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ABSTRACT 

There is some indication that very dense star clusters might play important roles in quasi-stellar 
sources and in the nuclei of certain galaxies The roles of such star clusters should be strongly influenced 
by a relativistic instability, which sets in when a cluster surpasses a certain critical density. In this paper 
the groundwork is laid for the study of that instability: the theory of small, radial perturbations of a 
spherically symmetric star cluster is developed within the framework of general relativity. The cluster is 
idealized as a solution to the collisionless Boltzmann-Liouville equation (an idealization which should be 
valid on the short time scale associated with the relativistic instability). The equation of motion governing 
small radial perturbations is derived and is shown to be self-con jugate. From the equation of motion 
follows a variational principle for the normal modes, which provides a necessary and sufficient condition 
for the stability of the cluster. Also presented are (1) the corresponding Newtonian analysis, much of 
which has been developed previously by Antonov and by Lynden-Bell, (2) the relationship between the 
Newtonian and relativistic analyses, and (3) necessary and sufficient conditions for the existence of a 
zero-frequency mode of radial motion. 

I. MOTIVATION 

Between 1964 and 1967 it was generally believed that the redshifts of quasi-stellar 
sources (QSSs) could not possibly be gravitational in origin. (One of us—K. S. T.—was 
a particularly firm proponent of this view.) Not only are there difficulties with the sharp- 
ness of the spectral lines in a gravitational redshift model (Greenstein and Schmidt 1964) ; 
there is also an absolute upper limit of z < 0.63 on the redshift of light from the surface 
of any non-rotating equilibrium configuration of perfect fluid with reasonable equation 
of state and density distribution (Bondi 1964), and this limit probably cannot be changed 
much by angular velocities which are compatible with the sharpness of the emission 
lines. (Large angular velocities are not permitted because of Doppler broadening.) 

However, in early 1967 Hoyle and Fowler (1967) revived the gravitational redshift 
hypothesis by introducing a new model which may circumvent both of the above dif- 
ficulties : they suggested that each QSS might rest at the center of a very massive rela- 
tivistic star cluster and might derive its redshift from the gravitational field of the cluster. 
One can, indeed, construct star-cluster models in which sharp spectral lines and large 
gravitational redshifts are produced. However, one does not know today whether such 
star clusters are stable against gravitational collapse. 

There is good reason to fear that star clusters with central redshifts as large z « 2 
might be unstable against collapse. In Newtonian theory the stabilities of collisionless, 
spherical star clusters and of gas spheres are somewhat related (Lynden-Bell 1966; see 
also § Illg of this paper), and a similar relationship seems likely in general relativity. 
Chandrasekhar (1964) showed that when a gas sphere (star) of given mass contracts 
beyond a certain critical point, it becomes unstable against gravitational collapse. This 
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instability, which is catalyzed by general-relativistic effects, has been studied in great 
detail since it was first discovered (see Thorne 1967 for a review). An examination of a 
variety of relativistic gas spheres as computed, e.g., by Tooper (1965 and private com- 
munication) and by us (unpublished) reveals this: a contracting gas sphere becomes 
unstable against collapse when the redshift from its center exceeds a limit which is 
typically Centrai ^ 1. It is not unlikely that the critical redshifts for spherical star clusters 
will be similar in magnitude, but we cannot know until the theory of pulsating star 
clusters has been developed fully. 

There is another motivation for studying the relativistic instability in star clusters: 
two independent lines of investigation have suggested recently that, when a Newtonian 
star cluster contracts beyond a certain critical density—one far less than the density for 
relativistic instabilities—it may become unstable against a ^thermal runaway.” In this 
thermal runaway the cluster gradually develops a dense core and a diffuse envelope. For 
some clusters of astrophysical interest (e.g., the compact nuclei of certain galaxies), the 
core evolves toward ever higher densities on a time scale which may be short compared 
with 1010 years but which is very long compared with the time scale for the relativistic 
instability (<1 year). The evidence which suggests that a thermal runaway may occur 
comes (1) from dynamical computer experiments on the many-body gravitational prob- 
lem (Arseth 1963; see also Hénon 1961, 1965) and (2) from analytic studies of the con- 
figurations of maximal entropy for a star cluster inclosed in a spherical cavity (Antonov 
1962; Lynden-Bell and Wood 1968). 

One is invited to speculate that the star densities in the nuclei of some galaxies (and 
in potential QSSs) may exceed the critical density for thermal runaway, that runaway 
may occur, and that the nuclei may thereby evolve in times t < 1010 years to such high 
densities that relativistic effects become important and collapse sets in. Indeed, the out- 
bursts which occur in the nuclei of galaxies might conceivably be associated with the 
onset of collapse or with encounters between an already collapsed nucleus and surround- 
ing stars. 

The above discussion of models for QSSs and of outbursts in galaxies is necessarily 
very speculative. Before these speculations can be analyzed with confidence, we must 
understand, among many other things, the onset of the relativistic instability in star 
clusters. This paper is the first of several in which we shall attempt to delineate the 
theory of the stability of relativistic star clusters and thereby contribute to the tools 
needed for studying dense galactic nuclei and QSS models. 

II. SUMMARY 

In relativistic gas spheres the time scale for the growth of the relativistic instability 
is roughly the sound travel time across the sphere. Similarly, in star clusters one expects 
the time scale to be roughly the star travel time across the cluster, which—for the 
clusters that interest us—is short compared with the mean time between close stellar 
encounters. Consequently, in discussing cluster stability, we shall idealize the cluster as 
a statistical distribution of mass points, which interact only through the smoothed-out 
gravitational field of the entire cluster. The mathematical formalism used in such a treat- 
ment is relativistic kinetic theory (Synge 1934; Walker 1936; Tauber and Weinberg 
1961; Lindquist 1966). The cluster is described by a density in phase space and by a 
metric for the curvature of spacetime. The density in phase space determines a stress- 
energy tensor, which generates the metric through the Einstein field equations; the 
metric in turn determines the density in phase space via the collisionless Boltzmann- 
Liouville equation. 

This type of statistical treatment of star clusters has been used in Newtonian theory 
for about fifty years. However, only very recently (Antonov 1960; Lynden-Bell 1966; 
Milder 1967) has the collisionless stability of Newtonian clusters been investigated, and 
those Newtonian investigations of stability have all been of a formal nature: no applica- 
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tions have been made yet to specific models for clusters. In general relativity the struc- 
tures of spherical star clusters have been investigated recently by ZePdovich and 
Podurets (1965) and by Fackerell (1966,1968a-c), but no treatment of their stability has 
been attempted.1 

In this paper we shall treat the stability of star clusters by means of a relativistic 
analysis which is patterned after the Newtonian analysis of Antonov (1960). However, 
Antonov made two restrictions in his Newtonian analysis which we do not wish to make: 
he assumed that the stars in his cluster all had identical masses, and he assumed that 
the number density in phase space for the equilibrium configuration depends only on 
energy. Before presenting our relativistic treatment of stability, we shall redo the 
Newtonian treatment, dropping Antonov’s restrictions but imposing in their place the 
demand that both the equilibrium and the perturbed configurations be spherically sym- 
metric. We shall also extend the Newtonian analysis somewhat beyond that of Antonov: 
in addition to obtaining his stability criterion, we shall derive a variational principle 
(action principle) for the pulsation of the cluster; we shall obtain from our variational 
principle a conserved quantity for arbitrary radial pulsations; and we shall derive an 
elegant, new criterion for the existence of a zero-frequency mode of motion. All of this 
Newtonian discussion is found in § III. 

In § IV we shall use the Newtonian analysis as a guide in developing the corresponding 
relativistic analysis. All the Newtonian results will be generalized to relativity theory 
except Lynden-Bell’s relationship between the stabilities of star clusters and gas spheres: 
we shall obtain (1) a self-conjugate equation of motion for the small spherical pulsations 
of a spherical cluster, (2) an action principle for the pulsations, (3) a variational principle 
for the normal modes, which is also a necessary and sufficient condition for stability, 
(4) a conserved quantity analogous to pulsational energy, and (5) an elegant criterion for 
the existence of a zero-frequency mode. 

Throughout this paper we adopt the mathematical conventions of Thorne (1967), 
including the use of “geometrized units” in which the speed of light, c, Newton’s gravita- 
tional constant, G, and Boltzmann’s constant, k, are equal to unity. Also, we number the 
equations in a manner designed to bring out the close relationship between the Newtonian 
and relativistic analyses; for example, the relativistic equation (12;R) has as its New- 
tonian limit equation (12 ;N). 

III. NEWTONIAN THEORY OF STABILITY 

a) Equations of Stellar Dynamics 

In Newtonian theory the density of stars in phase space, which we denote by 91, is 
defined as follows: At a particular time t an observer concentrates his attention on a 
particular volume dVx in physical space and a particular volume dVp in momentum 
space. In a Cartesian coordinate system these volumes are 

dVx — dxdydz , dVv = dpxdpydpzdm , (1;N) 

where m is the rest mass of a star and pj — mdx^/dt. If the observer sees dN stars in the 
volume dVxdVp at time t> then the number density in phase space (“distribution func- 
tion”) is 

== dN/dVxdVp = dN/(dxdydzdpxdpydpzdm) . (2;N) 

The density 91 is a function of time, /, and of location (xfp1) in the seven-dimensional 
phase space. 

1 ZePdovich and Podurets (1965) and ZePdovich and Novikov (1967, § 11.19) argued without proof 
that one should be able to diagnose the stability of isothermal, relativistic star clusters from binding- 
energy considerations; but the discussion presented in § IV/ of this paper makes that seem highly im- 
probable. 
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The smoothed-out gravitational field of the star cluster is described by the Newtonian 
gravitational potential, 4>(/,x,y,z). The distribution function determines 4> through the 
source equation 

^72^) ^ , p _ J'fn,<yiclX)p , (3a;N) 

which has the solution 

*(*,*) = - y* x — x 
dX)x

fdX)pt . (3b;N) 

The gravitational field determines the distribution function through the collisionless 
Boltzmann-Liouville equation (or simply “Liouville equation”) 

£>9l = 0 . (4;N) 

Here 3D, the Liouville operator, is differentiation with respect to time along the path of 
a star in phase space. In a Cartesian coordinate system, 3D is given by 

_ d dxi d dp3’ d dm d _ d d _ d4> d_ /c.tstn 

dt dt dx3 dt dp3 dt dm dt m dx3 m dx3 dp3 ‘ ? 

(We sum over repeated indices unless otherwise indicated.) 
Equations (3;N) and (4;N), which couple and 91, are the fundamental equations of 

Newtonian stellar dynamics. 

b) Spherical Equilibrium Configurations 

In stellar dynamics an equilibrium configuration is one for which the distribution 
function and the gravitational field are independent of time. From the Liouville equation 
(4;N) one readily verifies that a Newtonian star cluster is in equilibrium if and only if 91 
is a function of the integrals of the motion of the stars (“Jeans’s theorem”; see, e.g., 
Ogorodnikov 1965). For spherically symmetric equilibrium configurations there are five 
independent integrals of the motion : the stellar mass m, the energy E, the total angular 
momentum /, and the two angles which determine the (conserved) plane of the orbit. 
Of these, 91 can depend only on my E, and /, since a dependence on the plane of the orbit 
would lead to a non-spherical mass density and thence to a non-spherical gravitational 
field (cf. eq. [3a ;N]). Consequently, the distribution function and the gravitational 
potential have the form 

91 = F(m,E,J) , $ = 4>(r) = 4>[(x2 + y2 + s2)1'2] , (6a;N) 

where 
E — (p3)2/2m + m$(r) , J = \x X p\ - (6b;N) 

When F is independent of /, the cluster has an isotropic velocity distribution at each 
point in space. 

Equilibrium configurations for spherical star clusters have been studied extensively 
during the last fifty years. (See Ogorodnikov 1965 for references.) However, none of the 
models constructed have ever been tested for collisionless stability. 

c) Equations of Motion for a Perturbed Spherical Cluster 

Consider a particular spherically symmetric equilibrium configuration described by 
the distribution function 91 = E(w,E,/) and by the gravitational potential $ = 4>^(r). 
Perturb the equilibrium configuration slightly without destroying its spherical sym- 
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metry. The perturbed configuration can be described by a gravitational potential and a 
distribution function of the forms 

= $A(r) + Mt,r) , (7;N) 

yL(t,x’,p’,m) = F(m,EA,J) + f(t,x>,p’,m) , (8;N) 
where 

E>a = (P*)2/2m + m$A , / = |x X i| . (9;N) 

Notice that / is the perturbation in the distribution function at a fixed point in space x, 
for mixed momentum p} and for fixed rest mass m; i.e., it is an “Eulerian perturbation’’ 
in phase space. 

Throughout this paper, as above, the subscript A will refer to quantities in the unper- 
turbed cluster, and a subscript B will refer to perturbations in those quantities accurate 
to first order in the amplitude of the motion. Our treatment of stability will not be 
carried beyond the first order. 

The distribution function, 91, for the perturbed cluster must satisfy the Liouville 
equation (4;N). When the Liouville equation is linearized in the perturbation functions 
$b and/, it takes the form 

df/dt + 3)a/ - FEprd$B/dr = 0 . (10;N) 
Here FE stands for 

Fe ^ (dF/dEA)mJ, (H;N) 

and £)a is the Liouville operator of the unperturbed cluster, 

^ pi d d$A d 
A m dxi m dxi dpi ’ 

The derivation of the perturbed Liouville equation (10 ;N) follows. 

(12;N) 

The full Liouville equation states: 

£>9l= [0/dt+^A - M(d$B/dxi) f] = 0 . (13a;N) 

Linearizing in / and <Ê>£, and subtracting the zero-order Liouville equation, we obtain 

df/dt + 3Xi/ — m(dF/d/>0*jV,m(d<W<9*0 = 0 . 

Since depends only on t and r = | x |, we have 

m(dF/dpï)xj ¿ ^d^B/dx’ = m(dF/dpr)imd$B/dr 

— mFE(pr/m)d$B/dr . 

By combining equations (13b,c;N), we obtain equation (10;N). Q.E.D. 

The perturbed Liouville equation (10 ;N) must be supplemented by an equation for 
4>j5 in terms of/. From the linearity of equations (3;N) one readily sees that the required 
relation is 

V2$i? = ^TrfmfdVp , (14a;N) 
which has the solution 

ä-sC/,*) = - y* dVX'dVP' . (14b;N) 

(13b;N) 

(13c;N) 
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Equations (10 ;N) and (14b ;N)—or their analogues for his version of this analysis—are 
taken by Antonov (1960) to be the equations of motion of the perturbed cluster.2 Unfor- 
tunately, one cannot readily obtain an analogue of equation (14b;N) in general rela- 
tivity. In order to produce a Newtonian analysis which parallels so far as possible the 
relativistic analysis, we shall use in place of equation (14b ;N) the relation 

d2$f? _ ^ /mass insideN _ ^ ¿ 2\( 
mass in N 

dtdr r2 dt \ radius r / r2^ Tr \radial direction/ 

= —4c’irJ'i)rfdVp , 

so that our version of the equations of motion is 

df/dt + £>Af - FEprd$B/dr = 0 , (15a;N) 

d2$B/dtdr = — 4:wJ"prfdVp . (15b;N) 

d) Equation of Motion for the Odd Part of f 

It may seem surprising that the equation of motion (15a;N) is of first order rather 
than second order. Physical intuition suggests that a perturbed cluster should pulsate, 
collapse, or explode, and such motions are usually described by hyperbolic second-order 
differential equations. Actually, a hyperbolic second-order differential equation is hidden 
in equation (15a;N) and can be extracted by a method due to Antonov (1960): 

i) Split the function/(¿,x,^,w) into “even” and “odd” parts: 

f+(l,x,p,m) = ?[f(t,x,P,m) +f(t,x, - p,m)] , 
(16;N) 

f-(t,x,p,m) = h[f(t,x,p,m) - - p,m)] . 

The even part, /+, is that part which is unaffected by reflections in momentum space 
(“even parity” in momentum space); the odd part,/-, is that which changes sign under 
reflections in momentum space (“odd parity” in momentum space) : 

f+(t,x,-p,m) =f+(t,x,p,m) , f-(t,x,—p,m) 

/ = /++/-• 

-f-(t,x,P,m) ; 
(17;N) 

Notice that the even part of/,/+., determines the star density, the mass density, and the 
stresses inside the star cluster (these are even moments of/ in phase space), while the 
odd part, /_, determines the flow of stars, the flow of mass, and the flow of energy (odd 
moments of/). 

ii) Similarly, split equations (15 ;N) into even and odd parts, noticing in the process 
that is an odd operator (it changes the parity of a function) and that only the odd 
part of / contributes to the integral in equation (15b ;N) 

dU/dt + £u/_ = 0 , (18a;N) 

dfjdt + £>Af+ - FEprd$B/dr = 0 , (18b;N) 

d2$B/dtdr = -4wfprf-dVp . (18c;N) 

2 One can readily verify that Antonov^ equations of motion and all other results of his analysis are 
valid, not only when F depends on E alone (the case he considered) and not only for spherical perturba- 
tions of spherical clusters (the case presented here), but also for those perturbations of any cluster which 
do not destroy the space symmetries of the equilibrium configuration. For example, his results are valid 
for all axially symmetric perturbations of a rotating, axially symmetric equilibrium configuration. We 
do not present the more general treatment here because our motivation is to obtain a Newtonian guide 
for the relativistic analysis, and in relativity only spherical motions of spherical clusters are free of the 
difficulties of gravitational radiation. 
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iii) Differentiate equation (18b ;N) with respect to t and combine with equations 
(18a,c;N), to get 

{l/FE){d*f_/dP) = 3/_, (19;N) 
where 3 is the operator 

3/- = - ^Pr rprf-dvp . (20;N) 

Equation (19;N) is the fundamental dynamical equation which governs the pulsation of 
Newtonian star clusters. Once equation (19;N) has been integrated to give the odd part 
of/, equation (18a;N) can be solved for the even part, and equation (14b;N) or (18c;N) 
can be integrated to give 3>b- 

e) Properties of the Equation of Motion; Variational Principles 

The dynamical equation (19 ;N) has a key property which simplifies considerably the 
study of its solutions : the operator 3 is self-conjugate for functions which are bounded in 
phase space. That is, if h and k are functions which are zero outside some finite region of 
phase space, then they satisfy 

rh SkdVpdVx = 'fk ShdVpdVx = f dVxdVp 
— F E 

~ ^f(fprhdvp)(fp
rkdvp)dvx . 

(21;N) 

Proof of equation (21;N) : The second term on the right-hand side of equation (21;N) follows 
trivially from equation (20 ;N). The first term follows from the fact that S)a is anti-self-conjugate 
for bounded functions u and v 

J'u&A'vdVxdVp = — J'vSïAudVxdVp (22;N) 

and from the fact that FE is a function of the integrals of motion of the equilibrium configuration, 
so that = 0. That is anti-self-conjugate for bounded functions (eq. [22 ;N]) follows from 
simple integrations by parts (cf. eq. [12;N]). Q.E.D. 

Since 3 is self-conjugate for bounded functions, the dynamical equation (19 ;N) has a 
number of well-known and useful properties, provided only that the star cluster is bounded. 

Property 1: The dynamical equation (19;N) follows from the action principle 

5 f - /- 3/-] dVPdVxdt = 0 . (23;N) 

Property 2: Associated with the action principle (23 ;N) there is a dynamically con- 
served quantity analogous to pulsational energy:3 

H = r = constant . (24a;N) 

3 Lynden-Bell (1966, eq. [17]) has previously discussed a conserved quantity similar to expressions 
(24;N). Rewritten in our notation, his conserved quantity is 

t = ~r dvpdvx -iff dVpdVxdVP'dVX’ . 

His conserved quantity, e, can be obtained from ours, H, as follows: Re-express the second term of ex- 
pression (24b;N) for H in terms of df/dt by using eqs. (15b;N) and (14;N). Then simply replace df/dt 
in H by f and divide by 2. The resultant quantity is e. By splitting/into its normal modes and using their 
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With the help of equations (17;N), (18a;N), and (21;N), we can rewrite this conserved 
quantity in terms of the full perturbation / = /+ + f~: 

H = f(- 1 /Fe)(df/dt)2dVpdVx - f(fprfdVp)2dVx . (24b;N) 

Property 3: If /_ is split up into normal modes 

/_ = , /+ = , (25;N) 

then the eigenfunctions f satisfy the self-conjugate eigenequation 

(- oP/Fe)\ = 3f , (26;N) 

for which there is a variational principle 

2 = f\ 7>\dVpdX)x (27;N) 

The stationary values of the right-hand side of this equation are the squared eigenfre- 
quencies, co2; and the functions f which produce those stationary values are the corre- 
sponding eigenfunctions. 

Property 4: If Fe is negative or zero throughout the phase space of the equilibrium 
configuration, then the squared eigenfrequencies, co2, are all real; i.e , each eigenfrequency 
is real (stable mode) or imaginary (unstable mode). 

Property 5: The eigenfunctions belonging to different eigenfrequencies satisfy the 
orthogonality relation 

/(- l/FE)UndVpdVx = 0 . (28;N) 

Property 6: If Fe is negative or zero throughout the phase space of the equilibrium con- 
figuration, then that configuration is stable against spherical perturbations if and only if 3 
is a positive-definite operator for spherical functions bounded in phase space—i.e., if and 
only if 

fh ZhdVpdVx > 0 (29;N) 

for all non-zero, bounded h, {Note: The condition < 0 will be satisfied by most if not 
all equilibrium configurations of physical interest, since it states that there are fewer 
high-energy stars than low-energy stars.) 

Most of these properties have been discussed previously by Antonov (1960) for clus- 
ters with F a function of E only. However, he did not mention properties 1 and 2 or the 
variational principle (27;N). 

/) Criterion for the Existence of a Zero-Frequency Mode 

From the equations of motion in the form (18 ;N) one can derive an elegant criterion 
for the existence of a zero-frequency mode: In a spherically symmetric Newtonian star 

orthogonality (eq. [28;N]), one can show that the conservation of E implies the conservation of e. Neither 
Lynden-Bell’s conserved quantity nor ours appears to be the pulsational energy of the cluster. Lynden- 
Bell claims that there is an intimate relation between pulsational energy and his conserved quantity, but 
his analysis proves only the trivial result that his conserved quantity differs from pulsational energy by a 
constant. Milder (1967) has also discussed the relation between pulsational energy and the conserved 
quantity, €, but the physical meaning of his formal mathematical result is unclear to us. 
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cluster for which Fe < 0,4 there exists a zero-frequency mode of spherical, collisionless mo- 
tion if and only if the following holds: there exists another, slightly different equilibrium 
configuration such that the difference in distribution functions between the two configurations, 

AWixfpfm) = ^(xfpfm) - m,i{xfp\m) , (30;N) 

satisfies the relation 
A 91 = £>aG (31;N) 

for some function, G, in phase space. Equivalently, it is necessary and sufficient that 

i) When A91 is integrated around any closed stellar orbit, 6, in the phase space of the 
equilibrium configuration, the result is zero: 

J'Aïfldt = 0 ; (32a;N) 
e 

and 

ii) When A91 is integrated along any possible stellar orbit in phase space which originates 
outside the cluster and terminates outside the cluster, the result is also zero: 

fAVldt = 0 . (32b;N) 
e' 

Moreover, when a zero-frequency mode is present, it has the form 

U = (//r)A91 , -G/r , ^ = {t/r)A^ , (33;N) 

where r is a constant. Hence the zero-frequency mode carries the cluster from one of its two 
equilibrium configurations to the other during the lapse of time t. 

The significance of this theorem will be discussed in the relativistic section (§ IV/). 

Proof of the theorem: We first determine the general form for a zero-frequency mode. Any zero- 
frequency mode must be a finite power series in time, t, for which /+ vanishes at time / = 0 : 

/_ = aJ0) + aJlH + . . . + *Jn)tn , 

U = a+
(1)/ + . . . + a+

(n)/n . 
(34a;N) 

The exponent n must be 1 for the following reason. The equations of motion (19;N) and (18a;N) 
demand that 

3a-(w) = SaJ"-1) = 0 , (34b;N) 

n(n — l)a_(nV^ = 3a_(n 2), (n — \){n — 2)a_(n ^/Fe — 3a_(w 3) , (34c;N) 

tta+
(n) = -T)Aa_(w_1) . (34d;N) 

Multiplying equations (34c;N) by a_(w) and a~(w integrating over phase space, and using 
equations (21;N) and (34b ;N), we obtain 

^ \a (w)l2 \a (n-1)l2 

n(n - l)f i?VJ- dVxdVP = (n - l)(n - 2) f 1 %, 'dVjVv = 0 . (34e;N) 
r e F E 

4 If we define a zero-frequency mode to be one for which /has the form 

/+ = fi(x¡,p‘)t ; /_ = , 

then we can drop from the theorem the demand that Fe < 0. 
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Suppose n> 2. Then equations (34e;N) together with the condition < 0 and equation 
(34d;N) tell us that 

a+U) = a_(n) = a_(n-i) = o . (34f;N) 

Hence n must be < 2. When n= 2, the above argument tells us only that a_(2) = 0, but equations 
(34a;N) and (18b;N) allow us to conclude that a_(1) = 0 as well; and equation (34d;N) then 
reveals that a+(2) = 0. Consequently, n can only be equal to 1; and the general zero-frequency 
mode is of the form (33;N).5 

Next we verify that expression (33 ;N) represents a zero-frequency motion if and only if 
A91 and G satisfy conditions (30 ;N) and (31;N). Equation (30 ;N) is equivalent to the statement 
that A01 satisfies the perturbed Liouville equation 

£>aA91 = FEprdà&/dr , V2(A<Ï>) = kirf mkVldVp (34g;N) 

(cf. eq. [10;N] or eqs. [4;N] and [5;N]). Hence equations (30;N) and (31 ;N) are equivalent to 
equations (34g;N) and (31;N). On the other hand, expression (33 ;N) represents a zero-frequen- 
cy mode if and only if it satisfies the equations of motion (18a,b;N) and (14a;N), which be- 
come identical with equations (34g;N) and (31 ;N) upon manipulation. Q.E.D. 

Only condition (32 ;N) remains to be verified. Equations (32 ;N) are nothing more than the 
integrability conditions for the existence of the potential function, G, of equation (31;N). This 
is because ¿>a is the derivative with respect to time along the unique stellar orbit that goes through 
a given point in the phase space of the equilibrium configuration. Q.E.D. 

g) Relation between Stabilities of Clusters and of Gas Spheres 

The variational principles and stability criterion derived in § Hie will be much more 
difficult to apply than the corresponding results in the theory of gas spheres For a gas 
sphere the variational principles and eigenequations involve only one coordinate, r, 
whereas for clusters the radius r, radial momentum pr, angular momentum J, and mass 
m all enter non-trivally. In certain circumstances one may be able to handle the effects 
of J and m analytically (recall that J and m are conserved along a stellar orbit in the 
pulsating cluster), but typically one may have to analyze numerically a two-dimensional 
problem in (r,pr). 

Recently Lynden-Bell (1966) has partially saved us from the pain of two-dimensional 
numerical analyses by devising a simple one-dimensional criterion for the stability of 
certain star clusters. Lynden-Bell’s criterion has one drawback: it is a sufficient condition 
for stability but not (so far as we know) a necessary condition. Nevertheless, it should 
prove extremely useful for many problems. 

Lynden-B ell’s criterion for the special case of spherical clusters with isotropic velocity 
distributions (E independent of /)6 says this: Consider a bounded, spherically symmetric 
Newtonian cluster with isotropic velocity distribution and with FE ^ 0. Such a cluster is 
stable against collisionless, spherical perturbations if the gas sphere with the same radial 
distributions of density, 

p = fmFdVp = 47t/w2[2w(Ea - m$A)]ll2FdEAdm , (35a;N) 

and of pressure, 
P = f(prpr/m)FdVp = ±f(P/mr*)FdVp 

= (4:T/3)J'[2m(EA — m$A)]sl2FdEAdm , 
(35b;N) 

6 Antonov (1960) concluded incorrectly that zero-frequency modes with n = 2 are possible. 
6 Lynden-Bell proves his theorem in a somewhat more general context, but here we are concerned 

only with spherical clusters. 
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is stable against radial perturbations for which the u adiabatic index11 is 

= p dP/dr 
1 P dp/dr ' 

261 

(35c;N) 

Since it is a simple one-dimensional problem to determine whether a gas sphere is 
stable, this theorem gives us a simple, one-dimensional, sufficient criterion for the sta- 
bility of a spherical cluster. 

Paragraph added July J, 1968.—Recent discussions between Donald Lynden-Bell and 
James R. Ipser, motivated in part by remarks of Edward Lee, have revealed that Lyn- 
den-Bell’s (1966) proof of this theorem was incorrect.7 However, a new, corrected proof 
of the theorem has been devised by Lynden-Bell (paper in preparation), and a relativistic 
version of the theorem has been proved by Ipser (to be published in Paper II of this 
series). 

IV RELATIVISTIC THEORY OF STABILITY 

We now develop the relativistic generalization of our Newtonian discussion of stabil- 
ity. Our treatment follows as closely as possible the corresponding Newtonian treatment, 
with the corresponding equations being given similar numbers (e.g , eq [1 ;R] corresponds 
to eq. [1;N]). 

a) Equations of Stellar Dynamics 

In general relativity the density of stars in phase space, which we denote by 91, is 
defined as follows : we concentrate attention on those stars near a particular event, x, in 
spacetime with 4-momenta near a particular value, p. As seen in the rest frame of these 
stars, they occupy a particular three-dimensional volume, dVx, in physical space and a 
particular four-dimensional volume, dVp, in momentum space In terms of a general 
curvilinear coordinate system, dVx and dVp are given by 

dVx = (p°/m)V(— g)dx1dx2dxz ; dVp = —dpodpidp2dpz/\/(— g) . (1;R) 

Here pa and pa are the contravariant and covariant components of the 4-momentum, g 
is the determinant of the metric tensor, and m = (pap*)112 is the rest mass of a star with 
4-momentum p. If there are dN stars in the volume dVxdVp, then the number density 
in phase space (“distribution function”) is given by 

91 = dN/dVxdVp = dN/(— dxldxidxzdpidp2dpzdm) . (2;R) 

The density 91 is a function of location (x,p) in eight-dimensional phase space. Through 
part of our discussion we shall use as coordinates in phase space general curvilinear 
spacetime coordinates, x°, and the “conjugate” covariant components of the 4-momen- 
tum, pa. However, we shall sometimes employ other sets of coordinates, for example, 
(xa,ÿy,w)8 and coordinates specially adapted to spherical symmetry. 

The smoothed-out gravitational field of the star cluster is described by the metric 

7 The error lies in the argument showing that positive-definiteness of the Lynden-Bell operator 

ç = _ Ü _ dp/dL 
4t P dP/dr 

is a necessary condition for stability of the gas sphere. It is not necessary for stability. 
8 Greek indices run from 0 to 3; Latin indices, from 1 to 3. 
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tensor, gaß(x). The distribution function determines a smoothed-out stress-energy tensor 
through the equations 

TJ = fpapß(Vl/m)dVp , (3a;R) 

and that stress-energy tensor determines the metric, gaß, through Einstein’s equations, 

Gaß = 8wTaß . (3b; R) 

The gravitational field in turn determines the distribution function through the col- 
lisionless Boltzmann-Liouville equation (or “Liouville equation”) 

£>9l = 0 . (4;R) 

Here 3D, the Liouville operator, is differentiation with respect to proper time along the 
path of a star in phase space: 

dxa d dpa d _ pa d 1 dg^ d 

ds dxa ds dpa m dxa 2 m dxa dpa ’ 
(5;R) 

Equations (3;R) and (4;R), which couple gaß and 91, are the fundamental equations of 
relativistic stellar dynamics. 

b) Spherical Equilibrium Configurations 

In general relativity, as in Newtonian theory, the distribution function for an equi- 
librium configuration depends only on the integrals of the motion. For spherical sym- 
metry the relevant integrals of the motion are the rest mass m, the “energy at infinity,” 
E=po, and the total angular momentum J; hence we have 

91 = FimyEjJ) . (6a; R) 

When F is independent of /, the cluster has an isotropic velocity distribution at each 
point in space We shall use the “Schwarzschild coordinate system” (¿,r,0,<¿>) to describe 
spherical equilibrium configurations. In this coordinate system the gravitational field is 
described by 

ds2 = evdt2 — exdr2 — r2(dd2 + sin2 6 d<j>2) , (6b; R) 

where v and X are functions of r, and the angular momentum and “energy at infinity” are 
given by 

J = W + (ÿ*/sin 0)2]1/2 , E = po . (6c; R) 

The theory of spherically symmetric equilibrium configurations has been developed 
in great detail by Fackerell (1966; 1968#-c). Independently ZePdovich and Podurets 
(1965) have treated the restricted problem of a cluster of identical stars with a truncated, 
isotropic Maxwell-Boltzmann velocity distribution—i.e., a cluster with 

F = Ae~E¡Tb{m — mo) iî E < E0 

= 0 if £ > Eo . 

c) Equation of Motion for a Perturbed Spherical Star Cluster 

If a spherically symmetric equilibrium configuration is perturbed in a spherical man- 
ner, and if Schwarzschild coordinates are adopted for the perturbed configuration as for 
the unperturbed configuration, then the perturbed gravitational field is described by 

ds2 = _ e^A(^B(‘^dr2 _ _|_ sin2 0 ^2) _ (7;R) 
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As in the Newtonian case, so also here, we work only to first order in the perturbation 
quantities vb and \b- 

The radial coordinate, r, in equation (7 ;R) is defined uniquely by the demand that 
47rr2 be the area of an invariant sphere about the center of symmetry. The time co- 
ordinate, t, is also defined uniquely if we insist that the perturbed metric (7 ;R) become 
the static Schwarzschild metric outside the cluster (BirkhofTs theorem). Consequently, 
there is no coordinate arbitrariness in the functions vb, Xa, and X#. 

In defining the perturbation of the distribution function, we must decide how to 
identify points in the phase space of the perturbed cluster with points in the phase space 
of the unperturbed cluster. There is a variety of possibilities: We could identify points 
with the same Schwarzschild coordinates, xa, and with the same covariant components 
of the momentum, pa, so that 

91 = yLA{0C\pa) + VlB(xa,pa) • 

Alternatively, we could use contravariant components of the momentum, pa, in making 
the identification : 

31 = VÍA(xa,pa) + LJlB(xa,pa) . 

Either of these choices is reasonable on mathematical grounds, but from a physical 
standpoint it is preferable to identify points with the same Schwarzschild coordinates, xa, 
and the same physical components of the momentum, p(a) = |gaa|1/2^a* (See Table 1.) 

TABLE 1 

Physical Components of the 4-Momentum* 

Component Value in Equilibrium Configuration Value in Perturbed Configuration 

¿(0) 
P(r) 
Ptf) 
P(<t>) 

¿o!exp (-va/2) = ¿^exp (vA/2) 
pr exp (—X¿/2) = -pr exp (X¿/2) 
per-1 = —pQr 
p^{r sin 0)-1 = —p^(r sin 0) 

Pq exp [—(ïm+^)/2] = p* exp [(va+vb)/2] 
pr exp [—(Xj.-J-X^)^] = pr expJXX^-l-X#)/^] 

r~l — _ 
pé(r sin 0)“1 = —p*(r sin 0) 

* The physical components are the projections of p on an orthonormal tetrad with legs in the t, r, 0, and 0 directions (See, 
e.g , chap ii of Thorne 1967 ) 

This is the type of identification which observers using proper reference frames or locally 
inertial reference frames would make, and it leads to a formalism which is considerably 
simpler than the other choices. With this choice of identification of points in phase space, 
the distribution function of the perturbed cluster takes the form 

91 = F(m,EA,J) +f(xa,p(a)) , (8;R) 

where 

m = [pm
2 - p(r)2 - Prn2 - Pm2]1'2 , EA = Pme*12, J = r[pm

2 + pw
2]112. (9;R) 

The Liouville equation which this distribution function obeys takes the following form 
when linearized in the perturbations VBy X#, and /: 

tv, 
m dt 

(10; R) 

Here Fe stands for 
Fe — (dF/dEA)m,j , (11;R) 
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and 3)^ is the Liouville operator of the unperturbed cluster, which has the form 

1 dgA^ ^ P’ d 

®A~ m dxi 2m dx>' dpi 
(12;R) 

when (xa,pa) are used as coordinates in phase space. (Note that we must use care in the 
choice of coordinates only while defining/. Now that/has been defined explicitly, we are 
free to use whatever coordinates we wish in manipulating it, except that we shall demand 
that our coordinates leave the equilibrium configuration explicitly static.) 

The derivation of the perturbed Liouville equation (10;R) follows. 

For the purpose of the derivation we shall use as coordinates in phase space the Schwarzschild 
space coordinates (¿,r,0,</>), the physical zero component of the momentum, />«)), the angular mo- 
mentum, /, and the rest mass of a star, m = [ÿ(o)2 — (/A)2 “ ÿ(r)2]1/2. The rest mass, w, is used 
in place of p(r) ; and J is used in place of both p^) and p^). (This is possible because spherical sym- 
metry guarantees that 91 can depend on p$) and only through J.) The full Liouville equation 
for a dynamical, spherically symmetric cluster is 

pa d91 dp®) ddl dJ dm, d9l ^ Q 

m dxa ds dp(o) ds dJ ds dm 
(13a;R) 

Because J and m are integrals of the motion in a dynamical, spherical cluster, we have 

dJ/ds = dm/ds = 0 . (13b;R) 

The change in p^ along a star’s world line, as calculated from the geodesic equation, is 

dp(o)/ds = (l/2m)e vl2[prp
r(d\/dt) — Popr(dv/dr)] . 

Consequently, the Liouville equation (13a;R) reads 

p^e-^dM p{r)e-™dVl 1 [~ d\ 

(13c;R) 

+ e X/2i>(0)/>(r) 
dvl dïfl 

= 0 
drJ dp(o) 

When we split into unperturbed and perturbed parts, 

9l = f7+/, v — va vb , X = Xa + Xn 

and linearize in the perturbation, this becomes 

(13d;R) 

(13e;R) 

m dt 

F Xg /dF\ 

m 2 \dr/t ■P(0) J m 

+ 
■vAI2 

2m 

(13f;R) 
0 

The value of F depends on ÿ(o> and r only through = p(o)evAl2 when J and m are held fixed. 
Consequently, 

( 

AF\ 

drJ t P(Q),J 
- IB dvA 77 r—i Ld^(0) Ji r J 

= evA^F E (13g;R) 

When equations (13g;R) are combined with equation (13f;R), the perturbed Liouville equation 
(10 ;R) results. Q.E.D. 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
68

A
pJ

. 
. .

15
4 

. .
25

11
 

No. 1, 1968 RELATIVISTIC STAR CLUSTERS 265 

The perturbed Liouville equation (10 ;R) must be supplemented by equations for va 
and vb in. terms of/. The required relations are the perturbations of Einstein’s field 
equations (3;R). The perturbation in the stress-energy tensor, which enters into the field 
equations, is 

TBaß = fpapß(f/m)dVp , 

and the perturbation in the Einstein tensor is the same as that used by Chandrasekhar 
(1964) in studying the radial pulsation of gas spheres. By combining the perturbed Ein- 
stein and stress-energy tensors, one obtains three useful field equations: 

d\B/dt= —8Trre'AJ'popr(f/m)dVp, (14a;R) 

(d/dr)(ré~XA\B) = 87rr2J'pop0(f/m)dVp , (14b;R) 

dvB/dr = (dvA/dr + l/r)\B — 8Trre"Afprp
r{f/m)dVp . (14c;R) 

Equations (10;R) and (14;R) are the equations of motion for the perturbed cluster. 
These four equations for f,vBy and \B are not all independent. The Liouville equation 
(10 ;R), when combined with equation (14a;R), can be made to yield (14b;R); when 
combined with (14b ;R), it yields (14a;R). 

Equations (10 ;R) and (14;R) are not the most useful forms for the equations of mo- 
tion. Rather, it is convenient to remove vB and d\B/dt from equation (10 ;R) by use of 
(14a,c;R), and to take the resultant equation along with (14a ;R) as coupled equations for 
/ and \B: 

Xb 

dr 2r 
= 0, (15a;R) 

(M) = 
(15b;R) 

Here (B is the operator in phase space, 

= 5 5 f M-r -hKfPÉL HX)\. (15c;R) 
p" pv \ m tn mm/ 

d) Equation of Motion for the Odd Part of f 

In order to convert the equations of motion (15 ;R) into self-adjoint, hyperbolic, sec- 
ond-order form, we follow the Newtonian procedure of splitting them into even and odd 
parts. Such a split in general is not Lorentz-invariant in momentum space, because the 
parity is defined in terms of inversions of the space part of the 4-momentum (^o) is not 
inverted); and the space part of p is not a Lorentz-invariant entity. Fortunately, this 
need not disturb us. The static nature of the unperturbed geometry provides us with 
preferred time directions in both physical space and momentum space. In the pulsating 
cluster, the preferred time directions are well defined to zero order in the perturbations— 
which is sufficiently well defined for our purposes—and they are automatically embodied 
in the coordinate system (//',^,<i>,ÿ(o),ÿ(r),ÿ(0),ÿ(0)) which we are using. 

Consequently, without any loss of generality, and without any introduction of ar- 
bitrariness into the analysis, we can define the even and odd parts of / as 

U(XjP) := 2[f(xiP(fi)iP(.r),p(ß),P(<!>)) +/(^,í(0),--/?(r), —ÿ(0), —^(0))] , 

= M/(^(O),í(r),í>(0),£(0)) — /(^^(0),~ÿ(r), —í(0),“-i>(0))] - 
(16;R) 
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As in Newtonian theory,/+ and/_ have even and odd parities in the spatial part of mo- 
mentum space, and their sum is f: 

f+(x>p(0), — p(r), — p(e), — p(<t>)) = f+(x,p(0),p(r),p(6),p(<l>)) , 

f-(x,p(0), — P(r), — ptf), — P(4>)) = “/-(*>ÿ(O),ÿ(r),^(0),ÿ(0)) > (17;R) 

/=/++/-. 

If we split equations (15 ;R) into even and odd parts, noticing in the process that (B is 
an odd operator and that only the odd part of / contributes to the integral in equation 
(15b ;R), we obtain the equations 

(df+/dt) + (B/_ = 0 , (18a; R) 

(18b;R) 

(18c;R) 

Finally, if we differentiate equation (18b ;R) with respect to t and combine it with equa- 
tions (18a,c;R), we obtain the desired hyperbolic second-order differential equation 

(l/FE)(dyjdt>) = 3/_ . (19;R) 
Here 3 is the operator 

¿ ®®/- - 4^1 + r ^ ■ <20;K) 

Equation {19;K) is the fundamental dynamical equation which governs the pulsation of 
relativistic star clusters. Once it has been integrated to give/-, equation (18a;R) can be 
solved for/+, and the field equations (14 ;R) can be solved for \p and vb. 

e) Properties of the Equation of Motion; Variational Principles 

The operator 3, like its Newtonian counterpart, is self-conjugate for functions which are 
hounded in phase space. That is, if h and k are spherically symmetric functions which are 
zero outside some finite region of phase space, then they satisfy 

fhMdVpdVx = J'k ShdVpdVx = f 
(ßh) («£) 

(~Fe) 
dVxdVp 

— 47T 

(21;R) 

Proof of equation (2l;R) : the second term of the right-hand side follows directly from definition 
(20 ;R) of 3 and from expression (1 ;R) for dVx and dVp. The first term follows, once we have veri- 
fied that (B is anti-self-conjugate with the weighting function 1/Fe, i.e., once we have shown that, 
for bounded, spherical u and v, 

f(l/FE)u(&vdVpdVx = -f(l/FE)v®>udVpdVx . (22a;R) 

Equation (22a ;R) is readily verified from definition (15c ;R) of (B, once it is recognized that 
is also anti-self-conjugate, but with the weighting function (m/p0), 

m 
f ~ u&AvdVpdV; 

m 
= — f —¿v&AudVpdV, 

f 
X > (22b ;R) 
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and that QaFe — 0. Relation (22b ;R) follows from integration by parts plus simple manipula- 
tions, if (xa,ÿü) are used as the coordinates in phase space. Note that with this choice of coordi- 
nates has the form (12 ;R), ¿Uœ and dX)v have the form (1 ;R), and the relation 

A. (ÈL\ 9 ( 1 ¿ A = o 
d%i \mj dpj \2m dx1' 

(22c;R) 

is satisfied. Q.E.D. 

Since 3 is self-conjugate for bounded functions, the dynamical equation (19;R) has 
the same types of well-known and useful properties as its Newtonian analogue (19 ;N), 
provided only that the star cluster is bounded. 

Property 1: The dynamical equation (19 ;R) follows from the action principle 

bf[^¥7~ ~ /-3/'-]d'üí>ífü*áí = 0 • (23;R) 

Property 2: Associated with the action principle (23 ;R) there is a dynamically con- 
served quantity 

H = f
r(ßfjd(l 
L — F E +/-V-] dVpdVx = constant. (24a;R) 

With the help of equations (17;R), (18a;R), and (21;R), we can rewrite this conserved 
quantity in terms of the full perturbation / = /+ + /- : 

f 
(df/dty 

-Fe 
dVpdVx - 47r/ (l + ^) «Xa (/ ^ PrfdVpy j, dVx . (24b;R) 

Property 3: If /_ is split up into normal modes, 

/_ = \(xi,pa)e
iat, f+ = (Vw)«fe"i, (25;R) 

then the eigenfunctions f satisfy the self-conjugate eigenequation 

= 3f , 

for which there is a variational principle 

2 = /f tfdVpdVx 
03 S(-l/FE)PdVpdVx 

(26; R) 

(27; R) 

analogous to the Newtonian variational principle (27;N). 
Property 4: If Fe is negative or zero throughout the phase space of the equilibrium 

configuration, then the squared eigenfrequencies, co2, are all real; i.e., each eigenfre- 
quency is real (stable mode) or imaginary (unstable mode). 

Property 5: The eigenfunctions belonging to different eigenfrequencies satisfy the 
orthogonality relation 

f(-l/FE)\m\ndVvdVx = 0 . (28;R) 

Property 6: If Fe is negative or zero throughout the phase space of the equilibrium con- 
figuration, then that configuration is stable against spherical perturbations if and only if 3 is 
a positive-definite operator for spherical functions bounded in phase space: 

fhZhdVpdVx > 0 . (29; R) 
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/) Criterion for the Existence of a Zero-Frequency Mode 

ZePdovich and Podurets (1965) and ZePdovich and Novikov (1967) have argued that 
one should be able to diagnose the stability of isothermal star clusters from binding- 
energy curves, in much the same way as one diagnoses the stability of isentropic stellar 
models from such curves (Fowler 1964; Bardeen 1965; Thorne 1967, § 4.1.4). This seems 
highly unlikely to us, because in isothermal clusters one must, in some arbitrary manner, 
introduce a cutoff at high energies in the distribution function, and this cutoff must be 
chosen uniquely for each central density in order to produce a one-parameter binding- 
energy curve (cf. end of § IV6). Only a very special choice of the cutoff—which choice 
is not yet known—could lead to a binding-energy criterion for stability, and perhaps no 
choice will work. 

That the situation in star clusters is much more complicated than that in stars is indi- 
cated also by the following theorem, which is the direct generalization of our Newtonian 
theorem of § III/: 

In a spherically symmetric, relativistic star cluster for which F# < 0 (see n. 4, p. 259), 
there exists a zero-frequency mode of spherical, collisionless motion if and only if the fol- 
lowing holds: there exists another, slightly different equilibrium configuration such that the 
difference in distribution functions (at fixed physical components of the momentum) 
between the two configurations, 

A91 = ^(rfi^fp^ypmypi^jpio)) “ ^lilfi^iP^yp'OyP^yPiO)) , (30jR) 

satisfies the relation 
AVI =®G (31;R) 

for some function, G, in phase space. Equivalently (integrability condition for eq, [31;R]), 
it is necessary and sufficient that 

i) When one integrates the following quantity around any closed stellar orbit, 6, in the 
phase space of the equilibrium configuration, the result is zero: 

./[AiJl + \{FE/ptí)prp
r^K]dt = 0 ; (32a;R) 

e 
and 

ii) When the same quantity is integrated along any possible stellar orbit in phase space 
which originates outside the cluster and terminates outside the cluster, the result is also 
zero: 

j [A91 + ^{Fe/p{i)prprAV[dt = 0 . (32b;R) 
e' 

Moreover, when a zero-frequency mode is present, it has the form 

/+ = (//r)A3il , f- = —G/r , vB = {t/r)Av , \B = (t/r)A\ , (33;R) 

where t is a constant. Hence the zero-frequency mode carries the cluster from one of its two 
equilibrium configurations to the other during the lapse of time r. 

Proof of the theorem: We first verify that any zero-frequency mode must have the general form 
(i.e., time dependence) of expressions (33 ;R). This is done by precisely the same procedure as was 
used in the Newtonian analysis (eqs. [34a-f;N]). 

Next we verify that expression (33 ;R) represents a zero-frequency motion if and only if A91 
and G satisfy conditions (30 ;R) and (31;R). Equation (30 ;R) is equivalent to the statement that 
A91 satisfies the perturbed Liouville equation 

(BA91 — (l + r d£)FEf § = 0 . (34a;R) 
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(cf. eq. [15a ;R]). Hence equations (30 ;R) and (31 ;R) are equivalent to equations (34a ;R) and 
(31;R). On the other hand, expression (33 ;R) represents a zero-frequency mode if and only if it 
satisfies the equations of motion (18a,b;R) and (14b,c;R), which upon manipulation become 
identical with equations (34a;R), (31;R), and the perturbed field equations for AX and Ay. 
Q.E.D. 

Condition (32 ;R) remains to be verified. Equation (31;R), when combined with definition 
(15c;R) of (B, with the form (33 ;R) of the zero-frequency mode, and with the field equation 
(15b ;R), becomes 

(m/P°)Z>aG = A91 + i(FE/p0)prprA\ . (34b;R) 

The operator (w/^°)3)a is the derivative with respect to coordinate time along the unique stellar 
orbit that goes through a given point in the phase space of the equilibrium configuration. Conse- 
quently, equations (32) are the integrability conditions for the potential function G. Q.E.D. 

The criteria for zero-frequency modes provided by this theorem are quite elegant 
conceptually, but without some sort of extension they are useless for numerical calcula- 
tions. This theorem can be compared to the statement that a hot stellar model possesses 
a zero-frequency mode if and only if there exists another, slightly different model with 
identically the same chemical composition, rest mass, and binding energy and with the 
same distribution of entropy. In the stellar case, the demand for identical entropy dis- 
tributions provides an infinity of constraints analogous to the constraints (31;R) or 
(32 ;R) for clusters. In the stellar case, we know how to simplify the stability criterion by 
looking only at isentropic configurations (Bardeen 1965; Thorne 1967, §4.1.4). Perhaps 
future thought will reveal an analogous simplification for star clusters. 

V. CONCLUSION 

In this paper we have reviewed and extended the tools available for analyzing the 
collisionless stability of Newtonian star clusters, and we have derived a number of 
analogous tools for studying relativistic star clusters. One of the authors (J. R. I.) is 
now using these tools to study numerically the onset of the relativistic instability in 
spherical star clusters. It is hoped that the numerical analyses (which will be reported in 
a sequel to this paper) will yield improved understanding of possible processes in the 
nuclei of galaxies and of the Fowler-Hoyle star-cluster model for QSSs. 
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