1961a, b) the number 
of observations of cosmic-ray electrons has increased remarkably (Beedle and Webber 
1968; Bleeker et aL 1968; L’Heureux and Meyer 1968; L’Heureux et al. 1968;Rubstov 
and Zatsepin 1968; Webber 1967, 1968; Webber and Chotkowski 1967). In general the 
statistical accuracy of the observations has been insufficient to justify a detailed analysis 
of the modulation. However, data for both protons and electrons in the energy range 
100 < T < 3000 MeV, obtained on balloon flights in mid-1965 ( = ¿3) and mid-1966 
( = /4Tan(i"presented by Webber (1967), allow modulation effects of the order of 50 per 
cent to be clearly distinguished. 

No clear evidence of modulation of electrons was detected during this period by 
Bleeker et al. (1968) and L’Heureux and Meyer (1968). This discrepancy is one which 
must be resolved by the observers themselves; however, for what it is worth, we note 
that on the basis of any theory some modulation should have occurred, and indeed the 
results described by Webber (1967) are quite reasonable. Webber has given an analysis of 
these data in terms of convection-diffusion theory and energy-loss processes; we now 
interpret the measurements in terms of the present theory. 

Since the changes in intensity are small, it is appropriate to use A/~ (dJ/d$)A$, 
and dJ/will be related, in the terms of the present theory, to (d log //d log T) 
obtained from the locally observed spectrum. In this way speculation about modulation 
occurring between Earth and outer space is avoided. The term Ai>, in this instance, is 
proportional to A<£. Thus in Appendix B it is shown that 

A/ _ 1 (- 2(r + ©0) . d log Jl \Z\eP 
J T L r + 2@o ^ d log rJ K,(P) ^ 

(23) 

The component of the diffusion coefficient can be obtained from the magnetic-field 
power spectrum and is proportional to P2/PXx(fo) where/0 is the cyclotron frequency and 
Pxx(f) is the power-spectrum function (Jokipii 1968). A study of the available power 
spectra (Coleman 1966; Ness, Scearce, and Cantaran© 1966; Siscoe et al. 1968) and 
analyses of these by Gloeckler and Jokipii (1966) and Webber (1968) have led us to expect 
that Pxx(f) ^ (1//) in the range of interest: 300 MV < P < 10 BV. From this it follows 
that k cc P1 and = P will be used in this analysis. 

We have used Webber’s intensity spectra for 1966 to obtain d log J/d log T and have 
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1020 L. J. GLEESON AND W. I. AXFORD VoL 154 

used equation (23) with K2 = P to evaluate loge (1 + A///) over a range of A<£ for both 
electrons and protons. These predicted values and Webber’s observed values are shown 
in Figures 5 and 6. The computed values near T = 10 BeV have been determined for 
electrons by using the spectrum reported by Webber and Chotkowski (1967) and for 
protons by using the spectrum described by Webber (1968). 

In the case of electrons excellent agreement is obtained down to J1 = 400 MeV with 
A$(fe,¿4,¿3) — —100 MV, while for protons good agreement prevails down to 500 MeV 
with A0(r6,/4,/3) — —90 MV. The small difference in A<£ for electrons and protons is 
unimportant in view of the accuracy of the observations, the uncertainty in the form of 
K2(P), and the fact that the time intervals between observations of protons and electrons 
were not exactly the same. 

KINETIC ENERGY T(BeV)or RIGIDITY P(BV) 

Fig. 5.—Observed values of¡log6 (1 + A//J) for electrons between July 1965 and June 1966 (after 
Webber 1967), together with values predicted from the local spectrum of 1966 and taking A0 = —80 
MV and A# = —100 MV. 

Note again that k2 = P is equivalent to having a heliocentric force field proportional 
to IZI, thus giving the same energy loss for both electrons and protons. In the more 
general case, the energy loss <£ is a function of | Z |, @, and ©o. 

According to the convection-diffusion theory, the ratio 

R(p/e) = log (1 + AJ/J)p/\og (1 + AJ/J)e , (24) 

where the subscripts p and e refer to protons and electrons, respectively, is ße^iPe)/ 
ßpK2(Pp)- For electrons and protons at the same rigidity, /c2 cancels; R (p/e) is independ- 
ent of the precise form of k2 and is thus a useful parameter for assessing the validity of 
the convection-diffusion model. Webber (1967) has pointed out that R (p/e) has very 
different forms for the convection-diffusion model and the heliocentric-electric-field or 
Liouville model (especially when plotted against rigidity) and that his observations 
favor the latter. This is to be expected from the theory given here. 
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An approximate expression for R (p/e) according to the present theory and for general 
K2 can be obtained immediately from equation (23), using logc (1 + AJ/J) = AJ/J to 
first order: 

R(p/e) = j[- 

H[- 

2(r„ + (Sop) , d log /pi r Pp ] l 

TP + 2(Sop d log Tp\ L7V2(Pp)J \ 

2(Pe + (Soe) d log Jel \__Pel Í 

Te + 2(Soe ^ d log rj LreK2(Pe)J ) ' 

(25) 

We note that kz cancels in this case also if particles of the same rigidity are compared, and 
then R*(p/e) is given in terms of the observed spectra; thus R(p/e) is also a useful 
parameter for assessing the validity of the present theory. 

Fig. 6.—Observed values of logc (1 + A///) for protons between June 1965 and July 1966 (after 
Webber 1967), together with values predicted from the local spectrum of 1966 and taking A$ = —80 MV 
and A# = —100 MV. 

The values of R (p/e) determined for the convection-diffusion model and the present 
model are shown in Figure 7, together with the observed values of Webber (1967). At 
rigidities above about 1.2 BV there is no clear distinction between the two models, while 
at lower rigidities the experimental values lie much closer to the values given by the 
present theory. However, since this present analysis is not precise at kinetic energies 
below about 400-500 MeV for either electrons or protons, this correspondence cannot 
be used as strong evidence in its favor. We take it to show that convection-diffusion 
theory is not valid throughout the rigidity range below, say, 800 MV, and that the present 
theory appears to be better down to 300-400 MV. An adequate description of the modu- 
lation for energies less than a few hundred MeV per nucleon requires the solution of 
equations (1) and (2) including the effect of streaming. 

The positron-negatron ratio (<¿) might offer a convenient method of detecting energy 
changes due to solar modulation, provided that the unmodulated spectra of positrons 
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and negations are sufficiently different (Axford 1966). From equation (11) we see im- 
mediately that this ratio is given by 

/+(r,®) /+(<»,© + *) 
a = 

/_(r,©) /_(co,(§ + $)’ 
(26) 

where /+ and /_ are the differential intensities of positrons and negations, respectively. 
In particular, for the case /c2 = P and for small changes of intensity, the positron-nega- 
tron ratio at a given energy differs from that at infinity by a fractional amount: 

A<r 
<r 

/ 1 1 dJ\ 

\J+ d® /_ d®A= 
$ . (27) 

20- 

Ml 

o- 

Tp BeV 

0.1 0.2 0.4 0.8 .6 3.0 
T 

\ 

W\Q 

i 1 r 

(a) Diffusion-convection 

(b) Prediction from local spectra 

§ Observations (WEBBER) 

6.0 
r 

9. 

\ 

J I I L 
02 03 06 10 2.0 30 

RIGIDITY BVandTe in BeV 

J I L 
6.0 10 

Fig. 7.—Observed values of R{p/e) between June 1965 and July 1966 given by Webber (1967), 
together with values predicted from the local spectra according to the present theory and those expected 
from convection-diffusion theory. (For the two points on the left, Tp < 300 MeV; hence there is some 
doubt about the validity of the assumption A/ J for photons ) 

If it is assumed that /+(<»,(§) oc and /-(oo^) cc then AoyV~ (¿i_ — ju+) 
(^/@). At energies of the order of 1 BeV, if (m- — am-) is of the order of unity, one would 
expect the positron-negatron ratio to vary by several tens of per cent through the sun- 
spot cycle. However, since this ratio is in any case probably quite small (no more than a 
few per cent in the energy range where the present theory is applicable), it might be very 
difficult to detect the predicted variation. 

VI. CONCLUDING REMARKS 

The integral presented here relates the cosmic-ray intensity at a given position and 
time to the intensity at infinity, through an energy-dependent modulation parameter 
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<I> and a formal application of Liouville’s theorem. The parameter <í>(r,(g,Z,¿) has been 
identified tentatively with the mean energy loss experienced by cosmic-ray particles in 
penetrating into the interplanetary region from the interstellar region. 

The integral appears to describe quite adequately variations in differential intensity of 
protons and helium nuclei observed from 1963 through 1965 and electron and proton 
observations of mid-1965 and mid-1966, above kinetic energies of several hundred MeV 
per nucleon. If the result remains valid over an extended period of time, it will provide a 
useful description of the solar modulation in terms of the two quantities <¡>{r,t) and K2(P), 
which are independent of the species. If conditions exist such that K2 is independent of 
time over a period of several years, then </>(r,¿) is a single parameter describing the 
modulation. 

The assumption k = jS/c1(r,¿)/c2(P,0 is the one most likely to invalidate this develop- 
ment; at present we have no adequate knowledge of the correct functional form of 
íc(r,(S,Z,¿). The assumption k\ oc exp (r/R) made in the latter part of § IV is not used to 
obtain the modulation integral, but, by showing 0.8 < P < 1.6 a.u., we use it to obtain 
some idea of the radial variation of k and to illustrate some of the essential physical 
processes. In particular, it is shown that the modulation observed at the Earth depends 
upon conditions existing in the whole of the region between the outer boundary of the 
solar cavity and the Sun. 

Because in each instance k2 = P in the rigidity range of interest, the applications 
described in §§ III and V yield intensities identical with those obtained with an out- 
wardly directed heliocentric force proportional to \Z\ (i.e., identical with the helio- 
centric-electric-field model applied to positively charged cosmic rays). This “explains” 
why that model is partially successful and also permits us to calculate the effective 
potential in terms of observable quantities and to set lower limits to the energy range in 
which the model is valid. 

In particular, it is found (cf. §§ III and V) that ^>(re), the effective potential energy at 
Earth, decreased by approximately 80 | Z | MeV between 1963 and 1965 and increased 
by approximately 90 |Z| MeV between June 1965 and July 1966; calculations based on 
the estimate of R (cf. Appendix A) gave $ at solar minimum as approximately 140 | Z | 
MeV. 

It will be necessary to use the more general result (eq. [6] or eq. [11]) when k is not 
proportional to P and $ is a function of energy. Evidence for or against the validity of this 
modulation formula can be provided by correlating, through the solar cycle, the form of 
K2(Pyt) predicted from the magnetic-field power spectrum, the modulation predicted by 
this analysis, and the observational data. 

We wish to thank Drs. J. J. Quenby and W. R. Webber for permission to use their data, 
and also Dr. Webber for verifying some corrections to his Figure 4 (Webber 1967) which 
we have included in Figure 7. This research was supported by the Advanced Research 
Projects Agency (Project DEFENDER) and was monitored by the U.S. Army Research 
Office, Durham, North Carolina, under contract DA-31-124-ARO-D-257, and by the 
National Aeronautics and Space Administration under contract NGR-05-009-081. 

APPENDIX A 

AN APPROXIMATE EXPRESSION FOR 

An approximate expression is to be obtained for ^(r,@) defined by equation (20) and valid 
for the 1965 data of Figure 2 with x2 = P and Ki œ exp (r/R). In this case with f = ((§ — So)/ 
Ze; hence, making use of equation (6), 

(aTU) = -m2 - ®o2)3/2¿ S#Pir2 + *M] Î • (A1) 
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Thus the integral for S, given by equation (19), becomes 

'•■s - f /iSif á O’ - wnHá W Hp-ir+Hi)is■ <A2> 

Assuming, and verifying later, that 0 < 0 < 400 MV for f > 0, from the 1965 curve for 
+ 0) = (4:Tr/cZ2e2)J/P2 given in Figure 2, we deduce that, as © varies over the range of 

Ze0, (a) d loge #/d(§ is substantially constant; (b) H varies by a factor of 2-3, and dH/dr > 0. 
Thus equation (A2) can be written 

^ “ f ■ (A3) 

with an error of a factor 2 or 3 at most. Making use of equation (Al) and rearranging, it follows 
that 

Ze ( 3@@o d loge H\ 1 

3(go MS2 - @o2 + Jr2V(r) 

1í2F(í)2 

0 Kl(i) 
ds , (A4) 

in which the magnitude of rj is overestimated by a factor between 1 and 3. We may now obtain 
expression (21) for 17(7*,@) by writing Ki(r) = Co exp (r/R)y using k = 1022 cm2 sec-1 for protons 
at r = 1 a.u. and T = 6 BeV to determine Co (see Paper II), taking V = 400 km sec-1, and 
integrating. 

Finally, with the above parameters, integrating equation (8) yields 

4>(r) = 140(R/re) exp[ (r — re)/ R ] . (A5) 

If we take 0.8 < 12 < 1.6 a.u. (see § IV), this equation shows that 0 lies between 112 and 206 
MV at Earth and between 390 and 420 MV at the Sun; this confirms the assumption about the 
range of 0 used in deducing equation (A3). Since in this case $ = |Z|e0, these calculations 
immediately give estimates of the mean energy loss of the cosmic-ray particles, and 0 is the 
equivalent electrical potential for positively charged particles. 

APPENDIX B 

THE CASE OF SMALL MODULATION CHANGES 

When K2 = K2CP), the r>t dependence of $ is contained in 4>(r,t). In this Appendix AJ is de- 
termined in terms of A0 for the cases in which \AJ/J\ <<C 1. 

From equation (11), and to first order, 

A/ = (@2 - So2) 0((g + [(($ + $)2'+- So2]A$ ' (B1) 

Noting that $ is a function of @, we then obtain 

A r + $) i = a rzir-Mj h 4. l 
as L(S + $)2 - So2J a(S + $) LS2 - S0

2J L ^ VasA, J ' 
(B2) 

Combining equations (Bl), (B2), and (11), we have, to first order, 

d f /(r, S,i)l A# 
A/ = (S2 - So2) 

ÔS 

rT^SAl 

Ls2 - So2J i + (d4>/ dS) 
(B3) 

r t 
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from which we obtain, after dividing by J and using T as an independent variable, 

A/ 1 I- 2(r + (go) d log 7-1 
j ti r + 2@o dlogrJ i + (d$/d@)r,(‘ ^ ' 

To complete the evaluation of equation (B4), the factor involving and is deter- 
mined in terms of A<£ and measurable quantities. 

From definition (9), 

aKf + 
d(f + <*>) 

(¿r + ^) = [i + + (H)/* • (B5) 

Noting that f is a function of (5 but not of </>> and equating coefficients, we find that 

=[■+©.]/(!).• 

Then, since (df/d@) = \Z\eP/K2(P), we obtain, to first order, 

_ (dZ/dt)® _ jZjeP 
1 + (d$/d(g)ril “ 1 + (cte/cMS)/* k2(P) ^ 

The results (B4) and (B7) together yield equation (23). 
Finally we note that, from the above, it can be shown readily that 

(d$/d,f>)e = |Z|eP7K2(P') , (B8) 

where P' = P(® + is the rigidity at energy (S' = (S + <i>. This is an implicit differential 
equation relating <ï> and </> which may be solved directly for <£, thus eliminating the need to inte- 
grate the first of equations (8) and to evaluate the inverse function ÿ. First noting that $ = 0 
when 0 = 0, we see immediately from equation (B8) that, in order for <ï> to be independent of (S, 
it is necessary and sufficient that k2 = P. 
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