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ABSTRACT 

The structure of heavy stars at highly evolved stages of evolution is considered. It was found that 
radiation relativistic effects on the electrons and pair creation induce a dynamical instability in stars 
heavier than about 30 Mo. The evolution of a 30 Mo oxygen star is described in some detail up to the 
point where it becomes dynamically unstable. 

I. INTRODUCTION 

Late stages of evolution have been discussed quite thoroughly in recent years. In 
particular the effect of intense neutrino emission on stellar evolution and the mechanism 
of supernovae has been considered (Hayashi and Cameron 1962; Reeves 1963; Fowler 
and Hoyle 1964; Deinzer and Salpeter 1966; Chiu 1966). 

In order to check the various ideas about supernovae in more detail, the evolutionary 
calculations of stellar models must be continued up to the very evolved models in which 
the instabilities supposed to result in supernova explosions can show up. A computer 
program capable of performing such evolutionary calculations efficiently has been devel- 
oped (Rakavy, Shaviv, and Zinamon 1966). As first sample calculation, which may be 
of some interest, we chose a model of a pure oxygen star of 30 Mo. We have studied the 
behavior of this model under various assumptions from the stage of contraction due to 
photon emission, continuing through a stage in which energy losses due to neutrino emis- 
sion predominate, up to the ignition of oxygen burning. During these calculations it was 
learned that stars heavier than about 30 Mo arrive at an instability due to pair creation 
whenever their central temperature rises to 1.8—2.3 X 109 ° K. This instability seems 
to be quite independent of the nature of the nuclear reactions, the mode of energy losses, 
convection, and probably also composition. 

In the present paper the general question of structure and stability of a star losing 
energy predominantly through neutrino emission is discussed. The discussion is based 
on results from the above-mentioned calculation of a 30 Mo model and from exploratory 
calculations of a few lighter models. We hope to publish detailed results on configura- 
tions of stars at the limit of stability after performing more accurate calculations, start- 
ing from earlier evolutionary models. 

In § II the structure of a “neutrino star” (i.e., a star losing energy predominantly 
through neutrino losses) is discussed. The equations of evolution are formulated in 
§ III. As the conditions for dynamical stability have been thoroughly discussed in the 
literature, we make only a few comments on that problem. A short résumé of methods 
for treating dynamical instabilities which we use in the present work is given in Appendix 
A. (For a full review of the subject cf. Ledoux 1958, 1965.) In § IV, the particular case 
of dynamical instabilities due to pair formation is discussed. In § V a brief account is 
given of the results of the calculation of the evolution of the 30 Mo model. Details of 
the nuclear reaction rates and the equation of state used in these calculations can be 
found in Appendices B and C. 

* Supported in part by the National Science Foundation (GP-5391) and the Office of Naval Research 
(Nonr-220(47)). 

f On leave from the Department of Physics, Hebrew University, Jerusalem, Israel. 
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804 G. RAKAVY AND G. SHAVIV Vol. 148 

II. REMARKS ON THE STRUCTURE OE NEUTRINO STARS 

When a star contracts and the central temperature reaches about 0.6 X 109 ° K the 
rate of energy losses by means of various neutrino processes equals the rate of energy 
lost by photon emission. At higher temperatures the neutrino losses dominate over 
photon losses by several orders of magnitude. It has become customary to refer to such 
a star, in which heat conduction by photons (or electrons) can be completely neglected 
(although convection may still be important) as a aneutrino star.” Stars with densities 
less than 10n gm cm-3 are transparent to neutrinos (Bahcall 1964; Bahcall and Frautschi 
1964). Thus the mechanism of neutrino losses differs radically from the mechanism of 
energy losses by photons. While the latter is a conduction mechanism and is influenced 
by the temperature distribution and temperature gradients all over the star, the rate of 
neutrino losses from a given mass element depends only on the local temperature and 
density. 

The neutrino losses accelerate the evolution. Both contraction and nuclear-burning 
periods become shorter by orders of magnitude. As a result of this acceleration the tem- 
perature at which a specific nuclear fuel burns is somewhat increased (for example, the 
temperature of oxygen burning is increased from around 1.6 X 109 ° K to approximately 
2.1 X 109 ° K). In addition to these quantitative differences there exists a rather more 
essential difference between “neutrino stars” and “photon stars” (stars losing energy 
predominantly by photon emission). Sometime after a nuclear fuel is ignited, a “photon 
star” tends to settle in a quasi-stationary state. 

In this state the rate of heat removed by nuclear reactions equals the divergence of 
the heat current conducted and convected away by the photons at each point in the 
star, namely, 

ds _ _ dFrad _ dFcony _ 

dt ^nuc dm dm 
G) 

where s is the entropy density, qnVLC the energy produced by nuclear reactions, and Frad 
and Fconv are the radiative and convective heat fluxes, respectively. FConv is different from 
zero only if the density gradient is smaller than the adiabatic one. 

The situation is different in a “neutrino star.” A term qv—the energy losses by neu- 
trinos—should be added, and the term dFx^/dm can be neglected. We have now 

dS dFcony 

dt ?nuc <?- dm ■ 
(2) 

It is evident that if FCony = 0 a neutrino star cannot settle on a quasi-stationary state 
in which (ds/dt) = 0 locally. Even if there is a solution of the hydrostatic equilibrium 
equation consistent with the condition that at each point of the star the energy generated 
by nuclear reactions is exactly balanced by the energy removed through neutrino emis- 
sion, such a solution is unstable in the sense that a small (localized) perturbation to the 
temperature will grow rather than decay. Assume that the entropy rises by an infinitesi- 
mal amount over a small region of the star. If the region is small enough, the pressure 
will not change. Adding entropy under isobaric conditions elevates the temperature. As 
the nuclear reactions increase faster with temperature than the neutrino losses, more 
entropy is added and the balance is destroyed. 

As detailed calculations have shown, the nuclear reaction rates in a small region be- 
come several times greater than the neutrino losses. In the rest of the star neutrino 
losses dominate. A growing convective core develops and tends to spread the energy 
supply. If the convective core can extend so far that / (gw ~ qv) dm = 0 where the 
integration is carried over the whole convective zone and gnuc = g? = 0 outside this 
region, one would have {ds/dt) — 0 locally. However, it is found that generally this is 
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No. 3, 1967 INSTABILITIES IN STELLAR MODELS 805 

not the case. The extent of the convective core depends on the relation between the 
oxygen Q value (erg per gram of fuel) and the duration of neutrino losses before oxygen 
ignition. Immediately after the ignition of the nuclear burning the reaction rates in- 
crease very rapidly at the center becoming several times faster than the neutrino losses. 
A convective core starts to grow around the burning region. When the heat generated 
by the nuclear reactions is spread over a wide enough region (either directly or through 
convective transfer) the burning is stabilized and further changes of reaction rates are 
comparatively slow. The burning is stabilized so as to maintain an approximate balance 
between the integrated rates of energy release by nuclear reactions and energy loss by 
neutrino emission. The excess energy in the region in which (ds/dt) > 0 is transformed 
into internal energy and work. The center with the convective core expands slowly while 
the outer layers contract. Because the time scale dictated by the neutrinos (a few days 
at least) is longer than the f reef all time (a few hundredths of a second for a core collapse) 
the motions that result from the work done are so slow that kinetic energy can be 
neglected compared to internal energy and the problem does not become dynamical, 
namely, we can assume that hydrostatic equilibrium is maintained at all times. (It 
should be noted, however, that under special circumstances one has also in a “photon 
star” (ds/dt) ^ 0; Hofmeister, Kippenhahn and Weigert 1964.) 

Another important difference between “photon stars” and “neutrino stars” exists 
during periods of contraction without fuel burning. A contracting “photon star” with a 
conventional opacity law tends to become fully convective, while a “neutrino star” can 
never become convective when there is no nuclear burning. 

III. THE EQUATIONS OF EVOLUTION 

The variation of the static energy 

w = TF(gravitational) + ^(thermal) = -g/ —^ + fudm (3) 

due to an adiabatic displacement 8r(m) can be written (Dyson 1961) 

SW-fdVx(§+fl£) + iSiV(xHx)+..., 

where 

F = ~y-/'3, x~ = 4:Trr2 8 r (m) y 

(4) 

H= y = — ÍÊ-Ê^\ 
dV7FdV 9 rV2 ' 7 p \dpjs—const * 

Here m, the mass contained in a sphere of radius r, is used as an independent variable. 
Sometimes we write integrations on the volume element dV = dm/p. This should be 
distinguished clearly from the variation ôF = x W which is an arbitrary finite function 
of position (with small absolute value). The only condition on x(m) is that it should 
vanish at the origin: x(0) = 0. In equation (4), only terms up to the second order in 
8V have been retained. 

A configuration is in hydrostatic equilibrium (H.E.) when its static energy W is 
stationary with respect to an arbitrary adiabatic displacement; i.e., the first term in 
equation (4), which is linear in x> must vanish identically in x* Equating the coefficient 
of x m that term to zero, one obtains the equation of H.E. 

it+pi- (S) 

dm 47rr4 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
 67

 A
p J

. 
. .

14
8.

 .
80

3R
 

806 G. RAKAVY AND G. SHAVIV 

If the entropy density distribution in the system s(m) is changed slowly, H.E. is 
maintained. Let the heat supplied to a unit mass per unit time be q. For the rate of 
change of entropy density, we have 

ds(m,t) q 
—dT~=f- (6) 

The heat equation (6), the equation of H.E. (5) and the equation of change in chemi- 
cal composition, augmented by the equations of state connecting p, T and 5, p, T are 
the basic equations for the calculation of stellar evolution. 

It is quite evident that H.E. is stable if the static energy W has a minimum with re- 
spect to all adiabatic variations. If this is not the case, fast motions may develop inde- 
pendent of the rate of heat supply q. The condition for a stationary point of TT to be a 
minimum is that the operator H defined in equation (4) should be positive definite. This 
condition has been formulated in the literature in various forms. A short résumé is 
given in Appendix A. 

Thermal instabilities, if they occur, must show up in a natural way while integrating 
the time-dependent equations (5)-(6). During integration one has to check continuously 
if the rates of change of entropy density, etc., are slow enough so that the assumptions 
of complete mixing by convection and the existence of instantaneous H.E. are not 
violated. It was found that in heavy stars no fast changes occur before some kind of 
dynamical instability is encountered. 

IV. THE DYNAMICAL INSTABILITY DUE TO PAIR FORMATION 

As is well known, the dynamical stability is governed by the average value of 7 over 
the star. In Figure 1, lines of constant 7 — § are drawn in the p,T plane. The equation of 
state used to obtain these values of 7 is described in Appendix B. The depression below 
7 = § around T% = 2.5 is due to pair formation (Fowler and Hoyle 1964; Souffrin 1960). 
At high densities, 7 never goes below J, both due to a larger contribution from the ion 
pressure and to suppression of pair formation. At higher temperatures, the peculiar 
behavior of the equation of state due to the energy gap between the negative and posi- 
tive energy states of the electrons is less pronounced and 7 stays above f even for zero 
density (cf. Fig. 2). Both for high temperatures and high densities, the relativistic effects 
predominate and 7 tends toward f. At high temperatures, the pressure is determined pri- 
marily by radiation and pairs; at high densities the degenerate electron pressure pre- 
dominates. In both cases, ion pressure is unimportant. 

As we see from Figure 1, 7 is not very far from J in the whole region where oxygen or 
heavier isotopes can react. The stars being very soft, high accuracy must be maintained 
in the calculations in order to obtain reliable results. In particular, one can never assume 
the electron gas to be really non-degenerate (cf. Appendix B), and accurate expressions 
for the equation of state must be used. 

A heavy star, while losing entropy by radiation or neutrino losses, contracts and 
raises its temperature and density; in Figure 1, the point representing these quantities 
for any given mass point, moves up and to the right. With evolution proceeding, 7 in 
the central region approaches ^ and the star becomes softer and softer. At last, a minute 
decrease in entropy raises the central temperature and density to infinity. For completely 
convective models, we can assign for each mass (larger than the Chandrasekhar limit) a 
minimum value for the sum of leptonic and electromagnetic entropies (assuming Z/A 
given, say J) or inversely: for any entropy a maximum mass. In general, no such unique 
limits exist, but actually even stars of only a few solar masses move along lines quite 
near to lines of constant entropy when the central temperature is around 109 0 K. A 
number of values of limiting masses are indicated in Figure l.1 

1 The ionic contribution to the entropy in the region of interest varies only slightly and is normalized 
to vanish at r9 = 1, p = 1 66 X 103. The calculation of limiting masses will be discussed in a forth- 
coming publication. 
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Fig. 1 —Contours of constant 7 — -f are represented by thin full lines The contour 7 = ^ is emphasized 
by a heavy line Contours of constant s are drawn by broken lines On some of the lines of constant entropy 
limiting masses for isentropic models are indicated. The Fe-He transition region is indicated by a hatched 
stripe The stars represent the central condition at three instances during the evolution. The lowest star 
represents the moment at which neutrino losses start to dominate. The middle star represents the moment 
of ignition of nuclear reactions, and the highest the moment the model becomes unstable The heavy line 
descending to the left from the upper star presents the run of p versus T along the radius of the model at 
the moment of instability. It is seen that the part of the star between 0 9 and 12 0 Jtfo has 7 below -f at 
that moment. 
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808 G. RAKAVY AND G. SHAVIV Vol. 148 

The central conditions at various stages of evolution for a 30 Mo model are indicated 
in Figure 1 by “stars.” These values are taken from a calculation including neutrino 
losses. If we assume a purely convective model (as actually is the case without neutrino 
losses) the line of evolution of the central conditions lies just below the “stars” on Figure 
1 and approaches asymptotically an entropy s ^ 6.0. The line of evolution of the central 
conditions for a heavier model would lie even lower and thus inevitably enter the region 
of 7 < § and become unstable. 

In general, it is very difficult to state anything about the behavior of a star after a 
sufficient large fraction of its mass entered the “valley” of instability and a dynamical 
instability sets in. The increased rate of nuclear reactions at its center would not neces- 
sarily result in a vigorous explosion. It may just “push back” the star and hold it. If not 
much matter is lost until all the oxygen is consumed, a fast collapse may follow with an 
explosion due to the ignition of nuclear reaction between elements in the S-Si region 
(produced by the oxygen burning). 

V. EVOLUTION OE A 30 Mo OXYGEN STAR 

As a first exploratory calculation, we calculated the evolution of a 30 Mo star of pure 
oxygen. We started with a density distribution similar to a polytropic model of index 
n = 3 and with a central temperature of about 108 ° K. The star started contracting due 
to photon losses, soon becoming completely convective. Thus it seems that the later 
history is quite independent of the exact initial entropy distribution. The rate of energy 
loss of a completely convective star depends crucially on the boundary layer, but the 
structure is completely determined by the value of the entropy density (which is con- 
stant throughout the star). 

The choice of pure oxygen for the composition may be an oversimplification. In lieu 
of detailed evolutionary calculations, we can only give the following general arguments 
in favor of this model: (1) In massive stars (M > 10 Mo) the main product of He burn- 
ing is oxygen (Hoyle 1954; Faulkner 1966). (2) When the star is contracting under 
photon losses, the whole star is convective, and later when contracting under neutrino 
losses, the temperature gradient is rather low. Any of these phenomena could result in 
the formation of a homogeneous oxygen star with almost no envelope of lighter elements. 

When the central temperature rises to about T$ = 0.5, neutrino losses quickly take 
over and convection is rapidly stopped. The further evolution, although predominantly 
due to neutrino losses, does not seem to be very different from evolution due to photon 
losses. The loci of temperatures versus density along the radius still lie on a line not too 
far from a constant entropy line (cf. the line describing the final structure in Fig. 2). 
The temperature gradient in the central region is somewhat reduced but does not become 
negative. 

When the temperature rises to about Tg ^ 1.6 oxygen starts to burn to sulfur. The 
temperature continues to rise up to Tg ^ 2.1. In this period, a growing zone of y less 
than I forms; the lowest value of y lies a few solar masses from the center and moves 
slowly outward. The value of y in the center never does fall below § in this particular 
case. At the same time, nuclear reaction rates in a small region containing a few tenths 
of a solar mass around the center rise faster than neutrino losses, becoming 5-10 times 
greater than the latter. 

Outside this small central region, neutrino losses predominate. The total rate of 
energy loss from the star is equal within a factor of 2 to the energy produced by nuclear 
reactions. Some time after the nuclear reactions ignite, a slowly growing convective 
zone forms in the center around the nuclear reaction zone. 

While nuclear burning goes on at the center at a rather constant rate, the rest of the 
star goes on contracting due to neutrino losses. The energy released by nuclear reactions 
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No. 3, 1967 INSTABILITIES IN STELLAR MODELS 809 

is transferred only within the convective zone containing less than 2.5 Mo. Before much 
nuclear fuel was consumed, the stellar model became dynamically unstable and the 
evolution could not be followed further by our methods. In Table 1 the structure of the 
model is described at the moment it becomes unstable. 

Although this dynamical instability is expected to be a rather general phenomenon 
in stars heavier than approximately 25 Mo, it was of some interest to check whether 
the occurrence of the instability in a 30 If o model is independent of the detailed physical 
processes assumed in our calculation. We have repeated the calculation with the follow- 
ing assumptions: (1) no neutrino losses; (2) no nuclear reactions; (3) no convection. 
Actually, none of these modifications seriously affected the structure of the star. The 
dynamical instability always occurred at approximately the same central conditions. 
Only the time scale of evolution is affected by the above-mentioned modifications. In 
these calculations a radiative zero boundary condition was assumed. As these stars are 

TABLE 1 

Run of Important Parameters through a 30 Mo Star Just Before 
Dynamical Instability Is Caused by Pair Formation* 

6 
8 

10 8 
13 2 
15 6 
20 4 
25 2 

8 2 X10-3 
1 1 X10-2 
1 6 X10-2 

1 X10-2 
69X 10-2 
34X 10-2 
98X10-2 
66X10-2 
39X10-2 
16X10-2 

7 90X10-2 
1 05 X 10-1 

1 04X10« 
8 02X10« 
5 46X10« 

40X10« 
19X 10« 
50X 10« 
10X 10« 
18X104 
05X104 
43X104 
22X104 
67X103 

2 15X109 
2 07X109 
1 99X109 
1 88X109 
1 75X109 
1 62X109 
1 49X109 
1 37X109 
1 25X109 
1 13X109 
8 95X10» 
6 49X108 

ß 
0 678 
0 647 
0 589 
0 520 
0 467 
0 428 
0 404 
0 386 
0 375 
0 368 
0 366 
0 343 

1 372 
1 362 
1 353 
1 337 
1 325 
1 319 
1 320 
1 327 
1 338 
1 352 
1 375 
1 381 

1 054 
1 063 
1 093 
1 135 
1 157 
1 144 
1 110 
1 074 
1 042 
1 020 
1 002 
1 000 

Çnuc 
1 61X1043 
4 09X1012 
8 09X1044 

95X IO1» 
92X10® 
32X108 
71X10« 
27X10« 
99X 103 

2 00X1042 
1 68X1012 
1 56X 1042 
1 27X1012 
8 2 2X1041 
4 37X1014 
2 02X1044 
8 25X1010 
2 83X1010 
8 13X109 
3 42X108 
2 77X10« 

1 41X1043 
2 41X1012 

■7 49X 1044 
■1 19X1042 
■8 17X1014 
■4 37X1011 
■2 02X1014 
■8 2 5X1040 
•2 83X1010 
■8 13X109 
■3 42X108 
-2 92X 10« 

* No convection has developed yet Nuclear burning is already stabilized The mass m within a radius r is given in solar 
mass units and the radius in solar radii Density p and temperature T are given in gm cm-3 and 0 K, respectively The quantity 
ß is the ratio of gas pressure to total pressure, y is defined in eq. (4), and v and «/ are defined as the number of leptons divided by 
the number of protons and the Fermi energy divided by kT The quantities gw, qv, and q are given in ergs gm“i sec“1. 

red supergiants, they have very extended and massive convective envelopes. The exact 
mass at which the dynamical instability sets in may therefore depend on the boundary 
condition. 

VI. CONCLUDING REMARKS 

We have seen that stars heavier than about 30 Mo become dynamically unstable 
due to pair formation before forming any iron core, and they may lose their dynamical 
stability without burning much of their oxygen. Somewhat lighter stars are supposed 
to form an appreciable iron core and get into another dynamical instability due to a 
Fe 13 He + 4^ “phase transition” (Fowler and Hoyle 1964). The lightest stars, just 
above the Chandrasekhar limit, are supposed to be thermally unstable (Hoyle and 
Fowler 1960) when their fuel (probably C, O, or Na-Mg) ignites. Intermediate mass 
stars may be very near to their limiting entropy when they arrive at the point of oxygen 
or Mg burning; thus they may contract very rapidly, get far out of hydrostatic equi- 
librium, greatly “overshoot” the ignition temperature and explode. Still other possibili- 
ties have been suggested (Hamada and Salpeter 1961) : at high densities electron-capture 
processes proceeding at a high rate shift the equilibrium Z to lower values. Effectively 
7 decreases below J and a dynamical instability of still another origin develops. All these 
possibilities should be checked by at least rough evolutionary calculations. 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
 67

 A
p J

. 
. .

14
8.

 .
80

3R
 

810 G. RAKAVY AND G. SHAVIV Vol. 148 

Primarily, we want to thank Professor William A. Fowler for many illuminating dis- 
cussions and for showing great interest in the work. We want to thank Professor R. F. 
Christy for very helpful discussions and for his comments on the work. Thanks are also 
due to Dr. N. Lebovitz and Professor F. Hoyle for several conversations. It is a pleasure 
to acknowledge the important contribution of Mr. Z. Zinamon to the development of 
the mathematical and numerical methods used in this work. We are grateful to Professor 
Fowler for extending to us the hospitality of the W. K. Kellogg Radiation Laboratory 
at the California Institute of Technology. 

APPENDIX 

A. FORMULATION OF THE CONDITION FOR DYNAMICAL STABILITY 

The condition for dynamical stability, i.e., that the operator H defined in equation (2) be 
positive definite, can be formulated in various ways. (For detailed treatment and further refer- 
ences, see the review articles by Ledoux 1958, 1965.) Using equation (3), we can define # at a 
stationary point in a way that is sometimes more convenient, namely, 

H dVyp dV + W\dv)' 
(Al) 

One obvious way of stating the condition for dynamical stability is that the sign of the 
lowest eigenvalue E0 of H should be positive. The boundary conditions for the eigenfunction 
are: 'P(O) =0 and 'Po finite everywhere. One can prove that the sign of Eo and of the lowest 
eigenvalues Xo of the more general equation 

#<£0 = Xog<£o (A2) 

must be equal. Here, g is an arbitrary positive function of F,2 and the boundary values for the 
eigenfunctions <¡> are 0(0) = 0, {ypd^>/dV)m=M = 0. 

The relation between the signs of E0 and X0 is easily established by noticing that 

Xo = mm 
( <0|g|iA> )■ 

(A3) 

It is obvious that the specific choice of g does not affect the sign of Xo. In particular, for g = 1, 
we have Xo = Eo. At least three different choices for the normalization g have been used in the 
literature: 

1. The simplest case g = 1 is sometimes referred to as the “energy method.,, 

2. Dyson’s equation (Dyson 1961) is obtained by choosing 

x = r __ 4 
3 ’ V dV ’ 

(A4) 

3. The equation of small oscillations gives a result equivalent to the choice 

1 P = co2 
g = lÓTT2 f4 

(AS) 

It can easily be seen by direct substitution that for a constant 7, P = F is an eigenfunction 
of Dyson’s equation with an eigenvalue P = 7. 

2 Actually, one can generalize the correspondence in signs of eigenvalues also to cases that g is a more 
general operator. 
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No. 3, 1967 INSTABILITIES IN STELLAR MODELS 811 

In the general case, we have no analytical expressions, but the lowest eigenvalue Et¡ oí H 
can be approximated by using T' = F as a trial function in equation (A4). We then find that 

_ <k|tf|r> 
0= <F IV) Wo3 

(A6) 

where Fo is the volume of the star Using the same approximation, we obtain for the eigenvalue 
of Dyson’s equation 

r=hjpdV 
fpdV ' 

(A7) 

In order to obtain the sign of the eigenvalue of H, we do not need actually to solve equations 
(A2) or (A3) ; it is enough to integrate the equation 

= 0, 

starting from the origin with ^ = 0. If ^ has no nodes, the lowest eigenvalue is positive and the 
model is dynamically stable. 

B. THE EQUATION OF STATE 

We consider a plasma of ions, electrons, positrons, and radiation in thermodynamic equi- 
librium; the equations of state are expressed naturally as functions of the temperature T, the 
density p, and the chemical potential of the leptons p. Actually p is not an independent variable; 
it must be determined by the condition of charge neutrality, 

p = Pe-— Pe+= Pe(ß,T). (BU 

An explicit expression ix(p,T) can be obtained when the electrons are non-degenerate, i.e , when 

¡X — me2 

T 
= €/< -6. (B2) 

Otherwise, equation (Bl) must be solved numerically. Electrons and positrons are treated 
relativistically when 

kT 

me2 >-1- ^ 30 (B3) 

Otherwise, non-relativistic expressions are used and the density of pairs, i.e., pe+ is assumed to 
vanish. 

Each of the thermodynamic quantities is expressed as a sum of three terms originating from 
the ions, radiation and leptons. Using “astrophysical units” (Frank-Kamenetskii 1959) defined 
below, we have 

pions = pT , «ions = SionB = <(~y> pT , (B4) 

Piad , 
JM 

^rad & ? 
P 

7^3 
^rad "o # (B5) 
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812 G. RAKAVY AND G. SHAVIV Vol. 148 

pe = mc2CFi(cl),ß), ue= mc^CFaipyß) 

Se = —^-^Fi(<l>,ß) +F3(<t>,ß)-^F2(<t>,ß)] , 

and for the lepton charge density we have 

pe(ß,T) = CF2(4>,ß). 

Here, we have used the following quantities: 

<i> = average reciprocal atomic weight, 

<T> = average number of electrons per unit mass , 

a — 0.1854 , C = = 0.5075 X 106, i3 = —= —, 

(B6) 

(B7) 

(B8) 

$ = jî = €/ + ß 

The functions Fv{<j>ß) are defined below. Often one needs various derivatives of the thermo- 
dynamic functions. The contributions of the ions and radiation to these derivatives are elemen- 
tary. The contributions of the leptons are 

dpe(<t>,ß) CFi dpe((t>,ß) C(Fz + F6) 
d<t> ß ’ dß 

dße/dß 

ß 

\dßjp dpe/d<i> 

Cmc 
dpe(p,T) _ pe ^ , dffx/djp _ pe ^ Fi 

CT 
dp p dpe/d<t> p dpe/d<l> 

dpe( P,T) 
dT 

«[F. + f.-JiQ] 

dseu,ß,p)_ = c/F2+Fi_^F\ 

P\ ß / d4> 

^-^fL^-=^[-2F3-
F

6 + ^(Fi + Fi)] 
dß p 

dsAP,T) = p 

dp p 

Se.dse{<t>,ß,p)/dip) 

Pe dpe/dcp S 

d se( p,T) ßrdse(<l>,ß,p) , dsei<t>,ß,p) /dp 

dT -f[ dß d(t> cm] 

(B9) 

(BIO) 

(Bll) 

(Bl 2) 

(BIS) 

(Bl 4) 

(BIS) 

(Bl 6) 

The ratio between the total number of leptons (electrons and positrons) to the electric charge of 
the leptons (measured in units of the electron charge) is 

F2
+(<M) 

^(«M) * 
(B17) 
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The functions Fv(4)ß) are defined by the following integrals: 

Fi(<t>,ß) = i" T^D+(e,ß)~ = Fln+F,p, ß ß 

F2(<l>,ß)=ß±F1 = fT'D-^ = F2n-F2p, 

F2+(<t>,ß) = / T'D+j = F2n+F2p, 

Fs(M) = ~jß(ßFi)= f(£)T,D+J = F^ + F^, 

Fd<t>,ß)=ß^ = fv"D+^ = Fin + Fip, 

Fd<t>,ß) = = f(£)T"D-j = F6n-Fbp, 

F6(W)=: -l±(ß>F3)= f(£)T"D+j = F6n + F6p, 

where <j) = fi/T; 
rr 

D±(e,t)= 1 

e€"*+l e€+*+l 

d2Y(x) . 
dx2 ’ 

813 

(BIS) 

The method of evaluation of the terms Fvn originating from the first term of D* depends on 
the value of €/ = $ — ß. For €/ < 0 (weak degeneracy) the integrals can be evaluated by a series 
expansion. The contribution Fvp to the integrals from the second term of D± can always be 
evaluated by the same series by replacing by —0. For €/ < 0, we thus have 

uu 
(-) n+l 

(«0) 

CO 
(-) n+l 

w=l nß 
en^K2{nß) -F2pi 

F2
+ — F2n + F2P , e’VlSKzinß) +Kl(nß) ], 

^nß 

Fi='£(-)n+1en*K2(nß)+Fip, (Bis) 
n=l 

F, = '¿—^-—e^[K:i(nß)+K1(nß) ] -F6p, 
n—l ^ 

^=2 
n=l 

( - )-+1 

2nß 
^(3Z3-Z1 + 2^X2)+F6p, 

where Kv denotes the modified Bessel function of order v. 
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814 G. RAKAVY AND G. SHAVIV Vol. 148 

For the integrals are evaluated by a method due to Sommerfeld (1928). One obtains 

FM,ß)=Ux,ß) =¿[/(*) +^(*2+1)^ 

(B20) 

where 

*= [ (0/0)2-i]i/2 ^ j(x) = x(2^2 — 3)(x2+l)1/2 + 3 sinh-1 {%). 

The other functions are obtained from F\ by differentiation. For intermediate values of 
€/(—0.1 < €/ < 4), the integrals are evaluated by direct numerical integration. 

In the non-relativistic limit, ß^>l, the functions Fv(<t>ß) can be expanded in powers of 1/ß 
in terms of the functions (11): 

for example, 

r 00 rk 
7*(€/)==/ dx ’ 

_ 23/2 / 1 . , 3 1 r , 

^=2l/2(^/l/S+1^3/2+...), 

F* =21/2 (^iTi 7i/2+/3/2+•••); 

(B21) 

(B22) 

when 0 > 30 we obtain an accuracy of a few per cent using the first term in these expansions. 
The thermodynamic quantities and their derivatives we write as follows: 

21/2C J ( s 
Pe = ~ßi7T ’ pe = peTDi , (B23) 

We 1 • 5 ( p e/ P )^*Dl j S e ( p e/ p ) ) > (B24) 

and for the derivatives of these quantities, we have 

dpJjfJF) = pe dpe(e/,/3) = _ g Pe 

de/ I»2 ’ djS 2 /3 ’ 

/de/\ _ _ dp,,/d/3 _ a ¿>2 
W/p dp6/de/ 2 ^ ’ 

dj>e( p,r) 

dp 
Pe 

P 
rz?2, 

dj>e(p,r) 

dT 
P eZ?3 , 

We used 

I>i = 

dse(p,T) pe „ 
 a   J ty 3 , dp p2 

Iz/litf) 

dse(p,T) 

dlz/iie/) /dtf ’ 

dr 

■Di Zi/2(</) 
dli/i(ef) /dtf ’ 

aßsEl 
2 p T ‘ 

Z?3 = fI>i-|D2. 

(B2S) 

(B26) 

(B27) 

(B28) 

(B29) 
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No. 3, 1967 INSTABILITIES IN STELLAR MODELS 815 

The non-degenerate approximation is valid only if e/ is negative and large in absolute value. 
To preserve an accuracy of 1 part in 103, we need €/ < —7. In the non-relativistic region, the 
non-degenerate case is trivial; it is obtained by putting D\ = D<¿ = Dz = 1. In the relativistic 
region, it is difficult to speak of a really non-degenerate case. As an excess of negative leptonic 
charge requires <£ > 0, we have €/ > —ß. Thus, for ß not much larger than unity, e/ does not 
become very negative. 

The quantities a, y, v defined in equations (15) are easily expressed in terms of the derivatives 
defined in this appendix. 

The astrophysical units are chosen so as to make the radius and mass of the Sun equal to 1. 
Further, one chooses the gravitational constant G as unity or the luminosity of the Sun as unity. 
The two alternatives yield different units of time. The following relations between the astro- 
physical system and the CGS system result: 

Tq=E®(M®/Mk) = 2.29 X 107°K= 3.155 X 109 erg/k , 

M® = 1.99 X 1033 gm , R® = 6.96 X 1010 cm , 

po = Mq/Rq* = 5.9 gm/cm3 , u® —E®/M® = 1.905 X 1015 erg gm-1 

p® =E®/R®Z — 1.124 X 1016 ergs cm-3 , mec
2/kT® = 259 . 

C. DETAILS OF NUCLEAR REACTION RATES AND OF 
NEUTRINO PROCESSES 

At temperatures at which oxygen burning occurs in massive stars, 1.6-2.2, the nuclei 
O17, F17, and Ne20 undergo fast photodisintegration, while S32 starts to photodisintegrate at 
somewhat higher temperatures. This situation favors the production of S32 and its neighbors 
over production of lighter isotopes. 

The over-all process of oxygen burning can be represented by (Fowler and Hoyle 1964) 

2 016->S32 + 16.54 MeV. 

The lifetime in seconds is given by 

5Q 04 
log r(016) = -38.0- log pxie+flog^ + ^v-d+o.oson)^ (ci) 

and the rate of energy production in ergs gm-1 sec-1 is 

59 04 
log e„o = 55.7 + log pxy? — § log T$ 1 + 0.080 r9)

l/3. <C2) 

It should be mentioned that at Fg ^ 2.2, the lifetime of 0J6 to the 016(7,a)C12 reaction is ^107 

sec. This time is much longer than the time for oxygen burning obtained in our calculation 
(about 105 sec from oxygen ignition at F9 ^ 1.6 to dynamical instability at F9 ^ 2.1). Photo- 
disintegration of oxygen can therefore be neglected. 

Neutrino losses were assumed to consist of pair annihilation (e+ + e~ —> v v) and photo- 
neutrino {y + e~ e~ + v -\-v) processes. In all cases, the non-degenerate approximation was 
used. 

Neutrino energy losses due to pair annihilation are given by (Fowler and Hoyle 1964) 

€„ = 0.325 X 1021 {2ßKxKi + SKS + 2KlKz + ^ M3)erg gm'1 sec'1 (C3) 

where ß = 5.93/F9 and Kv{ß) are the modified Bessel functions of order v. 
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816 G. RAKAVY AND G. SHAVIV 

In the non-relativistic approximation, the rate of neutrino energy generation from photo- 
neutrino processes is (Chiu 1961; Chiu and Stabler 1961) 

€„ = r9
8 erg gm-1 sec-1. (C4) 

He 

For Tg> 0.75 the neutrino losses due to pair annihilation are much greater than those due to 
photoneutrino and hence above this temperature photoneutrino losses were neglected. For 
Tq < 0.75, both processes were taken into account. 
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