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ABSTRACT 
A description of charged-particle motion in an irregular magnetic field is obtained. The magnetic 

field is taken to be the superposition of a constant field Bç,èz and a smaller fluctuating component B\ 
which is a homogeneous random function of position with zero mean. The Fokker-Planck coefficients, 
describing the evolution of the particle distribution in pitch angle and position, are derived explicitly 
in terms of the two-point correlation function of Bi, or, alternatively, in terms of the Fourier spectrum 
of the irregular field. The time evolution of the distribution is found to depend on the irregular field in 
two ways: (1) A particle is scattered by those irregularities which are seen by the particle to be in reso- 
nance with its cyclotron frequency. (2) A particle follows the random walk of a field line in the X, F-plane 
as it moves along the Z-axis. The diffusion limit of the Fokker-Planck equation, suppressing the pitch- 
angle dependence, is then considered and a diffusion tensor is derived. The application to spacecraft 
magnetic field observations is discussed, and the Fokker-Planck coefficients are related to the observed 
power spectrum of interplanetary magnetic-field fluctuations. 

I. INTRODUCTION 

A detailed understanding of cosmic radiation depends on an accurate treatment of 
the effects of interplanetary and interstellar magnetic fields on the motion of charged 
particles. Ultimately, this must be done through measurement of the irregular magnetic 
field and a determination of particle motion through the observed field. Since the mag- 
netic irregularities are presumably a consequence of turbulence, a statistical treatment is 
necessary. 

Previous treatments of charged-particle motion in an irregular field have been confined 
to phenomenological discussions based on the concept of magnetic scattering centers 
(Morrison 1956; Parker 1956, 1965). In analogy to ordinary diffusion, the particles 
random walk through the magnetic field, being scattered at the assumed scattering 
centers. The resulting motion depends on a diffusion coefficient, or mean step length, 
which remains an undetermined parameter. In the present paper a statistical description 
of the particle motion is obtained in terms of directly observable properties of the 
fluctuating field, rather than in terms of an unknown mean free path. The particles are 
taken to move in a time-independent1 magnetic field B which is a random function of 
position. The Fokker-Planck coefficients which describe the mean motion of the particle 
and its scattering in pitch angle are derived from the particle equations of motion and 
are expressed in terms of the two-point correlation function of the field, or, alternatively, 
in terms of the Fourier spectrum of the irregularities. The diffusion tensor is derived and, 
finally, application of the formalism to interplanetary magnetic field observations is 
discussed. 

II. STATISTICAL SPECIFICATION OF THE MAGNETIC FIELD AND PARTICLE MOTION 

The equations of motion of a charged particle in a time-independent magnetic field 
B(r) = (yniQc/Ze)(ù(r) may be written in the form 

dV 
^ = (i) 
at 

1 Any effects due to changes with time are thus excluded. This is perhaps reasonable for energetic 
particles since irregularities move at about the Alfvén speed Va and electric field intensities are there- 
fore of the order of VaB/c, where c is the velocity of light. Thus, if the particle velocity F>Fa, effects 
due to temporal changes in the magnetic field should be relatively unimportant. 
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where V is the particle velocity, 7 = (1 — V2/c2)~1/2 and mo and Ze are the particle’s 
mass and charge, respectively. Suppose that <o(r) is the superposition of a uniform com- 
ponent cvoêz and a fluctuating component <*>i(r) = cox^r + vrêv + uzêz, where cox, 
cor, and coz will be taken to be homogeneous random functions of position with zero mean. 
That is, coi(r) is random in the sense that a specification of all mth order product mean 
values 

(<oi(ri)ü>i(r2) . . . <*>i(rm) ) , <2> 

as a function of ri, r2 . . . rm, constitutes a statistically complete specification of the 
magnetic field (Yaglom 1962). Under the assumption of homogeneity, the mean values 
defined by equation (2) are invariant under translations along any axis. Also, since the 
mean field cooê2 defines the only characteristic direction, <*)i will be assumed to be statis- 
tically invariant under rotations about the Z-axis and under reflections through any 
point. The means are to be taken over an ensemble of systems having the same macro- 
scopic boundary conditions, although, because of the homogeneity, this can be assumed 
to coincide with an average over space. This specification of the magnetic field is com- 
pletely analogous to the usual specification of the velocity field in a turbulent fluid 
(Batchelor 1960). A statistical specification is required since the fluctuating field is 
presumably a result of plasma turbulence and, for any given initial conditions, the 
magnetic-field fluctuations vary randomly in phase and amplitude. 

A complete statistical description of the particle motion, to all orders in coi, would 
involve all product mean values as defined by equation (2). However, if it is assumed that 
(tôi2)1/2 <$C coo, terms involving the third or higher powers in gh can be neglected and the 
particle motion is well described in terms of the two-point correlation. For later reference, 
consider the following properties of the two-point correlation tensor. 

Since coi is a homogeneous random function, the two-point correlation tensor depends 
only on the vector between the points. As a consequence of the assumed axial symmetry 
and because = 0, the two-point correlation tensor must be of the form (Batchelor 
1946) 

X<AvM) = <cok(X,F.ZWX + v,y + ^ + f)> 

'ar,2+b 

a7]\¡/ 

art + dy 

arjyp art + dn 

ax//2 + b axpÇ + dip 

axpÇ + dxp aÇ2 + ô + £ + 2dÇ j 

(3) 

where a, b, and c are even functions of p = (n2 + \p2)112 and f, and d is even in p and odd 
in f. If o>i(fc) is the Fourier transform of G)i(r), then it can be shown that 

<5ii(fti)Snj(ft2)> = f_J3rRi](r)eik1-rS(k1 + k2). (4) 

This provides a relation between Rij(r) and the spectrum of the fluctuating field. 
Turning to the particle motion, we note that since the unperturbed orbit is the usual 

helix, it will prove convenient to define the complex quantities X+ = X + ¿F, F+ = 
Vx + iVr, and co+ = cox + itor- The equation of motion can then be written 

Z= (o,+V+-w+*V+) (5) 

X+ = l[V Z&+ ~ (co0 + coz)F+ ] (6) 
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where œ+ and coz may be regarded as functions of Z and X+ and the superscript * indi- 
cates complex conjugate. Clearly, the correlation coefficients may be readily defined in 
terms of co+ and coz. 

The unperturbed particle orbit is then given by Zlt = Z0 + V4 and X+u = X+0 + 
iiV+oe-^/œo). Now consider the perturbations about this orbit due to the fluctuating 
field <oi. Set 

Z(t) = Zu{t) + ZxW + Z2{t) + . . . , (7) 

X+(t) = X+U{f) + X+1{t) + X+2{t) + . . . , (8) 

where Zi and are linear in coi, and Z2 and X+2 are of second order in coi. Substituting 
equations (7) and (8) into the equations of motion (5) and (6), one obtains for Zi(t) 
and 

¿i= [co+CZ^X+JF+o^^'-^^X+JF+oe-^'], W 

Z+i + fcooX+i = •¿Fzo^+(Zm,X+w) — iV+Qe~l<t><¡t(j)z{ZUjX-^i) (io) 

and similar, though more complex equations for Z2 and X+2. It will be found unnecessary, 
however, to consider the latter in any detail. 

Now, we are interested in a statistical description of the particle motion and so will 
consider the average change in the parameters X+, Z, and p = Vz/V as a function of 
time. Since the phase of the particle gyration about co0 is not of interest, all quantities 
will be averaged over the gyration. Let n^pj^dpdr be the probability of finding the 
particle in r to r + dr, and in p to p dp at time t. A particle travels along the Z-axis 
at a velocity pV and, as it interacts with the magnetic irregularities, it is scattered in 
pitch angle and its orbit shifted. If these changes are small in a correlation length of the 
fluctuating field, the evolution of n is governed by a Fokker-Planck equation (Chandra- 
sekhar 1943). The problem is to compute the Fokker-Planck coefficients ((Ap)2)/At, 
etc., in terms of the fluctuating magnetic field. 

Consider first the scattering in pitch angle. From the definition of p and equation (9), 

= •—dr J" dT'[w+{Zu,X+u)V+ü elo,oT — (i3+*{Zu,X+u) (n) 

XV+0e-
i“°'][u+{Zu, X+u)V+o*e— co+*(Z,„X+u)F+oe, 

correct to second order in coi. Define 

f = Fzo(t' — t) (12) 

and 

P+^X+uCt') -X+u(t) =-t— 1). (13) 
OJo 

Then, because of the symmetry, 

(a,+[Zli(T))X+ti(r)]a,+'[ZM(r'),X+M(T')]) = 20(f,Pl) + d“) 

and 
(c+^W.X+^^Jio+tZ^rO^+^r')]) = a(f,PlW , 

1 
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pi( D = I p+iI =: [2 
(1 -m2)F2 

Wo' (‘-sor- 
(16) 

Substituting these relations into equation (11), and remembering that (coi) = 0, one 
eventually obtains 

<(Am)2> =1—~ f dr f dÇ 
|/x|F Jo J-yZoT 

X j ô [ f ,P1 ( n ] e-^<^ + f,P1 ( n ] ( 1 - [. 

V Z0(At~r) 

(17) 

If we further make the usual assumption that Vzo^t is much greater than the correlation 
length along Z, the f-integration can be taken from — œ to + o° and the integrand 
with respect to r becomes independent of r. Thus 

< (A/x)2) _ 1 — /z9' r~ 

At I M I—00 

(18) 

xáf ] &[ f,pi( r) ] +( 1 ~^)F2 g[ r,Pi( r) ](i - e-^^v) j. 

To compute (Afx)/At explicitly, a similar analysis would have to be made for Z2(0* 
However, this may be circumvented if we note that the scattering in pitch angle must 
lead to isotropy {n independent of /x) ; that is, scattering must cause simple diffusion in 
pitch angle. If scattering did not tend toward isotropy, a spatially uniform, isotropic 
distribution would relax toward anisotropy, in violation of Liouville’s theorem. Thus the 
coefficients (A/x)/A¿ and ((Aix)2/At must be related so that 

, d2 /< (A/x)2) \ d /(A/x) \ i A /< (A/x)2> dn\ 
2 d/x2 \ At U/ dp \ A/ / 2 dp \ At dp/' 

(19) 

and knowledge of ((Ap)2)/At is sufficient. Note from equation (18) that scattering is 
caused primarily by those irregularities seen by the particle at its cyclotron frequency. 

Similarly, using equation (10) the motion in the Y,F-plane is given by 

V+i(t) = f [WZow+{Zu,X+u) e
1***— ïV+oUz(Zu,X+u)]dT (20) 

and 

*+i(0= -- f'w -V+oWz/^X+JUe-^ - e-^]dT. (21) 
Cdo Jo 

The mean motion of the particle may be represented by the mean motion of the guiding 
center rgc = r — (o> X F)/|co|2. Consider first the guiding center motion in the X,F- 
plane: define the complex quantity r+g = Xgc + iYgc = r+gu + r+i, where r+i contains 
terms of first order in <*>i. Then 

^ + l(0 — X+i(/) H   [cO+F zo — F+1CO0+F+wC0z ] . (22) 

The motion of the guiding center may be obtained from equation (22) in a manner 
analogous to that used above to calculate ((A/x)2)/A/. Thus, again making use of the 
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assumed symmetry and casting out cyclic terms which vanish when averaged over the 
orbit, one finds for the mean guiding center motion, 

< (AX)2) = ( (A F2) ) = (Ar+iAr+x*) 

Ai M 2 A/ 

= 2co0
2liit i f J-Js bW2 i2 H f ,pi ( r) i + pi2« [ f ,pi ( n ]} (23) 

+ (1-Ai2)F2i?zz[f,p1(r) 

+—{atr.piínif + átr^iCr)]}«-^], 
COo 

<AXAF> ^((Af+i)2) < (Ar+1*)2>1 n 

~Är-=2L—M Ài—J = 0 (24) 

and (AX)/At = (AY)/At = 0. 
Proceeding further, one can show that (AMAr+1)/A¿ = 0, so that (AßAX)/At = 

(ApAY )/At = 0. The motion in the X,F-plane is thus a simple random walk. Note that, 
in addition to the resonant terms, the guiding center motion normal to the field depends 
on simple integrals of a and b. These merely give the particle motion due to a possible net 
inclination of the fluctuating field with respect to the Z-axis; the terms may be physically 
visualized as due to the guiding center following the random walk of a given field line in 
the X,F-plane as the particle moves in the Z-direction. 

Finally, consider the motion along the Z-axis. This is qualitatively different from the 
motion normal to the field since p is assumed to change only a small amount in a cor- 
relation length. Thus, the particle simply moves along the Z-axis at a rate pV and only 
gradually does this rate change. The quantity (AZ)/At is then simply pV, and ((AZ)2) 
can be shown to be of second order in A¿. Similarly,^ (AZAju ) = 0, and the complete 
Fokker-Planck equation for n(r,p,t) can be written 

dn _ ,r dn , i d F ( ( A/x )2) dn~\ . r ( ( AX )2) / d^n . d2w\ 
~dt ~ ~^V dZ~i*!hi, L At + 1 At \dX2 ' 1TŸ*)1 (25) 

where the various coefficients are now given in terms of the correlation coefficient of the 
random field by equations (18), (19), (23), and (24). Clearly, rather complete knowledge 
of the correlation tensor is necessary to accurately compute the coefficients. If the 
magnetic structure is moving at velocity Fi relative to the observer (as, e.g., in the case 
of irregularities carried by the solar wind) a term Fi« must be added to the right side 
of equation (25). 

III. THE DIFFUSION LIMIT 

In many cases not all the information contained in equation (25) is of interest. In 
particular, if the variation of n with Z is small over the distance in which a particle is 
scattered appreciably in pitch angle, the pitch-angle distribution may be taken to be 
isotropic and we may approximate the Z motion as diffusion with a mean free path 
Xz, of the order of this scattering distance. Since the motion in the X,F-plane is already 
simple diffusion, this leads to a diffusion tensor Dij for the particle motion. Dzz may be 
derived directly from equation (25) as follows. Consider only the Z-motion, which is 
governed by 

dn, dn=1 d r<(AM)2) dnl 
dt^ß dZ 2 dpi At dpi1 

(26) 
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where ((An)2)/At is given by equation (18); n will be taken to be very nearly isotropic 
so that n = mni(n) with ni <<C m. The diffusion limit here is equivalent to the as- 
sumption that dn/dt<K fxVdn/dZ. That is, the time rate of change of n is due to diffusive 
motion, which is much slower than individual particle motion. Then, with neglect of 
the dn/dt term, integration of equation (26) readily yields the diffusion equation 

WoF</i>= -Z?zz||, (27) 

where 

This assumes, of course, that there is enough scattering that the integrals are defined. 
Now, to determine the remaining coefficients of the diffusion tensor, note that in § II 
((AX)2)/At, and ((AY)2)/At have been determined as functions of ju. Since the pitch- 
angle distribution of the particles is here assumed to be very nearly isotropic, the com- 
ponents of the diffusion tensor which give diffusion normal to the field are simply 

Dxx = D YY 
< (AX)2) 

At 
dn (29) 

D XY — D YX — Q- (30) 

In addition, since the mean motions along the field and normal to the field are uncor- 
related, set Dzx — Dxz — Dzy = Dyz = 0 to complete the specification of the diffusion 
tensor. The diffusive motion of the charged particles is then described by the diffusion 
equation 

dn d2n d2n . d2n 

~6Ï~DxxdT2 + DYYdŸ~2 + DzzdZ2' (31) 

Again, if the irregularities are being convected past the observer at a velocity Vi as in 
the solar wind, a term Vv^n must be added to the right-hand side of equation (31). We 
therefore regain the diffusion picture which has been much used in the theory of cosmic- 
ray propagation, except that now the diffusion tensor is explicitly related to the fluc- 
tuating magnetic field. 

IV. RELATION TO OBSERVED INTERPLANETARY MAGNETIC-FIELD FLUCTUATIONS 

In the preceding sections the motion of charged particles in a random magnetic field 
has been formally related to the correlation tensor or Fourier spectrum of the field. As 
an example of a possible application of the above formalism, consider now the problem 
of determining cosmic-ray motion in the interplanetary magnetic field from space-probe 
magnetic-field observations. For purposes of illustration, consider a model in which the 
magnetic field is statistically isotropic and time-independent in a frame moving with 
the solar wind. Then the correlation tensor is as in equation (3), except that d = c = 0 
and a and b are functions only of r = V(p2 + f2)- As the irregularities are blown past 
the satellite, the magnetometer observes a varying field B(t). Since all statistical proper- 
ties are isotropic, we can without loss of generality let the wind velocity Vw define the 
Z-axis. Then B(Z) = B( Vwt + Z0) and if 2?av is the average field, the functions b and 
a are defined by 

ô(f) =-^4~2 <ÍBx(Z) -Bx&y][BX(Z + n -£xav]>, (32a) 
y¿mo c¿ 

a(f)f2+ô(f ) = 4"4-2 (IBz(Z) -Bz&y][Bz(Z+n -iJZav]>. (32b) 
y¿Mo c¿ 
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Alternatively, if the power spectrum Pij(f) gauss2/cycle/sec of the field is observed, 
then a and b may be obtained from equation (32) and the relation 

Pii ( / ) = (t,0) (33) 

A further simplification is possible if the cyclotron radius rc= F/coo is small com- 
pared with the correlation distance of the fluctuating field. Then Rij{r) may be expanded 
in powers of pi < 2rc. Note that dRij/dp\p^ = 0. The Fokker-Planck coefficients may 
then be written in terms of the integrals 

e-^vdl;, (34) 

í'X,Rzz(t!0)e-i“¿,>‘vdt, (35) 
*/— 00 

and 

f Rxx(Ç,0)dÇ (36) J —CO 

correct to lowest order in pi or F/W In this approximation the particle samples only 
irregularities on the Z-axis. Then, from equation (33) and the results of § II we have the 
Fokker-Planck coefficients directly in terms of the observed power spectrum: 

< ( Ap)2) = (1-M2) ZW„ / FuiCQq \ 
tú |m|F 72w0

2c2 xzV2irMF/’ 

( (AX)2> _ < (AF2) > 
bd A/ 

\±\v KPe* 
2o)o2 

[2Pxx(0) 
1 -ß‘ 

zz 
(VwQ>o\l 
KIt/jlVJ] 

. (38) 

It is evident from equations (37) and (38) that scattering is due to power near the fre- 
quency/0 ^ Vwo)0/2tV which corresponds to irregularities with scale sizes equal to the 
particle cyclotron radius being carried past the satellite. The term in equation (38) 
involving Pxx (0) represents the effect of the random walk of field lines in the X,F-plane. 

Clearly, simplifications also result if rc is much greater than the correlation length. 
Now consider the application of these results to interplanetary magnetic field observa- 

tions. Coleman (1966) has reported power spectra in the frequency range 10~5-10-2 sec-1 

obtained from Mariner II data. The spectra fall off with increasing frequency slightly 
more rapidly than/-1 and have no significant peaks. The spectra are consistent with the 
assumptions used above to derive equations (37) and (38), so it is reasonable to construct 
a diffusion tensor from the data. It is sufficient for present purposes to approximate 
Coleman’s spectra in the region of frequencies / = 10~5-10~3 sec"1 by Pxx(f) ~ S/f 
Gauss2 sec, PZz ~ a/f Gauss2 sec, where ô ^ 1.4 X 10~10, a ^ 1.2 X 10"10. Then, from 
equations (37) and (38) and the results of § III, one finds for the ^50 — 500 MeV 
particles that are affected by this range of frequencies. 

D zz 
_FVY^o^y coo 
“ 37T V Ze / 5 

~3|K. 

(39) 
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and, neglecting the power at zero frequency, 

DXX — D YY 
Tr (_ZeV_y a_ 

3 xyMoCUo/ coo 
(40) 

Here Z/A is the charge to mass ratio and the mean interplanetary field 2?o has been set 
equal to 5 X 10~5 gauss. Clearly the diffusion is mainly along the average magnetic field. 
It is of interest that the ratio Dxx/Dzz can be written rc

2/\2 = F2/co0
2X2, where 

3Dzz/V is roughly equivalent to the mean step length used in the scattering center 
approach. This ratio, which should not be sensitive to the assumed Pij(f), is the same as 
that obtained by Parker (1965) in the limit X ^>> rc. We see that for 50-500-MeV protons 
Dzz ~ 1021 cm2 sec-1, in agreement with the values commonly obtained from cosmic 
ray observations. (Parker 1965). Further, a definite dependence of Ay on particle velocity 
and charge to mass ratio is predicted. A subsequent paper will discuss in detail the 
application of these results to cosmic rays and present detailed comparison with ob- 
servations. 

v. DISCUSSION 

The foregoing calculations present a statistical description of the motion of charged 
particles in a spatially random magnetic field. The time evolution of the particle distribu- 
tion in pitch angle and position is described in terms of Fokker-Planck coefficients which 
are derived explicitly in terms of the correlation tensor or Fourier spectrum of the 
irregular field. It is felt that this approach represents an improvement over the tradi- 
tional “diffusion” picture based on the concept of magnetic scattering centers; many 
features of the latter picture are regained, but the particle motion is now quantitatively 
related to the spectrum of magnetic irregularities. As discussed in § IV, application of 
the formalism to direct observations of the interplanetary magnetic field should make 
possible a quantitative discussion of cosmic-ray propagation and modulation in the solar 
system. Similarly, optical determination of the structure of the interstellar magnetic 
field (Kaplan 1966) may eventually permit a quantitative treatment of galactic cosmic- 
ray motion. 

I wish to acknowledge helpful discussions with Prof. E. N. Parker. This work was 
supported, in part, by the National Aeronautics and Space Administration under grant 
NASA-NsG-179-61. 
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