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ABSTRACT 
The studies presented in this paper constitute an extension of previous work on relaxation oscillations 

in supermassive stars. It is shown that a relatively small amount of rotation is sufficient to remove the 
general-relativistic instability which arises in such stars when rotation is absent. The post-Newtonian 
equations for the binding energy and for the frequency of the fundamental mode of radial oscillation are 
derived and the close connection between these two quantities is exhibited. The equatorial instability 
associated with contraction under rotation is investigated and the results used to estimate the limiting 
mass in which hydrogen burning can be effective as a source of energy during relaxation oscillations. 
This limit is found to be at least 108 Mo and perhaps as high as 109 Mo whereas, without rotation, the 
limit arising from general relativistic considerations is 106 Mo- 

INTRODUCTION 

In an attempt to understand the source of the energy emitted by the extended radio 
sources associated with elliptical galaxies, Hoyle and Fowler (1963a) suggested the 
possibility that a mass of the order of 108 If o has condensed in the galactic nucleus into 
a supermassive1 star in which nuclear-energy generation takes place. In a subsequent 
paper (Hoyle and Fowler 1963Ô) the release of gravitational energy during general- 
relativistic collapse after the exhaustion of nuclear fuels was discussed. In a third paper 
(Hoyle and Fowler 1965) processes occurring during the formation of the massive star 
were discussed. The alternate possibility that fragmentation into smaller stars occurs 
was considered, and subsequent collisions between fragments was given some attention. 
In the present paper it is assumed that a single massive star has formed, either directly 
or through an intermediate stage involving fragmentation into smaller stars, which are 
ultimately destroyed by collisions between them. From this basic assumption the paper 
proceeds to a discussion which is limited to the problem of the dynamic stability of the 
massive star during the period in which nuclear-energy generation takes place. 

In the first reference mentioned above it was shown that the radiative luminosity of a 
stable supermassive star (if > 103 Mo) is proportional to the mass according to the 
approximate relation 

L « 2 X 103S(M/Mo) ergs sec-1, (D 

where M is the mass of the star and if o is the mass of the Sun. On the assumption that 
one-half of the hydrogen in the star is processed to helium, the available energy is 

Q — I X 7 X 10“3if¿2 « 6 X 1051(if/ifo) ergs , (2) 

* Supported in part by the Office of Naval Research (Nonr-220(47)) and the National Aeronautics 
and Space Administration (NGR-05-002-028) and the National Science Foundation (GP-539). 

f Presented in part under the title “Nuclear Processes and Rotational Stability in Supermassive 
Stars” before the National Academy of Sciences on April 28,1965, at the Symposium on “Extraordinary 
Celestial Objects.” 

1The designation “supermassive” applies throughout this paper to stars with mass M > 103 Mo> 
The prefix “super” will frequently be omitted, but the stars under discussion in this paper are not to be 
confused with stars with masses between 30 Mo and 100 Mo which are frequently called massive stars. 
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SUPERMASSIVE STARS 181 

so that the lifetime for the main-sequence stage of a supermassive star is 

T « Q/L « 3 X 1013 sec « 106 yr 0) 

independent of mass. It was also found that hydrogen burning through the CNO bi-cycle 
takes place at a central temperature near 8 X 107 ° K and that the effective surface 
temperature during hydrogen burning is approximately 7 X 104 ° K indicating strong 
emission in the ultraviolet. A major unsolved problem concerned the mechanism by 
which the optical energy output is transformed into the high-energy particles and mag- 
netic field necessary to produce the radio emission on the basis of current synchrotron 
theory. 

The discovery (Schmidt 1963; Oke 1963; Greenstein and Matthews 1963) and subse- 
quent investigation (Greenstein and Schmidt 1964; Oke 1965) of the quasi-stellar radio 
sources (QSS’s) shows that starlike objects associated with certain radio sources do 
indeed have very large luminosities in the optical range. The observed luminosities are 
claimed to be of the order of 1046 ergs sec“1 which is expected from equation (1) for M ~ 
108 Mo. Lifetimes (Greenstein and Schmidt 1964) of the QSS’s fall in the range 103-106 

years on various models. Thus it is tempting to associate the source of energy in the 
QSS’s with nuclear burning in massive stars. Subsequent gravitational energy release 
and possible connections with the extended radio sources are left aside for the time being. 
In fact, the association with QSS’s and radio galaxies is not the only motivation for this 
paper. The stability of massive stars is a problem of interest and significance per se. 

Support for the massive-star model is given by the observed variability (Smith and 
Hoffleit 1963; Matthews and Sandage 1963; Sharov and Efremov 1963; Sandage 1964; 
Geyer 1964) of the optical radiation from the QSS’s. In addition to luminous flashes with 
durations of the order of days or weeks, there is evidence for cyclic variations with 
periods of the order of 10 years. It is generally agreed that the occurrence of the cyclic 
variations is crucial to the question whether the primary radiating object is a single co- 
herent massive star (Hoyle and Fowler 1963a, b) or a system of smaller stars as discussed 
by numerous authors (Burbidge 1961; Woltjer 1964; Ulam and Walden 1964; Field 1964; 
Hoyle and Fowler 1965; Gold, Axford, and Ray 1965). It is difficult on the basis of ran- 
dom collisions or supernova outbursts in a system of many stellar objects to explain 
variations which exhibit a regular periodicity. Thus, without prejudice to the problem of 
the reality of the cyclic variations since only additional and more precise observations 
will settle this matter, the possibility is investigated in this paper that such variations 
can arise from pulsations in a single massive star. The general-relativistic instability 
(Chandrasekhar 1964a, b; Fowler 1964a) which occurs in non-rotating stars is discussed 
along with the relaxation oscillations (Fowler 1965) which may thereby be produced. 
In the major conclusion of the paper it is shown that the general-relativistic instability is 
completely removed during nuclear burning by a relatively small amount of rotation 
especially if differential rotation is taken into account. 

An elegant treatment of the stability of supermassive stars using the exact equations 
of general relativity has been given by Chandrasekhar (1964a, b; 1965), and applica- 
tions to polytropic gas spheres have been made by Tooper (1964). An analysis of the 
binding energy has been given by Iben (1963), and a general discussion of the binding 
energy and the various modes of oscillation has been given by Bardeen (1965). In the 
interest of simplicity and some gain in physical insight the following discussion will be 
restricted to the post-Newtonian approximation (Fowler 1964a) to the relativistic 
equations. 

This restriction can be justified on the grounds that only the Newtonian and post- 
Newtonian terms in the Schwarzschild line element have been verified in the three so- 
called crucial tests of general relativity. There is even some question concerning the 
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182 WILLIAM A. FOWLER Vol. 144 

correspondence between observation and theory in the advance of the perihelion of 
Mercury which constitutes a test of the coefficient of the post-Newtonian term in the line 
element. 

In determining the post-Newtonian terms a further approximation is made in that 
these terms are evaluated using the equilibrium configurations given by the Newtonian 
approximation. It must be emphasized that this cannot be justified without recourse to 
the detailed analysis of the exact formal solutions and the post-Newtonian approxima- 
tion as given by Chandrasekhar. Only by such a detailed analysis can the conditions be 
determined under which this procedure gives a fair approximation to the correct results. 

Even though it has important effects, rotation can be taken to be small and need only 
be treated in the Newtonian approximation and only for the case where distortion from 
spherical symmetry can be neglected. The two starting points will be (1) the equation 
for the binding energy of a star in hydrostatic equilibrium and (2) the radial equation for 
dynamic equilibrium throughout the star. The object is to derive useful relations for the 
binding energy and for the frequency of the fundamental mode of radial oscillation and 
to exhibit the connection between these two quantities. Because of the order of approxi- 
mation to which the derivations are restricted, the results are applicable only to super- 
massive stars (M > 103 Mo) in which the ratio ß of gas pressure to gas plus radiation 
pressure is small (ß < 0.1) and can be approximated by equation (A21) in the Appendix. 

BINDING ENERGY OE A MASSIVE STAR IN HYDROSTATIC EQUILIBRIUM 

Let us neglect rotation for the moment. The binding energy Eb of a star is equal but 
opposite in sign to the total energy E exclusive of the rest mass energy when infinitely 
dispersed at zero temperature and is given by (Fowler 1964a) 

-Eh = E = (M - Mq)c2 . (4) 

The gravitational or inertial mass measured by an external observer is 

M = fdMr = f pdV , (5) 

where dV is the ‘‘coordinate” volume, p = p0 + u/c2 is the total mass-energy density in 
mass units per unit coordinate volume, po is the rest mass density of nuclei and ionization 
electrons, and u is the internal energy density of gas and radiation, and includes the rest 
mass energy of particles created in the medium at elevated temperatures such as elec- 
tron-positron pairs (see the Appendix for further discussion). If spherical symmetry is 
assumed, dMr = pdV = 4Tr2pdr, where r is the coordinate radial variable and Mr is the 
mass energy internal to r. The integration is taken from zero to R, the coordinate radius 
of the star. 

If the rest mass is to be computed at any stage of contraction the rest mass density 
must be integrated over the “proper” volume elements according to 

Mo^Spo(i-^y1/2 dV, (6) 

where G is the gravitational constant and the square-root term converts coordinate 
volume to proper volume. Because of atomic and nuclear processes there is always some 
ambiguity in choosing p0 and thus in calculating Mo. The point is that the nuclear rest 
masses per nucleon may change in dispersing the star from radius R to infinity. Unlike 
the creation and annihilation of pairs these nuclear changes may be irreversible. We 
arbitrarily choose to define the binding energy relative to the rest mass energy of the 
nuclei and ionization electrons existing at a given stage of contraction as specified by the 
parameter R. Our choice is not necessarily unique or single-valued, but this is a problem 
in detail and not in principle. 
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No. 1, 1966 SUPERMASSIVE STARS 183 

Since Mr is related to p and not to p0, it is convenient to retain p and u in expressing 
E so that 

(7) 

(8) 

The first term in equation (7) is the proper internal energy of the star, which we designate 
by H in equation (8). The second term in equation (7) is the mass energy of the star 
minus the proper mass energy. If the sign is reversed this is just the gravitational binding 
energy (taken positive), which we designate by 0 in equation (8). 

It is now appropriate to expand H and Í2, to retain only the Newtonian (subscript 0) 
and post-Newtonian (subscript 1) terms, and to introduce the Newtonian term for the 
rotational energy which we designate by S^o. The result is 

E ~ Hq — ßo “t” + Hi — Œi j W 

E ~fudV-pdV + hfrW sitfdpdV+fj^udV-* f*?— pdV. do) 

The definition of the various terms in equation (9) will be obvious from the order of the 
terms in equation (10). In equation (10) co is the angular velocity and 6 is the polar angle 
measured from the axis of rotation. It will develop that H0 — Í20 is proportional to ß 
and is thus small and comparable to Hi — fíi. We discuss only cases where Sko is compa- 
rable within a factor of 10 to these two differences in the internal and gravitational energy 
terms. 

EQUATION OF DYNAMIC EQUILIBRIUM 

Again let us neglect rotation for the moment. The exact general-relativistic equation 
for dynamic equilibrium in the spherically symmetric case has been written by Misner 
and Sharp (1964) and others as 

2.. , “¿dy _ _l_dp /I + y2r2/c2 — 2GMr/r c2\ GMr ^wGpr 
y r yr dr pdr\ 1+p/pc2 ) r2 c2 ' 

where 
p+£v,1+.+_i^ 

Po PqC¿ po 

(il) 

(12) 

It will be noted that the left-hand side of equation (11) can be written in the more com- 
pact form yd(yf)/dt. 

We now proceed to write equation (11) in the post-Newtonian approximation and to 
apply it to small perturbations (5) about hydrostatic equilibrium. Conditions at equi- 
librium will be designated by the subscript “eq.” It will be clear that the two terms con- 
taining r2 can be neglected since r = req = 0 at hydrostatic equilibrium and ôf2 = 
2req5req = 0 to first order. This leaves y2f on the left-hand side of equation (11) where the 
Newtonian term in y is unity and the post-Newtonian terms are much smaller than unity 
in all applications made in this paper. After the manipulations on equation (11) which 
follow, it will develop that the Newtonian term on the right-hand side is small and 
comparable to the post-Newtonian term. Thus it is unnecessary to retain second-order 
terms in the factor y2 and in equation (11) we replace y2 in y2r by unity. 

Since the left-hand side of equation (11) has now been reduced to the classical New- 
tonian acceleration, r, with no ambiguities in space-time measurements, it will be clear 
that small rotational effects can be introduced in the approximation of the Newtonian 
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centrifugal acceleration, reo2 sin2 6. Thus the post-Newtonian equivalent of equation (11) 
for small rotation in supermassive stars is 

GMr 4:TrGp r 
f « rco2 sin2 6 

ldp( 
pdr\ pc 

2GM, 
r c1 ) 

(13) 

Since dp/dr = pGMr/r
2 in Newtonian hydrostatic equilibrium with no rotation, equa- 

tion (13) can be written, to the order of the approximations being made in this discus- 
sion, as 

rco- sin20_i^_GMr('1+^+2GMr+. ^ 
p dr r2 V pc2 rc2 / 

4:TrGpr 
(14) 

par r* \ pc* rc 

Multiply equation (14) by rpdV and integrate over the entire star. The result is 

GM* 
Jr fpdV ~ -f iwrHp-f ^ PdV+f rW sm*6pdV 

f GMr A JIT r> C G2Mr
2 T A f 

-j T^^-y 
G2M, Gpr 

(15) 

pdV 

The first and last terms on the right-hand side can be integrated by parts from r = 0, 
where Mr = 0, to r = jR, where ^ = 0, to yield 

frrpdV~zfpdV-%+2ya+f pdV - if 
G2M? 
-ZTTPW (16) 

From the discussion in the Appendix, p = (r4 — \)u « J(1 + ß/2)u so that p ~ \n 
when ß is small and it is natural to define a mean value of F 4 such that fpdV = (F 4 — 1} 
fudV. To the approximation of interest we can use this (r4) in the fourth term on the 
right-hand side of equation (16). The result is the virial equation 

frrpdV 3(r4 — l)-ifo — 2To -I- (F4 — l)-ifi — 2S2i. (i7) 

Under conditions of hydrostatic equilibrium, r = 0 everywhere and a simple virial 
relation is obtained between Ho, O0, etc. For numerical calculations of the binding energy 
it is most convenient to eliminate Ho in substituting into equation (9) and the result is 

<3F4— 4) 

3<F4— 1> 
Oo 

<5 — 3F4) 
3<F4— 1> 

To+fHr 
<5 — 3F4) 
3<F4— 1> 

Í2i. (18) 

Equation (A19) then yields 

£eq« -|o0- (l-/3)T0 + |Fi+(l-^)Oi. (i») 

Fpr small ß in massive stars 

Eeq « — ^ fí0 —^o + f S’! + ßi, (20) 

where, in recapitulation 

= f1— pdV = ÍttGJ'0 rMrdr, (21) 

% = 1/r2co2 sin26pdV = irf pr4co2 sin?Qdrdd , (22) 
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GMr 

rc2 udV JurM, dr 
1 I'kG 

Jp rMrd r, 

GW, 
pdV 

6irG2 

JpMrHr. 

185 

(23) 

(24) 

In the last approximation in equation (23) we have used p = (r4 — l)u ^ u/Z for 
massive stars. In equation (20) it will be noted that all terms are small when this equa- 
tion is applied to slowly rotating, massive stars. This circumstance arises from the fact 
that Hq — fio in equation (9) becomes proportional to ß through equations (17) and 
(A19). 

ADIABATIC RADIAL PULSATION 

In order to determine the angular frequency, <tr, of the fundamental mode of radial 
oscillation, equation (17) is applied to a perturbation of the form 

ôr ÔR / • n 
— = -£- exp( -i<rRt). r K 

The result is 

where 

5R 
-oV/—«3<ri-l>S17o-SÛo+25To+<ri- l>Ôtfi-2ÔÛi, K 

I = $r2pdV 

(25) 

(26) 

(27) 

is the moment of inertia of the star about the origin of coordinates. / is equal to § the 
usual moment of inertia about the axis of rotation if the distortion from spherical sym- 
metry is ignored. In deriving equation (26) we used equation {All) in the Appendix. 
Again we overlook the fact that the average Ti in the coefficient of bHi is not quite the 
same as that in the coefficient of If the oscillation is adiabatic, the energy equation 
becomes 

bE = &iZo — Sño “1” Wo “h bHi — bilí — 0 . (28) 

If equation (28) is employed to eliminate bHo in equation (26), the result is 

-0-B
2/ <3ri- 4>áQo+<5-3ri>5'To- 2<ri- l>5Fi- <5-3^)501. (29) 

K 

APPLICATIONS TO POLYTROPIC MODELS 

Within the approximations which have been carefully specified, equations (18) and 
(29) are quite general. Further elucidation requires that ñ0, etc., be specified as functions 
of the stellar radius R and mass M and that ófí0, etc., be related to bR through these 
quantities. This can only be done for specific stellar models. For our purposes poly tropic 
models specified by the index n in the relation pVl+l¡n = const, ox p — const. p0

1+1/n are 
of sufficient diversity and accuracy. 

Considerable simplification arises from the fact that our interest is concentrated on 
slowly rotating, massive stars in which the Newtonian terms in equations (18) and (29) are 
small and of the same order of magnitude as the post-Newtonian terms. This means that 
the integrals for ño, ^o, Hi, and ñi can be evaluated using the run of the variables 
throughout the star given by the solution of the classical Lane-Emden polytropic equa- 
tions without rotation. In particular it is not necessary to distinguish between p0 and p 
or between Mq and M in keeping with the general presumption that ifo — M is small 
compared to either one of them. Only one new physical concept must be introduced— 
namely, that for an isolated star, angular momentum must be conserved through all 
stages of contraction or of oscillation. 
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The Newtonian gravitational binding energy in units of Me2 can be expressed in terms 
of the convenient dimensionless parameter 2GM/Rc2 as 

Wc2 
3 (2GM\ 

2{S-n) \Rc2 ) 
(30) 

so 
ôp1= __ÔR 

fío "" R ' 
(31) 

Rotational terms in ß0 result in terms of order ßu2 in E or ar2 and can be neglected when 
both ß and a?2 are small. The Newtonian rotational energy is given in terms of the 
conserved angular momentum, 4>, by 

Me2 2 ( ckMR)2' 
(32) 

where for uniform rotation k = {2I/ZMR2)112 is the radius of gyration in units of R and 
$ = WMRïü) = const. Differential rotation will be discussed in what follows. Once 
established under the conservation of angular momentum for all mass elements in a star, 
differential rotation requires ^ R”2 just as for uniform rotation, so that in any case 

54>o= _ 2 57? 
¿ R' 

(33) 

It has been shown (Fowler 1964#, b) that the integrals for H\ and fíi in units of Me2 

involve the dimensionless parameter (2GM/Rc2) to the second power as might be ex- 
pected on general grounds. Numerical coefficients can be derived analytically for some 
polytropes and can be evaluated numerically for others. For the quantities of greatest 
interest, the result can be expressed as 

ffx (2GM\2 

Me2 Sw \Rc2 ) * 
and 

2 ffi I Qi _   
3 Mc^Mc2 bnKRc2 J 1 

where, for example, fo' = 0.064, fo" = 0.161, f0 = 0.204, fi' = 0.116, fi" = 0.241, 
fx = 0.318, & = 0.219, fs" = 0.417, f2 = 0.563, f3' = 0.513, f3" = 0.923, f3 = 1.265, 
f4' = 2.12, f 4" = 3.66, and f4 = 5.07. J. M. Bardeen and S. P. S. Anand have called the 
author^ attention to the fact that « 5.07/(5 — n)2. 

In any case 
ÔHi Ófíi  0 8R 

~ ¿~R' 
(36) 

Thus equation (29) becomes 

<tr2I « <3ri - 4)fí0 + 2(5-3Pi>^0 - 4<ri - l)iJi - 2(5-3ri)fíi. (37) 

The Newtonian terms in this equation are identical to those given by Chandrasekhar and 
Lebovitz (1962) in their equation (111). For (Fi) « § + j3/6 and ß small as in super- 
massive stars 

o'r2I « ^ fío “h 2>fro — §^1 — . (38) 
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In those cases where (Fi) and (I^) can be taken to be equal, as, e.g., when ß is small 
and (Pi) « (r4) « f + ß/6, then it will be clear from equations (18), (30), (32), (34), 
and (37) that 

^OTx-Df^ (<ri>«<r4>), (39) 

R dEecl 

I dR 
(iS«l). (40) 

This important relation has been previously (Fowler 1964a) used in the case of non- 
rotating massive stars and will be discussed further in what follows. A circumstance 
under which equations (39) and (40) do not hold will be noted near the conclusion of this 
paper. 

In order to make the analysis which follows as transparent as possible it will prove 
expedient to specify a particular poly tropic index. For massive stars it is well known that 
the case w = 3, for which ß = constant, yields a fairly accurate representation for the 
internal structure. For w = 3, equations (20) and (38) become 

'eq 
Me' 

VRÀ 

  3 
8 

Me 

+Gbs)'] ™ Ml^)-2-53 

/2GMY 

\Rc*) 

These equations display the Newtonian gravitational term in 1/R, the Newtonian rota- 
tional term in 1/Æ2, and the general-relativistic post-Newtonian term in l/Æ2. The de- 
pendence on powers of 1/R can be replaced by dependence on powers of the central 
temperature, TCi by use of the relation (Fowler 1964a) 

Tc 
5.83 X 1018 / ilf \1/2 

R \Mq) 
( ft = 3 ) . (43) 

ROTATIONAL STABILITY VERSUS GENERAL-RELATIVISTIC INSTABILITY 

The fundamental mode of radial oscillation becomes dynamically unstable when 
<7ß2 < 0 or becomes imaginary in equation (25). In the case of no rotation, = 0, 
it has been noted (Chandrasekhar 1964a, b; Fowler 1964a) that instability sets in for 
contraction below a critical radius given for <jr2 < 0 in equation (42) by 

6 74 /M \3/2 

i?cr = ^î^ = 3.4X105^j cm ($ = 0,rc = 3), (44) 

where Rg = 2GM/c2 is the limiting gravitational radius or Schwarzschild coordinate 
radius and ß has been evaluated using fx = 0.73 for a representative mixture (Fowler 
1965) of 50 per cent hydrogen, 47 per cent helium, and 3 per cent heavy elements by 
mass. From equations (43) and (44) the critical central temperature, above which 
instability sets in, is 

TCI = 1.7 X 1013 (Mo/M) ° K ($ = 0, w = 3) . (45) 

At the critical radius and central temperature, Eeq reaches a minimum value and the 
binding energy reaches a maximum value as indicated by equation (40). This is illus- 
trated in Figure 1 îov M = 106 Mo where E^/Moc*, vr, and the period II = 2t/<tr 
are shown as functions of R and Tc. In the calculations I = 0.113 MR2 for a polytrope of 
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index w = 3 has been used. The situation can be understood physically in the following 
way. To the left of the minimum in in the Newtonian range, an adiabatic perturba- 
tion (constant E) toward smaller radii leads to more energy than that required for equi- 
librium and thus, for any physically reasonable equation of state, to more pressure than 
that necessary for hydrostatic equilibrium. Thus the contraction is opposed. An 
adiabatic perturbation toward larger radii leads to less energy and less pressure than that 
required for hydrostatic equilibrium and thus expansion is opposed. The same argument 

Fig. 1.—The binding energy and the frequency and period of the fundamental mode of radial oscilla- 
tion in a non-rotating star with mass equal to 106 if©- 

used to the right of the minimum (Fowler 1964a) indicates that a contraction leads to 
less pressure than that needed for hydrostatic equilibrium while an expansion leads to 
more so that the system is dynamically unstable to adiabatic perturbations. It will be 
noted that the minimum Eeq given by — 9j32ikfc2/64fn(5 — n)2 has magnitude ^ikfoc2, 
which is independent (Fowler 1965) of the mass If, and that the minimum period during 
stable contraction is of order of 1 year. In general the minimum period is given by 

nmiri = 1.7 X 10-12(Jf/Mo)2 yr ($ = 0, = 3) . (46) 

The critical temperature is only 1.7 X 107 ° K for Af = 106 Afo, and this is consider- 
ably below the temperature of 8 X 107 ° K which, as has been previously noted (Hoyle 
and Fowler 1963a), is necessary for hydrogen burning through the CNO bi-cycle. This 
means that there is no source of the energy required for hydrostatic equilibrium above 
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No. 1, 1966 SUPERMASSIVE STARS 189 

1.7 X 107 ° K or for contraction below 3.5 X 1014 cm so that the instability results in 
gravitational collapse until the onset of nuclear burning. The resulting relaxation oscilla- 
tions for M < 106 Mo have been discussed by Fowler (1965). For M > 106 Mo, the 
onset of hydrogen burning is not sufficient to prevent continued gravitational collapse 
in a non-rotating star. This has placed a serious limitation on the energy available in 
that model (Fowler 1965) which depicts QSS’s as non-rotating massive stars undergoing 
relaxation oscillations, as hydrogen burning in a star with M = 106 Mo yields only ^lO58 

ergs and the required energies are in some cases of the order of 100 times this figure. 
In equation (42) the general-relativistic term which leads to instability varies as 

R~2 and is negative. For constant angular momentum, 4>, the rotational term also varies 
as R~2 but is positive. Thus for large enough 4>, the general-relativistic instability discussed 
above is removed by rotation. In physical terms the rotation prevents the gravitational col- 
lapse which would otherwise result from the general-relativistic instability. Relative to 
the magnitude of the angular momentum common to astronomical systems, the required 

  LOG R (CM) 

Fig. 2.—The binding energy of a rotating star with mass equal to 108 Mq 

$ is quite small. For the rotational and general-relativistic terms in equation (42) to 
cancel, the critical angular momentum for stability is given by 

2GM2 

i«) 
c 

where we have generalized to any n. Since the angular momentum is conserved, it is 
simplest to calculate i>Cr at the stage where the stellar mass is dispersed uniformly as a 
gaseous cloud. In this case ^ = 0, X2 = f, and f0 = 0.204 so that 

% = 3.6 X 1016 (fP) cm2 sec-1. (48) 
M VMo/ 

Even for M = 108 Mo this angular momentum per unit mass is very small compared 
to the typical value, 1030 cm2 sec-1, which applies to the rotation of the solar system in 
the Galaxy. 

The rotational effects are illustrated for a star with mass M = 108 Mo in Figiires 2 
and 3. Figure 2 exhibits the dependence of E^/Moc2 on R and Tc while Figure 3 shows 
the dependence of the period II on these same quantities. The curves have been calcu- 
lated for / = 0, 0.99, 1, and 2, where/is the ratio of the rotational energy to the “gen- 
eral-relativistic” energy represented by the post-Newtonian terms in equations (20) and 
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(35). For a given angular momentum/remains constant during homologous contraction. 
The calculations have been made for poly tropic index n — 3. 

It will be noted that dynamic stability at the temperature required for hydrogen burn- 
ing through the CNO bi-cycle sets a lower limit on / very close to unity. For reasons to 
be discussed in the next section, there probably exists an upper limit on / of the order of 
10. The period of the fundamental radial oscillations at hydrogen burning varies rapidly 
with/being of the order of 1 year for / = 1 and 10 days for / = 2. If is extremely doubt- 
ful, however, that small amplitude, linear oscillations characterized by exactly these 
periods will occur. From the work of Ledoux (1941) and of Schwarzschild and Härm 
(1959) it is more probable that large-amplitude, non-linear pulsations will be set up at 

Fig. 3.—The period of the fundamental mode of radial oscillation of a rotating star with mass equal 
to 108 Mq. 

the onset of nuclear burning. The energy generation will indeed take place in a relatively 
short period followed by a longer period of expansion to large radius and then recontrac- 
tion during which the energy is transmitted to the surface of the star and radiated away. 
Relaxation oscillations of this nature in supermassive stars have been previously dis- 
cussed (Fowler 1965), and the possible connections with the periodicity and exotic 
forms of energy emission in quasi-stellar objects have been pointed out. Only one point 
need be added to that discussion: variations in the magnetic field which accompany the 
oscillations will accelerate electrons to relativistic energies through the betatron mecha- 
nism. 

Here we emphasize that rotation extends the mass range in which stable relaxation 
oscillations triggered by hydrogen burning can occur up to masses of the order of 108 M o 
or somewhat more. This extends the available nuclear energy in such objects to at least 
1060 ergs. These limits were 106 Mo and 1058 ergs without rotation. With rotation as the 
stabilizing agent, a star of mass 108 Mo can serve as the energy source in a QSS with 
total luminosity equal to 2 X 1046 ergs sec-1 for a period as long as 106 years as noted in 
the Introduction. 
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For the record we note the period in supermassive stars with / = 1, « = 3, Æ2 = 
0.075, n = 0.73: 

/87r2£2Æ3Y/2 

V ßGM J 

67r¿2\1/2 

ßGp) 
2.8 X 10-212î3/2 Mo) 1/4 

M J 
yr 

= 3.9X107rc"
3/2 / M V/2 

Wo/ 
yr. 

(49) 

In equation (49), p is the mean density of the stellar matter. 

THE LIMIT OF ROTATIONAL STABILITY 

Even though the rotation required to remove the general-relativistic instability is 
quite clearly available under typical astronomical circumstances as discussed in the 
previous section, the question arises whether the required angular momentum will lead 
to equatorial instability before sufficient contraction and high enough central tempera- 
ture for hydrogen burning is reached. 

It is first necessary to prescribe somewhat more precisely the central temperature re- 
quired for hydrogen turning through the CNO bi-cycle. Fowler (1965) has given the 
average energy generation per gram per second, 8, throughout the star and, when multi- 
plied by the mass, this yields the nuclear-energy generation rate as 

Ml « 8.8 X 10-44 (j^)12 TV1 ergs sec“1. (so) 

When M8 from equation (50) is equated to L from equation (1), it is found that the cen- 
tral temperature, rcn, required for nuclear-energy generation through the CNO bi-cycle 
is 

/ M \1/22 

rcn « 2.5 X 107 (jg-J °K (CNO bi-cycle), (5i) 

so that Tcn « 6 X 107 ° K for If = 108 Mo, This is lower than the estimate, Tcn^ 
8 X 107 ° K, found originally by Hoyle and Fowler (1963a), but is somewhat more pre- 
cise. It will be noted that the critical central temperature, equation (45), for general- 
relativistic instability is less than that required for hydrogen burning, equation (51), for 
all masses ikf > 4 X 105 Mo. This emphasizes the stability limitation on non-rotating 
models for supermassive stars (Fowler 1965). It may well be that explosions such as that 
observed in M82 by Lynds and Sandage (1963), which involved 5.6 X 106 Mo, can be 
attributed to the onset of general-relativistic instability during hydrogen burning with- 
out rotation. 

With the required temperature in hand it is now necessary to ascertain the limiting 
central temperature at which rotation, governed by the conservation of angular mo- 
mentum, leads to the equatorial instability characterized by loss of mass at the equator. 
It is probably true that a star survives this instability and that nuclear-energy genera- 
tion at the center is not terminated by the loss of mass at the surface, but nonetheless 
this limitation is well worth investigating in some detail. The analysis which has been 
made to the present point in this paper has been limited to spherical symmetry in the 
post-Newtonian approximation. Thus the conclusions to follow require that the angular 
momenta considered be much less than the critical angular momentum at which dis- 
tortion from spherical symmetry is large. 

The problem is best discussed in terms of angular velocity rather than angular mo- 
mentum since the critical limiting angular velocity is given quite simply by equating the 
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equatorial centrifugal force to the gravitational attraction at the equator with the re- 
sult that 

C*>cr = (52) 

In terms of the angular velocity the rotational energy can be written as 

= ÍK2MR2ccr2 . (53) 

Equation (53) has been written to include the case of differential rotation; ur = co(R) 
is the angular velocity at the equatorial radius and AT is a constant which can be deter- 
mined when œ = co(r) is specified as a function of the radius. For uniform rotation co = 
o)r and K = k, the radius of gyration in units of R. Equations (52) and (53) can be 
combined to yield 

1 ZT2 
Me2 4 (54) 

in which the ratio of the equatorial angular velocity to its critical limiting value appears 
explicitly. 

It should be noted that equation (54) should not be taken to imply that the factor 2 
does not appear on the right-hand side of equation (33). Equation (54) applies to the 
relatively slow changes between equilibrium states. During the faster changes which 
occur during small radial oscillations, it would seem reasonable to assume that angular 
momentum is conserved. Then equation (33) can be employed as written with <i>o 
evaluated from equation (54) with o)r = coCT as the limiting case. Under these circum- 
stances it will be clear that equation (40) no longer holds and that dynamical instability 
(o-r2 = 0) no longer sets in at the minimum in the equilibrium energy-curve. In fact if 
ßÜo/2 in equation (38) is neglected it is found that vr2 = 0 when = 0 rather than at 
the minimum value for Eeq. 

The ratio of the rotational energy to the “general-relativistic” energy can be evalu- 
ated from equations (35) and (54) as 

(55) 

This equation can be solved for the minimum radius for rotational stability at the equa- 
tor and combined with equation (43) to yield the maximum central temperature. The 
results are 

~ 1.5 X 10< ¿ (~) (¿ÿ cm <»-3) «« 

and 

rmax~3.9X1012y (^)1/2(^)2oK (w = 3). (57) 

These equations are clearly only rough approximations in view of the fact that distortion 
from spherical symmetry has been neglected. 

If angular momentum loss keeps œcr/cor fixed so that Sko is proportional to Æ“1 from 
equation (54), then R and T for maximum binding energy are given by equations (56) 
and (57) with / = 2. The maximum binding energy relative to the rest mass energy is 
then given by (AT4/64f n) {ooR/coCT)

2. This ratio can become of the order of several per cent in 
the case of differential rotation. For zero binding and the onset of dynamical instability, 
R and T are given by equations (56) and (57) with/ = 1. These conclusions require that 
ß%/2 be neglected in equation (38). 
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For uniform rotation K2 = k2 = 0.075 for a polytrope of index 3, and thus Tmax is 
only 3 X 107 ° K for a star with M = 10s Mo even when the minimum / = 1 and 
maximum o)r/o)Ct = 1 are used in equation (57). This is not sufficient for hydrogen burn- 
ing. The limiting mass which can be stabilized by uniform rotation during hydrogen 
burning is approximately 107 Mo. 

Differential rotation with an increase in angular velocity toward the center of the star 
results in a marked increase in K2 and thus in Tmax. Two models with differential rota- 
tion have been considered. In the first model the massive star is assumed to contract 
from a cloud with polytropic index w = 0 to a structure with index n in such a way that 
each spherical shell retains its angular momentum. This model is not self-consistent in 
that the Newtonian equation for hydrostatic equilibrium cannot be satisfied by a poly- 
tropic relation between p and p when the centrifugal forces are not neglected. The 
second model is that of Stoeckly (1965) in which the star contracts in such a way that 
the angular momentum is conserved in each cylindrical shell (but not each ring) parallel to 
the axis of rotation. In this model the poly tropic relation may be employed when cen- 
trifugal forces are included in the equation for hydrostatic equilibrium. The results for 
the two models are fortunately very similar as will be noted in the following tabulation : 

K2 (spherical model)... 
K2 (cylindrical model) 

0 400 
0 400 

0 629 
0 624 

1 14 
1 10 

61 
47 

10 8 
9 8 

If the value for K2 îor n = 3 on the cylindrical contraction model is substituted into 
equation (57), it is found that 

101! 

/ 
(n = 3). (58) 

Now for / = 1 and (coä/W)2 = J it is seen that ~ 108 ° K even for M = 109 Mo, 
and this is greater than the Tcn « 7 X 107 ° K required for hydrogen burning in a star 
of this mass. On a more conservative evaluation with/ = 2 and (or/a>Cr)

2 = the temper- 
ature is rmax~ 108 °K for M = 108lf o. This is the arotational limit,, indicated on Figures 
2 and 3. Because of the approximation involved in the assumption of spherical symmetry 
it is difficult to assess with any accuracy the limiting mass for which rotation is large 
enough to remove the general-relativistic instability but not so large that mass loss occurs 
at the equator. It can be noted that the central temperature will be higher for a given 
equatorial radius when distortion is taken into account and this fact tends to increase 
the limiting mass. We conclude that 108 ilfo is a conservative upper limit but cannot 
completely exclude masses as high as 109 Afo. 

For the record we note the rotational period, P#, at the periphery in supermassive 
stars : 

7, tKR2c 
Fb GM{2fïny'*' (S9) 

For w = 3,/ = 1, = 1.264, and K2 — 2.47 this becomes 

Pb=2.2X 10-23i22 0j/) vr = 7.5 X 10147y-2 yr. m 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
 6 

6A
pJ

. 
..1

44
..1

80
F

 

194 WILLIAM A. FOWLER Vol. 144 

Thus the peripheral rotational periods are the order of 0.1 year for Tc ~ 108. The mean 
rotational period is about J this value. 

Some consideration must be given to the situation in which the initial angular mo- 
mentum is large so that/^> 1 and the maximum temperature for rotational stability 
falls well below that necessary for hydrogen burning. This problem arises in all attempts 
to understand star formation. Some mechanism for transfer of the angular momentum 
to the material spun off at the equator must be invoked as has been done by Hoyle 
(1960) and others. We need only argue that such mechanisms can be effective for super- 
massive stars as well as has clearly been the case for the Sun and other ordinary stars. 
Angular momentum transfer to ejected material eventually reduces the angular momen- 
tum to the point where / falls in the reasonable range from 1 to 10. 

Figure 2 illustrates one point which should be emphasized. For quite reasonable 
values of/ the binding energy Et = |Eeq| becomes quite large and, when / = 2, almost 
one order of magnitude larger than the nuclear-energy resources of the star. Since this 
energy must be lost during contraction, it is another source of the observed energy 
emissions. It will be noted that this arises because the coefficient of Sko in equation (19) 
is 1 — ß and ß is small in massive stars. In ordinary stars = 1 and this contribution 
to the binding energy vanishes. 

In conclusion it can be pointed out that any physical phenomenon which leads to 
a positive term proportional to 1/R2 in the frequency equation (42) will, if large 
enough, remove the general-relativistic instability in supermassive stars. Thus turbulent 
kinetic energy associated with convection or internal magnetic disturbances scales as 
1/R2 and will be effective in this regard. 

The author is indebted for assistance by Dr. J. Bardeen at many stages in the analysis 
presented in this paper, and by Dr. Robert Stoeckly in the treatment of differential rota- 
tion. He is indebted to Barbara Zimmerman for performing all numberical computations 
and integrations. This investigation arose out of discussions with Dr. Ian W. Roxburgh 
at the Second Texas Symposium on Relativistic Astrophysics held December 15-18, 
1964, at the University of Texas, Austin, and has benefited from subsequent discussion 
with him on the problems of rotation in massive stars. The author is indebted to Dr. 
Roxburgh for a preprint of the manuscript of his independent work (Roxburgh 1965) in 
which he has come to much the same conclusions as presented in this paper. 

APPENDIX 

In this Appendix the relations used in the main text between the internal energy density u, 
and pressure p, both in ergs cm-3, are discussed and the use of various expressions for the 
“effective ratio of specific heats” is clarified. It is sufficiently general for our purposes to consider 
the medium to be approximately non-degenerate and to be made up of nuclei, ionization elec- 
trons, electron-positron pairs, and radiation as treated in detail by Fowler and Hoyle (1964). 
Then from equations (B62) and (B43) of this reference one has 

u = xnkT + 2n+Mec
2 + aT4 and p = qnkT + \aT4, (Ai) 

where n = tiQ + nu + 2n+ is the number density of all particles—ionization electrons, nuclei, 
and electron-positron pairs; x is the mean kinetic energy per particle in units of kT; and g is a 
factor, close to unity in value, which incorporates the deviations from Boyle’s law in the gas. 
The internal energy density includes everything except the rest mass-energy density, p0c2, of 
the nuclei and the associated ionization electrons. 

The number density of paired electrons and positrons is 

2n+ « (wo2 + 4^i2)1/2 — fiQ , (A2) 
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where 

SUPERMASSIVE STARS 

«0 = ZnN = = 6.02 X 1023P0 4 
M-u -A A 

195 

(A3) 

is the original number of ionization electrons, w# is the number density of nuclei, p0 is the rest 
mass density, Mu is the atomic mass unit, Z is the mean number of free electrons per nucleus, 
A is the mean nuclear mass plus that of associated electrons in atomic mass units, and 

ni 
_ 1 / MeC\ 

TT2Z \ h ) 
K2(z). (A4) 

In equation (A5), z = m^/kT and K2{£) is the modified Bessel function of second order. 
Numerically one has 

fi\ « 1.521 X 1029r9
3/2 exp (Sm/Ts) cm-* (T9 < 3) 

« 1.688 X 10287y cm"3 (T9 > 3) . 
(AS) 

Because of the low density in massive stars for a given temperature, the numer of positrons and 
paired electrons becomes comparable to the number of ionization electrons at relatively low 
temperatures, e.g., at 5 X 108 ° K in a star with M = 108 Mo. This is above the temperature 
for hydrogen-to-helium conversion however. 

The factor x in equation (Al) is equal to § for non-relativistic, non-degenerate electrons and 
nuclei and has been tabulated for relativistic, non-degenerate electrons by Chandrasekhar 
(1939) as U/PF in his Table 24 (p. 397). The entries in this table also apply to the pair positrons 
under relativistic non-degenerate conditions. Although the entries in the table range from 
# = f up to maximum value, x = 3, there are circumstances (Fowler and Hoyle 1964) under 
which x can be as high as 3.15, in which case q = 1.05. At low temperatures pairs can be neglect- 
ed, the electrons and nuclei may recombine into atoms and molecules, and in any case x can be 
found in terms of the specific heat at constant volume cv or the ratio of specific heats 7 from 

When x is constant, one has 

d ( xT) 
df~ 

£ ~ C y 

C y 
1 

1 ‘ 

7-1 

(A6) 

(A7) 

_ 3 
“ 

Under the circumstances of major interest in this paper, the nuclei are ionized, the electrons are 
non-relativistic and non-degenerate, and pairs can be neglected. Then 7 == 3 and £ = cy 

IÎ ß — qnkT/p is introduced as the ratio of gas pressure to total pressure and 1 — 
aT*/2>p as the ratio of radiation pressure to total pressure, then from equations (Al) the dimen- 
sionless ratio of internal energy density to pressure is given by 

u 
= ?>- {ß/q)[3q-x-z( 2n+/n) ] (AS) 

As is required relativistically this ratio approaches 3 at very high temperatures independent of ß, 
as then kT z—» 0, x/g—» 3, and 2n+—> n. When pairs are first copiously produced, this 
ratio can exceed 3 under certain circumstances. The relativistic behavior for ß is discussed in 
detail by Fowler and Hoyle (1964); it passes through a minimum near zero in massive stars 
but increases to a limiting value, ß = T

7
T, at high temperatures when pairs become copious. 

The customary non-relativistic expression for u/p is found by setting q— 1, £ = (7 — l)“1, 
and = 0 so that 

«—£-r + 3(l-0) ^(NR) 
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It is convenient at this point to introduce a quantity which is very similar to the adiabatic coeffi- 
cients Fi, r2, and r3 defined by Chandrasekhar (1939, pp. 57, 58). We denote this quantity by 
r4 and define it by 

r* 1 3—((8/ç)[3ç —x—z(2w+/m)] 
(AlO) 

Thus 

 7~1  
3(7-1) -0(37-4) 

 7—1  
1 + ( 1 —0)(3T — 4) ’ 

(NR) (An) 

_ 4 — (0/g)[3g —x—z(2w+/w) ] 
4 3 — (0/ç)[3g — x—z(2«+/w) ] 

_ 4. i (0/g)[3g — x—z(2w+/w)] 
3-f"9 — 3(0/g)[3g — x—z(2»+/w)]’ 

4(7-1) -0(37-4) 
4~3(7-D -0(37-4)’ 

(A 12) 

(NR) (Ais) 

0(37-4) 
9(7-0-30(37-4) • 

(NR) (A 14) 

It will be clear from the definition of r4 that averaging over the entire volume of the star 
yields 

SpdV = /(r4 - \)vdV = <r4 - 1 )SudV . (AIS) 

The appropriate mean value for F4 is that obtained by averaging over each element of internal 
energy, udV. 

Extreme relativistic conditions arise when % ~ Zq and z = 0 in equations (A 12) in which 
case r4 = I as expected. Under intermediate circumstances F4 can be found by using the first 
of equations (A12). However, under the circumstances of major interest in this paper, equation 
(A 13) with 7 = -| is applicable and 

7=t’ (NR) <Ai6) 

Z3«1' (NR) (A17) 

where the second approximation holds for small ß. This is the same approximation that holds 
for the first of Chandrasekharas adiabatic coefficients, Fi = —din p/d ln V when ß is small. 
As a matter of fact, in massive stars during hydrogen burning ß is quite small, being given by 
(Fowler and Hoyle 1964) 

/î«M^0j^)1/2 M > 103 Me (n = 3), (NR) (Ais) 

where ju = A/(Z + 1) is the mean <<molecular,, weight. Note that ß ~ 10~3 for M = IQ* Mo 
and p = i (hydrogen). As discussed in the main text it is the smallness of ß and the closeness 
of Fi and F4 to J which makes the Newtonian terms in the binding energy and pulsation fre- 
quency correspondingly small and thus brings the rotational and general-relativistic terms into 
prominence in these quantities. It will be noted that Fi and F4 are effective ratios of specific 
heats under appropriate circumstances. 

In the above analysis the ratio p/u at a given time and position in a star has been equated to 
F4 — 1. In addition it is necessary to establish relationships between dp and Bu and between 
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b$pdV and (5/í¿¿V when the star is subject to an adiabatic perturbation at all points. The general- 
relativistic adiabatic relation is 

ÔQ = b{pcW) + = 0 , (A19) 

where it is required that the volume V apply to a fixed number of baryons throughout the 
adiabatic change. This requirement follows from the generally accepted physical law of the 
conservation of baryons. Under the conditions of interest in this paper the only baryons involved 
are protons and neutrons, free or incorporated in nucleons as nuclei. 

In order to proceed, it is necessary to recall once again the relation 

bp_ sv 
~VlT 

(Â20) 

by which Chandrasekhars first adiabatic coefficient is defined. If equations (A 19) and (A20) 
are appropriately manipulated it is found that 

ôp 

P 1 P + p/ c2 
and 

HpV) 
à(pcW) 

Fi-l. (A21) 

Under some circumstances it is of interest to consider adiabatic changes during which no nuclear 
or atomic processes occur so that the rest mass associated with a given number of baryons (or 
nucleons) does not change. Under these circumstances p0F is an invariant and d(pc2V) = 
8(poC2V) + 8(uV) becomes just equal to Ô(uV). Then 

— = Ti -- ( p0F = const. ), (A22) 
P Po 

Ô 

|^ = ^^ = ^(r4-l) (poV = const.). (A24) 
OU 1 4 % 1 4 

(JV) 6_ip/_po) 

(uV) ô(u/po) 
Ex-1 ( p0V = const. ), (A23) 

Now consider the variations <5/pd V and SfudV corresponding to adiabatic changes made 
throughout the entire star. These can be written, respectively, as 

and 

8jpdV = Ôf(pV)^f = f5(pV)Ç = S(T1-l)Ô(uV)Y (A25) 

SfudV =8f(uV)Y = fS(uV)Y (p0F = const.). (A26) 

The second equality in each of these equations derives from the fact that dV and F must each 
apply to a fixed number of baryons during any perturbation. Thus dV/V is replaceable by 
dNs/Ns, where Nb is the total number of baryons in the star and is therefore clearly invariant 
to any perturbation under consideration. In the last equality in (A25), equation (A23) has been 
used. Then, since Fi and its average <Fi) over udV are constant to first order during any per- 
turbation, it ultimately follows that 

bfpdV = 5/(r4 - l)udV = (Fj - l)dfudV (p0F = const.) . (A27) 

It will be clear that r4 is not constant during an adiabatic perturbation, and, in fact, it can be 
ßhown that 

(A28) r4_i U4 
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Comparison of equation (A27) with (A15) indicates that (Fi) replaces <r4) in relations 
involving adiabatic perturbations. To first order in small ß, Fi and r4 and hence <Fi) and <F4) 
are equal. This can be seen from Chandrasekhars non-relativistic expression for Fi which cor- 
responds to equation (A13). This expression is 

(4 — 3ß)2(y— 1 ) 
ß+12(y-l)(l-ß) 

(NR) (A29) 

£ ( 4/3 — 3ß2)(3y — 4) 

36(y-l) -3ß(12y-13) 
(NR) (A30) 

32-24ß-3ß2 

24: — 21ß 1 y = 5/3 (NR) (ASI) 

0«! (NR). fA32) 

Fowler and Hoyle (1964, p. 289), give the relativistic expression for Fi when pairs are included. 
Actually Fi does not differ greatly from F4 over the range 0 < ß < 1 as illustrated in Table Al. 

TABLE Al 

VALUES OF Ti AND T4 FOR 7 ^ t 

0 0. 
01 

.1. 

.2 

.3 
0 4. 

Ti 

333 
335002 
350 
368 
386 

1.405 

r4 

1 333 
1 335008 
1 351 
1 370 
1 392 
1 417 

0 8 
0 9 
1 0 

Ti 

1 426 
1 449 
1 476 
1 511 
1 563 
1 667 

r4 

1 444 
1 476 
1 512 
1 556 
1 606 
1 667 

The two are equal at the two extremes of this range with Fi = F4 = J at ß = 0 and Fi = F4 = 
§ at ß = 1 for 7 = ^. In addition for small ß, Fi and F4 are equal for any y since 

/3«i (NR). (A33) 

For convective stability it is necessary that 

din p 
dr 

>Fi 
din p 

dr 
(conv. stab.). (A34) 

This is a necessary and sufficient condition in general relativity except in very special physical 
conditions involving only small regions in a star where the effect of general-relativistic modifica- 
tions is not of crucial importance. Since p and p usually decrease with r it is often convenient 
to use expression (A34) rewritten as 

dlnp 
dr 

<Fi 
din p 
dr (conv. stab. )• (ass) 

For a polytrope at index n with p oc pi+iM this yields 

0-4) <-■ 
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or 

n > 
1 

Pi-1 
( conv. stab. ) (A36) 

>3(1 — ß/2), r9<i. 

Thus the polytrope w = 3 which has been used extensively throughout this paper is convectively 
stable except when electron-positron pair formation reduces Ti below |[ in the range 1 < Tg < 3. 
Formation of other particles will reduce Fi below ^ in additional ranges at still higher tempera- 
tures. 

An important quantity in the considerations discussed in this paper is j8, the ratio of gas 
pressure to total pressure averaged over the internal energy distribution in the star. See, for 

TABLE A2 

Rr Mr Pc/p {p.ß)/(p.ß)i {ßß)c{M/M0)'/* {rtYM/Mr,)'/* 

2 4494 
2 7528 
3 1416 
3 6538 
4 3529 
5 3553 
6 8969 
9 5358 

14 9716 
31 8365 

8988 
7871 
1416 
7141 
4111 
1872 
0182 

1 8906 
7972 
7378 

1 7321 

0000 
8361 
2899 
9907 
4025 

23 4065 
54 1825 

152 884 
622 408 

6189 47 

1 
1 
3 
5 

11 

1 8729 
1 5525 
1 3634 
1 2343 
1 1383 
1 0625 
1 0000 
0 9465 
0 8992 
0 8558 
0 8136 

3569 
8088 
1743 
4879 
7691 
0299 
2788 
5237 
7734 
0416 
3727 

4142 
3607 
3278 
3051 
2900 
2817 
2788 
2817 
2922 
3146 
3712 

example, equations (19) and (20). It can be shown from the analysis of Fowler (1964a) and 
Fowler and Hoyle (1964) that, for massive stars, 

iixß) 
(»ß)c fe^edï 1 (A3 7) 

where 6 and £ are the customary dimensionless variables in the Lane-Emden equation for the 
polytrope of index n and at the center (c) of the star 

(ßß)c=[j^(n+l) 
, WMJ -fVMoV1* 
aGW©2 J \mJ ‘ 

(A3 8) 

Numerical values for Ouß)c(Af/Mo)1/2and (fiß) (M/Mo)112 are tabulated in Table A2. Note that 
the latter quantity is approximately independent of n. In Table A2 Rn and Mn are the con- 
stants of integration corresponding to radius and mass, respectively, for the Lane-Emden 
equation. For /x = constant, equation (A37) yields ß/ßc- 
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