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ABSTRACT 

Oort’s (1954) model for the formation and destruction of interstellar clouds is formulated mathe- 
matically with simplifying assumptions. An equation for the time-dependent cloud-mass spectrum is 
obtained and solved. It is found that the rate of star formation is proportional to the square of the gas 
density, in agreement with Schmidt’s (1959) empirical model, and that the calculated proportionality 
constant agrees approximately with the observed value. The form of the cloud-mass spectrum, approxi- 
mately a nr*¡2 law, also agrees roughly with observation. 

I. INTRODUCTION 

A comprehensive theory of interstellar gas dynamics is lacking, owing to the difficulty 
of dealing with the non-linear phenomena known to occur in interstellar space. The roles 
played by shock waves, radiative processes, gravitation, angular momentum, and mag- 
netic fields have been studied in idealized models (Spitzer 1965), but so far it has not 
been possible to incorporate all such phenomena into a single theory. 

It is clear that an over-all theory of the interstellar medium must be statistical in 
nature. An early attempt at a statistical description of interstellar gas dynamics is that 
by Oort (1954). He took as the basic element of his scheme the interstellar —a 
region of high density that supposedly moves freely through an intercloud medium of low 
density and high temperature. Such clouds frequently appear in descriptive models of 
interstellar gas, as they are consistent with a variety of observations of interstellar neu- 
tral hydrogen, calcium ions, and dust particles (Spitzer 1965). Oort assigns to them a 
dynamical significance. First, each cloud is supposed to be in approximate hydrostatic 
equilibrium, its internal pressure balancing external pressure plus self-gravitation. In this 
way, a cloud maintains its identity for long periods. Second, the clouds undergo collisions 
with each other that tend to change their mass, momentum, and energy. 

A cloud starts its life cycle near an expanding H u region as a small region of high 
density compressed by surrounding hot gas. It is so small that self-gravitation is neg- 
ligible. It is accelerated outward by the expanding H n region, and undergoes inelastic 
collisions with other clouds in the vicinity, engendering new clouds of larger mass 
through coalescence. Through repeated coalescence processes, the mass of the cloud ims 
creases to the point that self-gravitation becomes significant and ultimately dominant; 
At this point the cloud becomes gravitationally unstable, undergoes rapid collapse, and 
becomes subject to gravitational fragmentation. The final result is a group of young 
stars, the brightest of which ionize gas remaining in the cloud to form H n regions and 
thereby regenerate small clouds as before. These small clouds are then available for a 
new cycle of activity. 

Oort’s scheme is consistent with these observations : {a) the masses of associations and 
clusters significantly exceed those of typical interstellar clouds, but are significant frac- 
tions of the calculated critical mass for gravitational instability; (6) small clouds near 
associations are often found to be moving away from the hot stars of the association with 
their accompanying H u regions ; and (c) the kinetic energy of interstellar clouds is very 
considerable in spite of the inevitable dissipation occurring during cloud collisions, indi- 
cating that some acceleration process must be at work. 

Note that the life cycle of a cloud in Oort’s model constitutes a feedback loop in that 
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the hot stars produced at one point in the cycle are responsible for regenerating new 
clouds needed to start the next cycle. Suppose for a moment that this feedback did not 
exist—that the young stars did not react back on the gas in any way. Then there would 
be no source of small clouds, and the masses of all clouds would increase exponentially 
with time through coalescence processes, with a time constant about equal to the cloud 
collision time, 6 X 106 years (Spitzer 1965). Most clouds would approach gravitational 
instability in about 5 collision times, since then the typical mass would be about 100 
times that of an average cloud, a value about equal to that of the observed unstable 
clouds. Unless some other effect intervened, the gas would turn to stars in about 3 X 107 

years, rather than in 8 X 109 years, the observed time scale of star formation according 
to Schmidt (1959). 

It appears that the Oort scheme without feedback would not agree with observation. 
It is true that we have not included in the above discussion the time which a massive 
unstable cloud takes to form stars after it has begun contracting. The purely gravita- 
tional theory of this process, called fragmentation (Hunter 1962, 1964), shows that 
while the cloud as a whole is freely falling to high density on a time scale of (37r/32 
Gp)1/2~ 2 X 107 years, density fluctuations within the cloud can become unstable and 
separate out into protostars. This theory suggests that the whole process would be over 
in about 2 X 107 years, only f of the time calculated above for massive clouds to form in 
the first place ; this certainly would not extend the time scale of star formation signifi- 
cantly. 

It has been pointed out by many authors that centrifugal and magnetic forces ignored 
in the analysis of pure gravitational instability will play an important role in the frag- 
mentation process, as such forces become relatively more important as the density rises. 
Much current research is aimed at discovering whether these forces really do inhibit star 
formation significantly or not (see Spitzer 1965 for a review). If we agree with Oort that 
star formation does begin primarily through the instability of large clouds, there is obser- 
vational indication that such forces cannot inhibit star formation in the required degree 
without additional help from another mechanism such as the feedback in Oort’s scheme. 
For if they did, star formation in a given massive cloud would have to sputter along for 
some 8 X 109 years. This would result in an enormous range of ages for the stars which 
are formed in a single cloud. Instead, one characteristically finds a cluster or association 
all of whose members are of the same age within narrow limits. Indeed, the spread of ages 
may approach the absolute minimum, some fraction of the free-fall time. 

There seems to be no escape from the conclusion that the Oort scheme is a workable 
hypothesis only if the inhibition of star formation by the dispersal of a considerable 
fraction of an unstable cloud into small stable clouds is effective enough to explain the 
present low rate of star formation in the solar neighborhood. This paper is aimed at cal- 
culating the rate of star formation from Oort’s model. We shall find that the rate calcu- 
lated using reasonable estimates for the necessary parameters is low in agreement with 
observation. In the process we shall derive an expression for the mass spectrum of inter- 
stellar clouds, and an expression for the dependence of the rate of star formation on the 
density. The latter is similar to one put forward on empirical grounds by Schmidt. 

II. MODEL OF INTERSTELLAR CLOUDS 

A statistical-mechanical description of Oort’s scheme would be based on N(M, v, t), 
the number of density of clouds of mass between M and M + dM and in velocity range 
v to v dv at time t. In this preliminary study we shall assume that all clouds have the 
same speed and are isotropically distributed in velocity, thereby suppressing the velocity 
variable and making N(M, t) the quantity of interest. We shall further assume that the 
process of cloud creation described above always yields small clouds of the same mass, 
and that cloud collisions are completely inelastic, so that collisions invariably lead to the 
coalescence of the collision partners. While these assumptions are not very accurate (see 
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§ VII), they lead to helpful simplifications. In particular, it follows that all clouds must 
have masses which are some integral multiple of the mass of the small newly created 
clouds. We denote this integral multiple by m. 

Three processes contribute to dN{m1 t)/dt. First we have a positive contribution from 
coalescence of smaller clouds of masses m' and m — mr to form a cloud of mass m, for 
which the expression is 

m —1 
I a ( m', m — mf) N (m') N (m — mf), (D 

m' = 1 

where 
a(my m') — <j(my m

f) (| v{m) — v(m') \ ) (2) 

is the rate coefficient in terms of the effective collision cross-section <r. Equation (1) is 
correct only for binary collisions, the dominant process when the fraction of volume filled 
by clouds is <3C 1. The actual fraction is estimated to be about 7 per cent (Spitzer 1965) so 
that this assumption is fairly good. 

Similarly, there is a negative contribution from collisions of clouds of mass m with all 
others, for which we have the expression, 

ml 

— N(m) ^ a(m, m') N (m'), O) 
m' = 1 

where mi refers to the largest stable cloud present. Rapid collapse of clouds of 
mass > Wi + 1 is taken care of by simply specifying that N(m) = 0 for such masses. It 
is useful to have an expression for the amount of mass per unit volume per unit time 
going into such unstable clouds : 

U = ^ a(m', m") N (m') N m" ). (4) 
m' — 1 = — + l 

Finally there is an input of small clouds of unit mass which accompanies star formation 
in massive clouds. Evidently this input is 

rjUô(mf 1) , (5) 

where 8 is the Kronecker delta and r¡ is the mass fraction of a massive cloud that is sent 
back into the medium in the form of unit clouds (rj < 1). 

The fundamental equation is therefore 

dN ( m, t) 
m —1 

I ^ a ( mf, m — m') N (mf) N (m — m') 
m' = 1 

— N (m) ^2 m')N(m') + r¡Uó(my 1). 
m'=l 

(6) 

In principle, equation (6) could be solved numerically for any prescribed initial values, 
N(my / = 0). It is possible, however, to find solutions which are separable in m and t; 
these are discussed in the following section. It is shown in Appendix II that a particular 
solution of this type (for Wi —» °° ) must be attained asymptotically as / °o, no matter 
what the initial conditions are. 

As a practical matter we have considered only the simple case a(my m') — const. Such 
an assumption implies that all clouds have the same cross-section and speed, irrespective 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
65

A
pJ

. 
. .

14
2 

. .
56

8F
 

No. 2, 1965 STARS AND INTERSTELLAR CLOUDS 571 

of their mass. This assumption can undoubtedly be improved. The case in which all 
clouds have the same density and are in equipartition is formulated in Appendix III. 
The equation anologous to equation (6) is derived but not solved. 

III. SEPARABLE SOLUTIONS 

A separable solution can be written 

N(m, t) = A{t)p{m), 

where A (/) is the total number density of clouds, so that 

(7) 

(8) 
m—l 

Equation (6) can then be written 

1 dA 
a A2 dt 

1 r 
-p{ 

Jr ^ ' m' = l 
m ) 

(9) 

+ %'oà(M,l)y^ ^ P(m')P(m")(m'+ m")\, 
 / 1  / /    / I 1 J m'—l = —ra' + l 

using equation (4). (Note that a = const.) The separation of equation (9) with the 
(dimensionless) separation constant —a leads to 

to which the solution is 

dA 
dt 

A ( t) 

= — aaA2, 

A(0) 
l + aß^4(0)/ 

(10) 

(ID 

Since aA is the cloud collision frequency, a can be interpreted as the fractional loss of 
clouds (and therefore mass) in one collision time. The problem formulated at the end of 
§ I can therefore be stated: Does Oort’s model predict that a is about 10-3? 

The term a is determined as an eigenvalue of the equation for pint), 

m—l 
— ap(tn) ^2 p{'inf)p{in — mf) — p(m) 

m' — l 
(12) 

+ 1)^ ^ p{m')p(m")(m'+ mn). 
m, = l m' ’ — m1 — m'+l 

Evidently a is a function of rj and Mi, which are natural physical parameters of the the- 
ory. Equation (12) is simplified by the introduction of 

p*(ni) 

and 

p(m) 
1 — a 

ß = v^ 2 p*{m,)p*{m"){m'+ m"), 
m/ — ! mr ’ = ml — m, + 1 

(13) 

(14) 
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to 
m — 1 

p*(m — m') — p*(m) +iß8(m, 1) = 0. (is) 
m' = 1 

In this form, the equation can be solved recursively by numerical methods, since p* (m) 
can be calculated from its values for m' < m. In fact we employed this numerical ap- 
proach first, and the analytic solutions developed below were found only after computer 
solutions were available. 

Before proceeding to the solution, we sketch the method by which the eigenvalue 
a (mi, r¡) is determined. Given a value of ß we solve equation (15) for p*{m; ß). Then for 
a given value of mi, a(mi, ß) is determined from equation (13): 

a (mi, ß) = 1   . a 6) 
m, 

^pxim; ß) 
m = l 

The term rj (mi, ß) is determined from 

rt(mllß) = \l+ri mp,(m-,ß)\ \ (17) 

which is shown in Appendix I to be equivalent to equation (14). The elimination of ß 
between equations (16) and (17) yields a(mi, 77). 

We now proceed to the analytic solution of equation (15) for p*(m), given values of 
mi and ß. This is accomplished through Laplace transformation of functions of m. Define 

00 

P*(z) = '£zmp*(tn). (18) 
m = l 

For those values of z for which the above series converges, we have the transformed ver- 
sion of equation (15): 

/>*2( z)2 - 2(/>*(z)> + ßz=0. (19) 

Equation (19), of course, has two roots, one of which is irrelevant because it does not 
approach zero as z approaches zero, as required by equation (18). The other root is 

¿*(2) = 1 - (1 - #01/2, <20> 

which may be expanded in a power series in z and compared with equation (18). The 
comparison yields the solution for p* (m) : 

p*(m) 
1 ( m — f ) ! — : A' ß m 

2 v7T m! 
(21) 

We note that p* (m; ß), the solution for arbitrary ß, is related to that for ß = 1, (m; 1), 
by 

p*(m; ß) = p*(nr, 1)/3W . (22) 

We therefore consider the case ß = 1 in more detail. Since 

£ 
m = 1 

oo 

p*{m-, 1) < ^p*(m; 1), 
m — 1 

(23) 

and the right-hand side is by equation (18) equal to 2 ) for 2= 1 and ß = 1, which in 
turn equals unity by equation (20), we conclude that a (mi finite; ß = 1) is negative and 
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that a(nh= 00 ; ß = 1) = 0, from equation (16). From physical reasoning we know that 
a is not negative since there is a net loss of mass to stars. Hence the only solution with 
ß = 1 corresponds to mi = °° and a = 0, which represents a steady state attained with 
the unstable cloud having infinite mass. This steady state is best understood as the limit 
of a system with mi large but finite, and a ^ 0. Evidently in this system the number of 
collisions required to increase the cloud mass to the unstable value is enormous so the 
mass drain from the system per unit time becomes very small. 

From Stirling^ formula 

1 ) 
1 p-f)! , 1 P i 3 

2 Tr m\ 2 \/fl" \ 2m 
m 3/2, m (24) 

The accuracy of the asymptotic formula can be judged from the exact result in Figure 2 
(see below). 

If mi is finite but large (the case of interest), we expect ß to be only slightly different 
from 1. ß < 1 is of no interest, because p*{m; ß) is then < p*(m; 1) from equation (22), 

Fig 1.—The parameter ß, which determines the shape of the mass spectrum, as a function of the mass 
of an unstable cloud, wi, and the efficiency of ejection, 17. 

and the sum even up to mi = °o is perforce < 1, contradicting the requirement that 
a > 0. If ß > 1, on the other hand, p*(m; ß) exceeds p*(m; 1) to an increasing degree as 
m increases, permitting the sum of all terms up to a finite value of m to exceed unity as 
required with a > 0. Evidently the mass spectrum will show an upturn for sufficiently 
large values of m. Using equations (22) and (24) we conclude that the upturn occurs for 

m 21nß~2(ß-l); 

mi is of this order also. 

(25) 

IV. NUMERICAL RESULTS 

The term p*(m; ß) was evaluated numerically from equation (21) for 1.000 < ß < 
1.007 and 1 < m < 3000; a(mi, ß) was computed from equation (16), r](mi, ß) from 
equation (17), and a(mi, 77) from the combination of the two. 

Curves of constant ß in the mi, 77-plane are shown in Figure 1. A given choice of mi and 
77 determines ß, and this can be used to choose one of the mass spectra p*(mi, ß) in Figure 
2. For example, mi = 400 and 77 = 0.4 corresponds to ß = 1.004 from Figure 1, and this 
gives the spectrum second from the top in Figure 2. The values shown are appropriate 
only for m < 400 in this example; to be converted to p(mi; ß) they must be multiplied 
by 1 — a(mh ß). 
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Fig. 2.—Mass spectra for various values of ß. Note approach to — f slope for ß = 1. Slight adjust- 
ments in the vertical scale are necessary to read p rather than p* (see text). 

Fig. 3.—The normalized rate of star formation, a as a function of the mass of an unstable cloud, mi, 
and the efficiency of ejection, rj. Note inverse relationship to both parameters. 
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STARS AND INTERSTELLAR CLOUDS 575 

The relation r¡) is shown in Figure 3. Evidently a varies inversely with both mi 
and 7?. This is expected since increasing mi inhibits conversion of gas into stars by making 
the unstable mass large and therefore inaccessible via coalescence processes, while in- 
creasing rj decreases the fraction of mass of a large cloud going into stars. 

It will be noted that the summation in equation (17) is simply related to (m) (mi, ß), 
which can be converted to (m) (mi, r¡). The latter relation is shown in Figure 4. It is 
easily shown from equation (24) that 

(m) ( mi-^ oo, 7?) = V-? (26) 

7T 

a result plotted in Figure 4. 
Calculations were checked in various ways. The identity in Appendix I was found to 

be accurate to 1 per cent in most cases. 

Fig. 4 —Mean cloud mass (w ) as a function of the mass of an unstable cloud, mi, for various values of 
the ejection efficiency, 77. The curve labeled “equation (26)” is an asymptotic result for —» co. 

V. RELATION TO OBSERVATIONAL DATA ON STAR FORMATION 

We may begin with equation (10), which states that the loss of clouds to star forma- 
tion is proportional to the square of the number of clouds. Such a law is a natural conse- 
quence of the assumption of binary collisions. It provides the basis for the interpretation 
of Schmidt’s (1959) empirical law of star formation: 

dfr-Kpi' 

where is a constant > 0, and p is the mean density of gas. Now 

p = A(m )Mq , (28) 

where ilfo is the mass of a unit cloud. If Mo, Mi (= miMo), and rj are independent of 
time (being determined by relatively constant physical processes), then mi and hence 
(w) are also independent of time for the separable solution. Equation (27) is then equiva- 
lent to 

d A 
-KimyMoA2, (29) 
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which is identical with our equation (10) if 

Vol. 142 

K 
aa 

(30) 

Thus Schmidt’s empirical law of star formation can be readily interpreted using the Oort 
model as formulated here. 

Equation (30) in principle provides a way to determine Schmidt’s constant K theo- 
retically. Instead of using K, we may work with a time constant for star formation at the 
present epoch, 

TS 
/ iiPV1 

\ p dtj 

From equations (27), (28), and (30), we find that 

1 
a =  A * aArs 

(31) 

(32) 

Equation (32) supports the previous interpretation of a as the fractional loss of mass in 
one collision time. As mentioned previously, Schmidt (1959) has estimated that rs = 
8 X 109 years, while Spitzer (1965) states that the mean collision time is 6 X 106 years. 
Therefore, the value of K will agree with that implied by Schmidt if a = 8 X 10“4. 

The term a can be estimated theoretically if the basic physical parameters of our 
theory, M\ and r¡, can be derived either from theory or from observation. We attempt to 
estimate these parameters below. 

ifi, the mass of an unstable cloud where star formation is occurring, has been given by 
Oort (1954) as about 4 X 104 Mo. Similar values have been shown theoretically to be 
on the verge of instability by Spitzer (1965). The mass unit clouds emerging from 
regions of star formation is not known, but it may be assumed to be somewhat smaller 
than that of typical clouds. Oort considers that Mq = 30 Mo is a reasonable estimate. 
Hence nil = 1300. Now rj can be estimated very roughly as the fraction of the collapsing 
cloud which still remains when the first star forms which is capable of ionizing the entire 
cloud. By reference to Strömgren’s (1948) tables (as corrected by Pottasch 1960), it 
appears that an 05 star or brighter is required to ionize a cloud of 4 X 104 Mo if nu = 
20 cm~3. Using the Salpeter stellar mass function (M-2 34) between the limits 0.1 and 
100 Mo, we find that about 4 per cent of the matter goes into initial main-sequence stars 
of mass > 40 Mo (05). Therefore to obtain one 05 star, slightly more than 103 Mo of 
gas is necessary. This is about 3 per cent of the mass of the cloud, so rj would be about 
97 per cent* This estimate is based on the assumption that most of the gas remaining 
when the first 05 star is formed is ejected and forms unit clouds. If a single fainter star 
capable of ionizing only a fraction of the gas were adequate to disrupt the cloud (through 
shock waves from its H n region), rj would be larger. On the other hand, if several O stars 
are formed simultaneously, even though not needed, rj would be smaller. We note that 
the mass of the cloud going into stars agrees roughly with the masses of clusters and 
associations. 

Figure 5 is a theoretical plot of a versus rj for various values of mi. The region of inter- 
est is in the lower right-hand corner. If mi = 1300 and r¡ = 0.97, one obtains a = 
6 X lO^4, in remarkable agreement with the value derived from observational data. In 
view of the great uncertainty of our estimates of mi and rj (not to mention the approxi- 
mate nature of the theory) this shows only that the theory is not badly inconsistent with 
observational data on star formation. 

The very small value of a means that the rate of star formation is low in the solar 
neighborhood. We can now see why it is so low in physical terms. Consider what would 
happen if even the smallest interstellar clouds were on the verge of instability, so that 
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mi = 1. It is readily shown from the basic equations that in this case, a = 1 — rç, or 
0.03, using our estimate for rj. This is the rightmost line in Figure 5. This has the straight- 
forward interpretation that 1 — 77 of the cloud mass goes into stars on each collision, 
because of the tendency for the bright stars to fragment the unstable clouds. 

On the other hand, the actual value of a for m\ = 1300 is 6 X 10-4, only 0.02 times as 
large. This factor is to be explained as the inhibition factor due to the necessity for a unit 
cloud to make very many collisions before becoming unstable. This in turn is due to the 
large value of m\. This interpretation is borne out by Figure 5, which indicates that if 
?7 —> 1, a = /(mi) (1 — 77), where/(mi) is a decreasing function. 

VI. RELATION TO OTHER OBSERVATIONAL DATA 

The theoretical mass spectrum corresponds to ß < 1.001 and is therefore very close 
to the spectrum given by equation (24), the lowest line of Figure 2. Since a <<C 1, equation 
(24) can be used to obtain p(m) directly. We shall make some specific comparisons in 
what follows. 

Fig 5 —The normalized rate of star formation, a, as a function of the ejection efficiency, 77, for various 
values of the mass of an unstable cloud Note approximate proportionality to 1 — 77. 

The term ^(1) should represent the fraction of all clouds which are unit clouds. Equa- 
tion (24) predicts that p{\) = 0.50. These clouds are theoretically carrying the kinetic 
energy from H11 regions needed to offset the dissipation in cloud collisions; they have not 
yet experienced collisions themselves. Therefore we may tentatively identify them with 
the high-velocity tails of histograms of observed cloud velocities (e.g., Spitzer 1965, Fig. 
1). Indeed, negative radial velocities predominate in these tails as would be expected if 
the high-velocity clouds were seen projected against the stars that repel them. The ob- 
served fraction of such clouds ( | a | < 15 km/sec) is about 15 per cent. This value should 
be corrected upward because the cross-section of a unit cloud is less than that of a typical 
cloud, and downward because unit clouds are not distributed uniformly, but tend to oc- 
cur near hot stars where they are more readily seen. The correction for cross-section is a 
factor of 9 if all clouds have the same internal density (assuming {M) = 870 ifo, as 
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below). The downward correction is uncertain, so that all that can be said is that the 
observational value of ^>(1) is < 1. 

From Figure 4 we obtain (m) = 29, so that (M) = 870 Jtfo, in rough agreement with 
Spitzer’s estimate of 400 Mo for the “standard” interstellar cloud. 

Schatzman (1950) and Münch (1952) have pointed out that some spread in cloud sizes 
is indicated by the statistics of color excesses. The same follows from calcium-line inten- 
sities according to Takakubo (1958). Both found it necessary to introduce clouds that 
were more effective than the average. Münch found that his data could be explained if 
9 per cent of the clouds had five times the average color excess, while Takakubo required 
3 per cent of the clouds to have nine times the average line intensity. If we assume that 
all clouds have the same density, these figures correspond tom = 2500 and 14600, respec- 
tively. The integral mass spectrum corresponding to equation (24) is 

m -1/2 (33) 

which gives 1.1 and 0.5 per cent as the predicted number density of the clouds considered 
above. The observed numbers will be greater because of the increased cross-section. If 
we assume a constant-density model, the observed numbers should be 28 and 40 per cent, 
respectively—three and ten times the numbers actually observed. If the constant-density 
assumption is correct we conclude that the theoretical mass spectrum disagrees with 
these observations. Perhaps more massive clouds have higher density because of the 
increased effectiveness of self-gravitation; this would tend to improve the agreement. 

A final test concerns the fraction of all clouds that are massive objects in which star 
formation is presently under way. The mass per unit volume going into star formation is 
equivalent to aaA2(m) unit masses per second, from equation (10). The mass going into 
unstable clouds is (1 — t?)-1 times larger, so that the number of unstable clouds formed 
per unit volume per unit time is 

Æa^2<OT> (34) 
Mi(l — rj) 

and the fractional number of such clouds is 

a(m} 
mi(l — rj) 

a At F i (35) 

where t/? is the time during which star formation and H n regions are conspicuous in the 
cloud. Taking a = 6 X 10~4, (m) = 29, Wx = 1300, 1 - 77 = 0.03, = (6 X 106 

years)-1, and tf = 107 years, the theoretically predicted fraction is 8 X 10-4. The ob- 
served value may be found from Oort’s estimate of five massive clouds undergoing star 
formation within a distance of 1.5 kpc, corresponding to about 3.5 such clouds per kpc3. 
Spitzer (1965) adopts ^4 = 5 X 104 per kpc3; estimates listed by van de Hulst (1958) 
indicate that this may easily be in error by a factor of 3. Adopting Oort’s and Spitzer’s 
estimates, we find that the observational estimate for the fraction of all clouds which are 
undergoing star formation is 7 X 10-5, one-tenth of the theoretical estimate. In view of 
the uncertainties the agreement is perhaps acceptable. 

VII. SUMMARY AND CONCLUSIONS 

The statistical model of interstellar cloud collisions based on Oort’s scheme presented 
here is in reasonable agreement with observation in several respects. First, it explains 
qualitatively why star formation varies as the square of the density. Second, it explains 
quantitatively why the rate of star formation is so low (a is small), if one adopts not 
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unreasonable values for the parameters m and 77. Third, it predicts an m_3/2 mass spec- 
trum which appears to agree roughly with observation as regards the number of young, 
rapidly moving clouds, the mean mass of all clouds, and the number of clouds consider- 
ably larger than the average. This degree of agreement suggests that the model should be 
developed further. 

We may call attention to several deficiencies of the present model. First, the adopted 
expression for a is unrealistic, and should probably be replaced by one reflecting a positive 
correlation between mass and cross-section, and a negative correlation between mass and 
velocity. The discussion of Appendix III is a step in this direction. Second, our concept of 
cloud collisions is too idealized. In particular the effect of splintering into smaller clouds 
(Kahn 1955) was ignored. Third, the supposed hydrostatic equilibrium of individual 
clouds is open to grave doubt, as no one has explained satisfactorily why there should be 
a low-density high-temperature region uniformly pervading the intercloud regions and 
preventing clouds from expanding. An equally plausible model would be that “clouds” 
really represent compressed regions behind shocks which originate from regions contain- 
ing hot stars and supernovae, while the “intercloud regions” represent regions recently 
affected by an expansion wave. It is conceivable that something like the present statisti- 
cal model would be applicable to the interaction of such a collection of shocks and expan- 
sion waves. Finally, we may mention the problem of generating new quickly moving 
clouds at the boundaries of H11 regions. While a start on this problem has been made 
by Oort and Spitzer (1955), it cannot be regarded as completely solved. In particular, the 
mass distribution of new clouds undoubtedly involves a considerable range of masses. 
All of these points call for further theoretical study. 

On the observational side, the greatest need is for clear-cut data on the density dis- 
tribution in interstellar space. It is well known that optical absorption-line data provide 
high resolution but inadequate sky coverage, while 21-cm data have suffered from the 
opposite defect. What is needed is an intensive 21-cm survey of a fairly large region, 
utilizing the highest possible angular and frequency resolution. Such a survey is planned 
with the 300-foot antenna of the National Radio Astronomy Observatory. It is possible 
that entirely new techniques could be applied to the problem. One that comes to mind is 
the observation of the infrared spectral lines and continuum in the lO-lOO-^t region, 
which should give evidence on dissipation and subsequent radiation in cloud collisions. 

Finally, it is suggested that the model be developed into a true dynamical theory by 
inclusion of the velocity variable. Such a theory should provide the basis of understand- 
ing how energy flows from hot stars into the cloud motions, as well as how mass is ex- 
changed between clouds of various masses. If successful, the rms velocity of clouds might 
be derived, instead of assumed as in the present paper. 

We are indebted to Dr. Lyman Spitzer, Jr., for helpful suggestions. The work was 
partially supported by the National Aeronautics and Space Administration under re- 
search grant NsG-414. The IBM 7094 computer facility used in the project is supported 
partially by the National Science Foundation under grant NSF-GP 579. 

APPENDIX I 

PROOF OF EQUATION (17) 

First multiply the basic equation (15) by and sum over all values of m. The result is 
mi m-l , v 

m = lm m' =\ ^ 
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The first term is found to be equal to 

Vol. 142 

m1 ml 

^ mp* (m — m') 
m'— 1 m = m' 

(1.2) 

by interchanging the order of summation in the usual way (since ÿ*(0) = 0). Letting m" = 
m — m'j we find that this can be written 

(m' + m")p*(.m')p*(m"), 
m' — 1 m' ' — 1 

which equals 

y! "ÿ (m' + m")pil;(m')p*(m") 
m/ = l m ' ' = 1 

iWj ml 

— y y {m' + m")p*{m')p*(m"). 
m' — 1 m' ' =*mx — m' 

(1.3) 

(1.4) 

The first term of equation (1.4) is readily shown to be equal to 2<w>/(1 — a)2, while the 
second is equal to fi/t) by equation (14). When these results are substituted into equa- 
tion (1.1), we have 

<m> ini') 
1 — a 

H/3 = o, (1.5) 

which is equivalent to equation (17). 

APPENDIX II 

APPROACH TO SEPARABLE SOLUTION AS /—> oo 

Suppose the input of unit clouds is F clouds per unit volume per unit time, fixed by external 
circumstances. Intuitively one expects this system to approach a steady state whatever the 
initial conditions. Indeed, in the special case wi = <» this steady state is the one described in 
Section III for the case ß = 1, where F replaces rjU. Our aim here is to verify that this system in 
fact does approach the steady-state solution independent of the initial mass spectrum Nim, 0). 

The problem is best approached through the transform of equation (6) : 

t) — aÑ ( z, t)Ñ(í, t)+Fz, <n.i) 

where we have used the fact that 

00 

according to equation (18) 

the solution of which is 

y)N(m, t) = A(t) =Ñ(\, t) 

Letting 2 = 1 in the above equation, we have 

dA 
dt 

= -aA* + F, 

2Ey/2 7 — exp[ - {2aF)VH] 

a ) 7 + exp [ - (2aF) V2/] ’ 

(II. 2) 

(II. 3) 

(II. 4) 
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where 
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A0+(2F/a)y2 

A0-(2F/a) 1/2 

581 

(II* 5) 

and 2I0 is the initial number of clouds. Hence A(f)-^ (2F/a)l/2 as /—> oo? irrespective of the 
value of A0. 

We now formally define 
Ñ(z, t) 

P(z, t) 
A(t) 

which implies 

where 

From equation (II.4) 

dp{z, t) 
P(z,0 

d A * ( /) 

dt ¿i 

= A *2(t)p2(z, t) — 2 A*2(t)p(z, t) + z 

)X/2 

1, 
dA* 

A(t). 

dt 
>0 as t—> 00 . 

In the limit of large time, then, equation (II.7) becomes 

2 \1/2 dp{zy t) 

where 
ö) dt p*-2p + z = (p-p+)(p-p~) 

P±(z) = l±(l-z)lf2 

are the roots of the separable problem. The general solution of equation (II. 10) is 

*-[p+(z)/P-(z)]exp[ - (2aF)V2(l-z)y2(t-t1)] 
p(z, t) = p— ( z) 

where 
X — exp[ - ( 2aE)1/2( 1 — z)1/2(t — ti) ] 

X = h) -p+(z) 
P(zy h) p—{z) 

(II. 6) 

(II. 7) 

(II. 8) 

(II. 9) 

(II. 10) 

(II. ID 

(11.12) 

(11.13) 

and ti is a time such that (2aF)l/2ti ^>1 (so that eq. [II.9] is correct). From equation (11.12) it 
follows that 

p(z, t)-^p-(z) = 1 — (1 — z)1/2 , /—>oo, (11.14) 

no matter what p (z, ti) is. Correspondingly p {m, t) approaches the previously derived solution 
for id = 1. 

APPENDIX III 

THE BASIC EQUATION FOR CONSTANT-DENSITY CLOUDS IN EQUILIBRIUM 

A form of a(m} m') that is useful if all clouds have the same density (so a oc m2/3) and are in 
a condition of equipartition of kinetic energy (so v oz m~l/2) is 

/ /\ o//n\ 9 w + w' a(m, m ) = 2 V (2)7rr1
2v1   7VTïï> (III-1> 

(mm )1/2 
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where V\ is the mean speed of a unit cloud and r\ is its radius. About one-fourth of all collisions 
are between unit clouds (since they make up half of all clouds). For such collisions equation 
(III.l) gives 

a( 1, l) = (47rn2) V(2) , (m.2) 

which is precisely correct. On the other hand, when one mass (say w') is much larger than the 
other (w), it gives 

//tyt 1/2 
aim, mf) = 27r V(2)r\2v\ (— ) 

\m / 
The correct value in this limit is 

a(m, mf) = irr2(mr) v (m) =7rri2^i 
m 

m 1/2 

(in. 3) 

(HI. 4) 

The ratio of equation (III.3) to equation (III.4) is 2\/(2) which ranges from 1.9 for 
m* = 10 to 0.9 for m' = 103. Thus the factor of error is reduced very considerably from that 
obtained when only a mean value of a is used. We call 27r\/(2) r^v\— è<*(l, 1)> «o. 

We now formulate the problem for the steady-state case, Wi = <». We have 

m\-\N(mf) Njm — mf) Njm) , , , N(mf) 

2 í~1 mnl2 (m — m')l12 m1/2 m m mnl2 — S(w, l) = 0.(m.5) 
0-0 

Introducing 

we may write this as 

N*(m) 
N(m) 

m 1/2 » 

-1 

m' = 1 m' = 1 

N*(m) 
m 

m’N* ( w') H 1 ) = 0 

If we define 

and 

m — l 

pint) 
N * ( m ) 

B 

(III. 6) 

(in. 7) 

(HI. 8) 

(HI. 9) 

so that p(m) is normalised, equation (III.7) becomes 

I 'y^pim')p(m — m') — p(m) — (m) (m 1 ) = 0 , (ni.io) 
m' — L 

where 
00 

52 mll2N(m) 
m — l 

mp ( m ) =  (ni.xi) 
00 

52 w~1/2V ( m ) 
m — l 

<w> = ¿ 
m = l 
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and 
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ß = (IIL12) 
aoB1 

We note that equation (III. 10) differs from equation (15) only by the addition of the term in 
<w>. It follows from equation (III. 11) that any solution N(m) must decrease more rapidly than 
m~3/2, otherwise (m) is infinite. This requirement is easily traced to the fact that large clouds 
have such low velocity that they may be considered stationary, but the rate of loss of small 
clouds by coalescence with large clouds is proportional to <r(w) N{tn), or ml/2N{m) with the 
present assumptions. If the integrated effect of such losses is to be finite, N(m) must decrease 
faster than m~3/2. (The precise value would be m~h/3 if a were proportional to m2/3.) This means 
that the mass spectrum in this case is steeper than that calculated in the text for a = constant, 
which was just m~s/2. 

The transformed version of equation (III. 10) is 

p2(z) — 2p(z) + ßz — 2 (m}( f p(z) —+v)~ 0, (HI. 13) 

where v — (mr1). This non-linear integral equation replaces the algebraic equation (19). Little 
progress has been made toward its solution. 
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