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ABSTRACT 

Structures have been determined for axially symmetric rotating gas masses, in the polytropic and 
white-dwarf cases. To solve the structure problem near the center of mass, the density and gravitational 
potential were expanded in power series in the radial variable. The coefficients in these expansions were 
themselves expanded in terms of Legendre polynomials in the cosine of the co-latitude. Analytic con- 
tinuation, and finally a step-by-step integration, gave the structure elsewhere. The truncation error was 
about 0 002 in the worst case considered. Physical parameters for the rotating configurations were ob- 
tained for values of w < 3, and for a range of white-dwarf configurations. 

The existence of forms of bifurcation of the axially symmetric series of equilibrium forms was also 
investigated. The white-dwarf series proved to lack such points of bifurcation, but they were found on 
the polytropic series for n < 0.808. The truncation error in this critical value of n is estimated at about 
0.0004. 

I. INTRODUCTION 

We consider a mass of gas rotating as a rigid body about a fixed axis. We are con- 
cerned with two cases: 

i) The poly tropic case. The gas has equation of state 

P = Kpl+lln, (i.i) 

where P denotes the pressure, p the density, and K and n are constants {n is the poly- 
tropic index). 

ii) The white-dwarf case. Following Chandrasekhar (1935) we take equation of state 

P — af(x) , p = bxs, (1.2) 
where 

f(x) = x(2x* — 3)(æ2 + 1)1/2 + 3 sinh-1 x . (i.3) 

First, we consider the polytropic case. Emden (1907) and others have investigated 
the structure of non-rotating polytropes. Milne (1923) and Chandrasekhar (1933) have 
developed a theory for rotating configurations that is accurate to first order in the rota- 
tional distortion. For n = 3, Takeda (1934) has extended the theory to give a more 
accurate description of the geometry of the surface layers. 

lî n = 0, the density of the polytrope is constant throughout. This case has been 
investigated by many writers. A detailed account is given by Lyttleton (1953). If w = 5, 
the polytrope has finite mass and infinite radius. We may approximate to this case by 
the Roche model. 

Comparing these two extreme cases, we observe important differences in dynamical 
behavior. For polytropes with w « 5, as for the Roche model, all equilibrium configura- 
tions are axially symmetric about the axis of rotation. These equilibrium configurations 
form a linear series, and are secularly stable. The corresponding series for the polytrope 
n = 0, however, has a point of bifurcation where it is crossed by a series of non-axially 
symmetric equilibrium configurations. If the angular momentum exceeds the value for 
this point of bifurcation, the axially symmetric equilibrium form is secularly unstable. 
Jeans (1919) has investigated the existence of such points of bifurcation for intermediate 
values of n. 

Schatzman (1958) summarizes the white-dwarf problem in the non-rotating case. The 
simplest of the models he describes is that of Chandrasekhar (1935). This model was 
taken as the basis of the work on the white-dwarf part of this investigation. 

The purpose of this paper is to investigate the properties of rotating polytropic and 
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ROTATING GAS MASSES 553 

white-dwarf configurations. In particular, we determine the ranges of n, or the value of 
x for the center of mass, for which the series of axially symmetric equilibrium configura- 
tions have bifurcation points. This project requires much calculation. The calculations 
were performed on the Mercury computer in the University of Manchester, mostly in 
1961 and 1962. Part of this work was included in a Ph.D. thesis submitted to Manchester 
University early in 1962. 

II. FORMULATION OF THE STRUCTURE PROBLEM 

We take the center of mass as the origin of coordinates, and denote the distance from 
the center of mass by r, the cosine of the co-latitude (measured from the axis of rotation) 
by M, and the longitude by 0. We let Sk denote the gravitational potential, co the angular 
velocity. 

The structure of the configuration is determined by Gauss’s theorem: 

r fJL2) —\ + r~2 (1 — M2)“1 —T = — 4:TrGp (2.1) 
O fJLJ d<t>2 

together with the equations of hydrostatic equilibrium: 

In the following, we 

In the region p ^ 0, 

dP d*. 2 ri — =p—+PC0 f(l-p ), 

9P <3* . „ _=p__pwVV) 

dP= d£ 

d0 ^ d0 * 

(2.2) 

(2.3) 

(2.4) 

attach the suffix c to a quantity to denote its value at r = 0. 

a) Polytropic Case 

we define the dimensionless variable 0 by the equation 

P = pc0
n . (2.5) 

From equations (1.1), (2.2)-(2.5), we find 

where 

e ,i' + 2(« + i)irpc
1/’*r2(1 ^'>+c< 

(2.6) 

0 =y$r/(n+ l)Kpc
l/n , (2.7) 

and C is a constant of integration. For convenience, we take C = 0. By equation (2.5), 
0 = 1 at r = 0, so that 

We adopt equation (2.6), with C 

Then, if p 0, 

and otherwise 

We write 

where 

1 at r = 0. (2.8) 

0, as the definition of 0 throughout space. We define 

p/pc . (2.9) 

0W, (2.10) 

0. (2.11) 

a?, (2.12) 

(n+ l)K/±TGpc
1-1,n . (2.13) 
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554 R. A. JAMES Vol. 140 

The substitutions (2.7), (2.9), and (2.12) reduce equation (2.1) to the form 

) 

and equation (2.6) to 

_ 

where 

From equation (1.3), 

We substitute for x from 

df 

0 = ^+,4ai-M2), 

A = oo2/8irGpc. 

b) White-Dwarf Case 

= S^d+tf2)-1/*. 

(2.14) 

(2.15) 

(2.16) 

dx 

y2 = 1 + a:2 xdx = ydy. 

Thus, we reduce equations (2.2)-(2.4) to the forms 

b dr dr 

Sa d y dV , , 
b dß dß 

Sa dy _ cM 

b ~d4>~ d(¡>' 

These equations integrate to 

11 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

where, as before, the constant of integration is taken as zero. The symbols 6 and ÿ are 
defined by 

y=yc6, (2.23) 

We now write 

80 
= = yd. 

a2 = 2a/ TrGb2y2, 

A = i^/^Gy2, 

D = yc-
2. 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

With these definitions, the substitutions (2.9) and (2.12) reduce the equations of the 
problem to the forms (2.14) and (2.15), together with 

p' = (02_ £>)3/2 if 

= 0 otherwise . 

P'^0, (2.28) 

(2.29) 
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c) Boundary Conditions 
At £ = 0, 

^ = 1 , (2.30) 

dx/z/di; = 0 . (2.31) 

Outside the configuration, ^ is a free-space potential. Thus, if we expand 

’/'= 'I'ikPjjp ) COS ( k<j) + ôjk), (2-32) 
?, h 

where the PfipYs are the associated Legendre polynomials, then 

¿^ + ^ = 0 (2.33) 

outside the body. 

III. CALCULATION OF THE POTENTIAL FOR THE AXIALLY SYMMETRIC CASE 

In the case of axial symmetry, equation (2.14) reduces to 

Equations (2.10), (2.11), (2.15), (2.28), and (2.29) do not change. We denote the values 
of £ corresponding to the polar and equatorial radii of the configuration by and £e, 
respectively. In this section, we discuss the determination of the potential for £ < £p; 
\[/ is clearly an analytic function of £ in this region. 

Near the center of mass, we obtain \¡/ by substituting into equation (3.1) a series in 
ascending powers of £. We extend this solution to £ = £p by analytic continuation. We 
divide £ < £p into region 1, where we use the expansion about £ = 0, and region 2, the 
rest of the region £ < £p. 

a) Solution in Region 1 
We expand ÿ, p' as 

Ÿ = ^ ^ ^4 ij £ lPj ( P ) , (3.2) 
i, 3 

p' — ' (3.3) 
i, 3 

The coefficient Bpj is a function of A and the coefficients An, i < p. We discuss the 
practical determination of Bpj later. 

The boundary conditions at £ = 0, equations (2.30) and (2.31), give 

Aoj=dojy (3.4) 

A\j = 0 , (3.5) 
where 5# is the Kronecker delta. 

Lichtenstein (1933) has shown that all equilibrium forms for rotating fluid masses 
are symmetric about the equatorial plane. Thus An, Bn vanish for odd7. In addition, 
it is easy to show that they vanish when i is odd, and when i < 7. Thus 

An = Bn = 0, odd iorj,ori<j. (3.6) 

We substitute equations (3.2) and (3.3) into equation (3.1) to find 

[i(i + 1) — 7X7 + l)]An = —Bi-2, j. (3.7) 
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Equations (3.4)-(3.7) determine all coefficients A# for which i j. If i = y, equation 
(3.7) is satisfied for any value of An. Thus, any set of coefficients An, i = 2(2) oo, deter- 
mines a solution of equation (3.1), satisfying the boundary conditions at £ = 0. The 
coefficients An are determined indirectly by the boundary conditions (2.33). 

We terminate the ju-wise expansion for ^ with the term in Pio(m)- The truncation 
error depends on n (or D) and A. It is less than 2 X 10-3 in the cases which interest us. 
We terminate the £-wise expansion at £ = £o, where 

max(^420 y£o20) = 10~10 (3.8) 
3 

defines £o. This choice of the last term is a compromise between the need to maximize 
£o, and the need to minimize the calculation to find the expansion (3.2). 

b) Solution in Region 2 

We assume that \[/, dx///d£ are known at £ = £i. We substitute 

£ = £i + *? 
in equation (3.1) and obtain 

,’!^+2,!f+¿[a-"!)5]+,v+2í,[’’ drj2 drj VP '] 

In this equation, we substitute 
¿=10 ¿=30 

¿=0 ¿=0 

¿=10 

We find 

We know 

i ¿=0 

i{i l)£i2a¿¿ = [(i l)(t 2) j(j -f- l)]a¿_2, ¿ ßi—i, j 

— 2£i[(i — l)2a¿_i, ¿ + ßis, ¿] — £i2/3¿_2, ¿ . 

ao¿ = ^¿(£i) , 

ai¿ = . 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

Thus, we may find all coefficients a¿¿, and determine \//j, d\¡/j/d% at 

£ = min (£i', £p) , (3.16) 
where 

£l' = £l + ^ (3.17) 
and 

max(aio ¿Ä10) = 10"10 . (3.i8) 
j 

Initially, we take £i = £0. We repeat the process until we obtain xj/j, dyf/j/d^ at £ = £p. 

c) Determination of the Coefficients BPj, ßVJ 

We work in terms of the expansions (3.11) and (3.12). Our arguments apply to region 1 
if we interpret an as A2í, ¿ and ßn as ¿2í, ¿. 
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No. 2, 1964 ROTATING GAS MASSES 557 

Consider the situation when we know a#, i < p. Let dv(ix) be the coefficients of 
7jv in the expansions of 6, p' about £ = £i. Then 

dp( ft) = ßpjP(3.19) 
i 

and by the orthogonality of the Legendre polynomials, 

ßpj =: i j h) J* dpi ß) Pj ( fJ,) d ¡J, . (3.20) 

We evaluate these integrals by an eleven-point Gauss-Legendre formula (Kopal 1961). 
Since our integrands are even functions of p, equation (3.20) reduces to the form 

& 

ßpj = i j Hsdpi fX^Pji p5) . (3.21) 
s = 0 

We find dpivs) as follows. The coefficient 0¿(ps), i < p, may be found from the known 
part of the expansion for ^(£, p) about £ = £i. In the polytropic case, we raise this series 
to the wth power by means of the binomial theorem. In the white-dwarf case, we write 

02_£>= _£>+^ (¿0r0i-r) I?4, (3.22) 

and raise the series (3.22) to the power 1.5 by the binomial theorem. 

IV. SOLUTION IN THE SURFACE REGION 

We refer to the region £2, < £ < £e as region 3. In region 3, p, p' are not analytic 
functions of £. If r > ^ for the polytropic case, or r > 2 for the white-dwarf case, 
drpf/d£r is discontinuous across the surface, by equations (2.10), (2.11), (2.28), and 
(2.29). Clearly therefore, drp/d^r is discontinuous across the surface if r > w + 2 for 
the polytropic case, or r > 4 for the white-dwarf case. 

We write 

'I'= y f4-1) 
7=0 

y=io 

p'= ^p/(OA(m). 
7 = 0 

Substituting into equation (3.1), we find 

d2 d 
- ep/ 

The substitutions 

lead to the equation 

_d_ 

dt 

'Pi = , 

aj= 1 

d£ bi~ ^ ,pi' ' 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
64

A
pJ

. 
. .

14
0.

 .
55

2J
 

558 R. A. JAMES Vol. 140 

The set of equations (4.5) and (4.6) is integrated from to %e by the Runge-Kutta 
method. The initial values of aj, bj are determined from those of d\f/j/d^ at £ = £p. 

We determine the coefficients p/ by inverting the expansion (4.2). We obtain 

p/(£) = ti)Pj{p)dß 

We suppose that 
M = M'(0 

gives the boundary of the configuration. We substitute 

/x = n't 
into formula (4.7) to find 

p/m = (i+Dp'/Vm n'nPiiß'odt. 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

By the symmetry about the equatorial plane, 0(£, /x) is an even function of /x. Thus, 
in the polytropic case, 

0(£, /x) = (1 - /2)g(/2) , (4.11) 

and in the white-dwarf case, 
0a(£, /x) - = (1 - t*)g(ñ , (4-12> 

where g(l) ^ 0 in general. Thus, the integrand in formula (4.10) behaves approximately 
as (1 — t2)n in the polytropic case, and (1 •— ¿2)3/2 in the white-dwarf case. We evaluate 
the integrals (4.10) by the appropriate Mehler-type quadrature formula. A general 
f-point Mehler formula gives 

accurately for g(t) a polynomial of degree (2r — 1) in t, iî u, v > — 1. In this case, we 
could use u = v = nior the poly tropic case, and u — v — l.S for the white-dwarf case. 
However, we need to evaluate integrals of the form 

or f\l-Py/*G(t2)dt 

simultaneously with the integrals (4.10), (see section V), so we use u = v = n — 1 ioi 
the polytropic case, and u = v = 0.5 for the white-dwarf case. 

In the polytropic case, the computer reads the value of n, and immediately calculates 
the weights and abscissae for the Mehler formulae. The error is of order 10“6. 

It is not possible to integrate equations (4.5) and (4.6) from £p to £e as they stand. 
By the symmetry about the equatorial plane, 

dß' 
 > oo as (4.13) 

Thus, n is not a well-determined function of £ near £e. We change to /x' as independent 
variable, and solve the equations 

jLa=biy>H- 
dß'“3 dß3’ 

dß' 3 p3* dß3’ 

dH 

dn 

_ ( /d£) 

(dß/ d£ V * 

(4.14) 

(4.15) 

(4.16) 
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The Runge-Kutta process has truncation error proportional to h* for integration with 
constant step length h over the interval (1, 0). The value of h required depends on n or 
D, and A. We describe the procedure for determining h later. 

a) Stability of the Integration through Region 3 

We are concerned with the stability of equations (4.14) and (4.15) for integration 
from p = 1 to ß = 0. The term dÇ/dp' is negative throughout this rangé, and thus the 
problem reduces to that of the stability of equations (4.3) for integration in the direction 
of £ increasing. Suppose that, for a particular value of £, each i/'/Ö is subject to a small 
error <5y(£). Let the consequent errors in p, p', and p/ be bp, bp', and bp/, respectively. 
We neglect terms in bf. In the region p 0, 

where 

Thus 

Sp' = bkPk(p), 
k 

p*' = dp'/dd . 

àp/ = ( i + i ) hj P * 'PjPkdp + contribution from the boundary. 

(4.17) 

(4.18) 

(4.19) 

The last term in equation (4.19) arises from integrating bpr over a range bpf, and is thus 
of second order in the b/s. Therefore, we obtain 

where 

£25p/ = ^ f_ikbk, 
k 

/¿kin) = (j+h)t2 r'p*'PjPkdp. 

(4.20) 

(4.21) 

The functions xf/j, (\¡/j + b/) both satisfy equation (4.3). Therefore, we obtain 

^ ^3 + 2% -JJ Sj — j( j + + ^2 flkh = 0 . (4.22) 

These equations govern the stability of equation (4.3) for integration in the direction of 
£ increasing. 

One result is easily obtained. By their definition, the//¿(£)’s are very sensitive to the 
magnitude of the distortion from spherical symmetry. If this distortion is small enough, 
we may neglect the fj/s, and reduce equation (4.22) to the form 

d2 d 
£2 ^'“1“ 2£ ôy — i( i + 1 ) = 0 . (4.23) 

The ô/s are now mutually independent, and the general expression for any one of 
them is 

bj = Ajÿ + . (4.24) 

Thus the equation (4.3) is unstable for integration in either direction if the distortion 
is small. 

We now consider the case of rapid rotation. The behavior of equation (4.3) depends 
critically on the functions//*:(£). As an example, we consider the polytropic case for 
^ = 1. For the non-rotating polytrope, £*, = £e = 3.14. If we take £ ~ 3.14, we obtain 
£2 « 10. For # = 1, p*' = ndn~l — 1. Thus, the/y/t(£) calculated from equation (4.21) 
is comparable with the other coefficients in equation (4.22). This opens the possibility 
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that, for rapid rotation, the equation (4.3) may be stable for integration in the direction 
of £ increasing. This stability would not obtain throughout the entire range of integra- 
tion, as the fjk’s must always be small near p = 0. However, for most of the range of 
integration, the equation (4.3) may well be stable for integration in the direction of £ 
increasing. 

It would be very diffijcult to establish the stability of the equation (4.3) analytically. 
However, it is not necessary to do this. In Section V, we describe the Newton-Raphson 
process used to determine the coefficients A a. An instability in the equation (4.3) would 
lead to failure of this process. Thus the stability of equation (4.3) may be verified a pos- 
teriori. However, we would expect that whatever happened in the case of fast rotation, 
the equation (4.3) would be unstable for slow rotation. We return to this matter in 
Section XI. 

V. DETERMINATION OE THE COEEEICIENTS An 

We define 

Rj 

The boundary conditions (2.33) give 

£y=0, i= 2(2)10, 

(5.1) 

(5.2) 

a set of non-linear equations for An, i = 2(2)10. We solve equation (5.1) by the multi- 
dimensional generalization of the Newton-Raphson process (Haselgrove 1961). The com- 
puter begins with a trial set of coefficients A a, and evaluates Rj, dRj/ dA a, for i, j = 
2(2)10. The linear equations 

¿=10 
^(dRj/dAii)SAu+Rj=0, j = 2(2)10, (s.3) 
¿ = 0 

give first order corrections 8 A a to An. We replace An by (An + 8An) and repeat the 
process. The machine iterates until 

^i?y2< 2-36« IO"11. (5.4) 

We attach the superscripts 0 to a quantity to denote differentiation with respect 
to Agq. The second superscript is needed in Section IX. We differentiate with respect to 
Aqq the equation (5.1) to obtain 

Rj*0 = (5.5) 

a) Determination of \pq0 in Region 1 

We differentiate with respect to Aqq the equations (3.2), (3.3), (3.6), and (3.7) to 
obtain 

4=0 2 = 0 

p's° 
2 = 10 

4 2=0 

(5.6) 

(5.7) 
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A if0 = 0 if i ov j odd, or i< j , 

[i(i+ 1) — j(j+ 1) 1 AijVO = -^-2 y . 

p'q0 = P*'3V50 if P 7^ 0 , 

= 0 otherwise, 

A - a® = ft- Uiq • 

561 

(5.8) 

(5.9) 

(5.10) 

(5.11) 

(5.12) 

Equations (5.5)-(5.12) determine \l/q0, q — 2(2)10, throughout region 1. (The determina- 
tion of Bijq{) is discussed later.) The relative truncation error for the expansion (5.6) at 
£ = £o may be larger than that for the expansion (3.2). However, this matters only if 
the resulting errors in Rjq0 prevent the convergence of the Newton-Raphson process. 
In practice the process does converge. 

b) Determination of \pqQ in Region 2 

We use the expansion (5.6) to give at £ = £o. We calculate the analytic continua- 
tion of \f/q0 from the following equations: 

¿=10 ¿=10 

i= o ¿=o 

¿=10 

p'50 = S S ßiiq0yipi(ß)> <5-14) 

i 3 = 0 

tfid - 1 ) ai/1 = - ««»¿-2 j - ß^i-t j 
(S.15) 

— 2^i[(i — 1 )2a3°¿-i, j-\- ßq0i-3 y] -aW-í y, 

aoy«0 = tAy5°(^i), <s-16> 

aiiq0= (5,17) 

These equations are obtained by differentiating with respect to Atq the equations (3.11)- 
(3.15) . 

c) Determination of Bif®, ßijqQ 

We work with expansions (3.11) and (5.13). Formula (3.21) becomes 

/V°= (j+h)^Hspp'
qO(Hs)Pj(ß.)- <5-“» 

s=0 

We use the binomial theorem and the rules for the multiplication of power series to 
construct the series expansion for p*' about £ = £i. We multiply this series by the known 
part of the series for ^3°(£, ps), to obtain the series for p'q0. 

d) Determination of \l/q0 in Region 3 

We differentiate with respect to Aqq the equations (4.1), (4.2), (4.4), (4.7), (4.14), and 
(4.15) : 

¿=10 
^3° = ^ ^.30 (5.19) 

¿=0 
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PJ / go 

p,s0=í¿0p/30(?)Py(/i), 
3=0 

(?) = (Í+I)P'/V50(?, ß't)Pj(ß't)dt, 

, dZ 

(5.20) 

(5.21) 

(5.22) 

(5.23) 

(5.24) 

We integrate equations (5.23) and (5.24) from = 1 to /x' = 0 simultaneously with 
equations (4.14)-(4.16). Equations (5.10) and (5.19-(5.22) determine p/q0. The Hehler 
formulae used give accurate results for integrals of the form (5.22). 

VI. MISCELLANEOUS EUNCTIONS OF THE SOLUTION 

For each pair of values of ^4 or P, ^4, the computer prints the polar and equatorial 
radii, the equatorial gravity ge, the mass M and volume V of the configuration, and also 
the moments of inertia, C about the axis of rotation, and B about a perpendicular axis 
through the center of mass. The units are shown in Table 1. The computer also prints 
<4 Uj Rj, and (d'pj/d$-)%e. 

TABLE 1 

Units for Physical Quantities 

Quantity- Units in Polytropic Case Units in White-Dwarf Case 

Polar radius \ 
Equatorial radius / 
Equatorial gravity 
Mass 
Volume 
Moments of inertia 

[(»+l)X/4xGp<,1_1/n]1/2 

[43rG(»+l)i:pc
1+1/»]i/2 

47r[(»+ l^/^rrGp/Vcl3-»)/2» 
[(re+l^^Gp»1-1/»]3/2 

[(»+l)i:/43rG]5/2 p^-3”)/3" 

(2a/xG62yc2)1/2 

4'Vc2 V {2airG) 
43r(2a/7rG)3/2r2 

{la/irGWyfyi2 

§ir(2a/7rG)5/2 írV 

Of these quantities, %p, £e, \pj, d\pj/d^ A a, and Rj are immediately available. The cal- 
culation of ge is trivial. We find the mass and volume from 

-£e2(dto/dï)se, (*-i) 

V = ^Y f\3(n')dß. (6-2) 

The moments of inertia are 

£ = !/p'?4(1 + m2)<*?<W (6.3) 

and 

C=f p'£*(l — p2)d£diid(l>, (6<4) 

where the integrations are carried out over all the volume occupied by the material. 
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* - f ■ <«■’> 

Clearly 

^So,|4¿?=2^¥o(?e) -61, (6.7) 

= 2ííMiíe) - , (6.8) 

where 

/= (6*9) 

I is calculated directly from the solution for x//. 

VII. GENERAL STRATEGY 

Within certain ranges, each pair of values of n, A defines a unique axially symmetric 
equilibrium configuration. The determination of this configuration is effectively the 
determination of An, i = 2(2)10. The computing time needed for this is greatly reduced 
by starting with a good guess for the A 

For each value of n, or D, we construct solutions in order of increasing A. The machine 
estimates the Au’s for each new value of A by extrapolating from the known solutions. 
It refines the estimates to obtain a new solution. If more than five solutions are known, 
only those for the five largest values of A are used. To start the process, we take A a = 
^4 = 0 as one solution, and guess the An’s for a small value of A. These values are 
refined as in Section V, and the process continues as above. The values of A for which 
solutions are obtained are read from a data tape. The program includes facilities for 
reading a set of solutions for subsequent use in extrapolation—this permits of restarting 
the calculation of a sequence if it is interrupted. The construction of a sequence is 
stopped manually near the end. The end is defined by the equation 

ge = 0. (7-1) 

In general, a coarse tabulation is used for most of each series, together with a fine tabula- 
tion near the end. The fine tabulation permits extrapolation for terminal values of physi- 
cal parameters. 

For any particular sequence of solutions, the number of Runge-Kutta steps for the 
integration through region 3 is an increasing function of A. We denote the number re- 
quired by m. Initially, we set m = 10. After finding each solution, we check the adequacy 
of m by repeating the integration through region 3 with (m + 10) steps. If condition 
(5.4) ceases to hold, m is increased by 10, and the approximate solution is refined again. 
However, m is not reset to 10 when the An’s are extrapolated for the next value of A. 
The number of Runge-Kutta steps used is printed at the end of the calculation. Facili- 
ties are provided for setting m when restarting in the middle of a sequence. 

VIII. SPECIFICATION OE NON-AXIALLY SYMMETRIC EORMS 

The structure of a general equilibrium form is governed by the equations (2.10), 
(2.11), or (2.28), (2.29) and (2.14), (2.15). Near the origin, we assume the expansions 

^ ^ ^/(/O [Aijk cos k(¡)+Cijk sin k<¡>] , (8*1) 
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p' = ^ [Bijk cos k<t> + Dijk sin k<i>] , (8.2) 
it ]', k 

where the Pjk(fxys are the associated Legendre functions. Substitution into equation 
(2.14) yields 

[i(i+ 1) — j( j + 1) ] Aijk = —Bi-2 jk , (8*3) 

[¿(¿+1) — iO+l) = — Dí-2 jk . i8*4) 

It is easy to prove that Aijk and Cijk vanish if i < j. lij < k, Pjk(ß) = 0. By the sym- 
metry about the equatorial plane, Aijk and C^k vanish if (j — k) is odd. Thus, we can 

i write 
Aijk = Cijk = 0 , i < j , j < k , or (j — k) odd . (8.5) 

In region 1, the potential is determined by equations (8.3) and (8.4) and the coefficients 
Auk, Cuk for which (i — k) is even and positive. 

The theory of preceding sections is easily generalized to cover non-axially symmetric 
equilibrium forms. However, the Mercury computer is not powerful enough to permit 
the investigation of the general case. We are restricted to the case where the non-axially 
symmetric term in the potential is small, and may be treated as a small perturbation. 

IX. PERTURBATION THEORY FOR NON-AXIALLY SYMMETRIC FORMS 

We consider a pair of values of n, A or D1A such that an axially symmetric equilibrium 
form exists, together with an adjacent non-symmetric equilibrium form. We attach a 
suffix a to any quantity to show that it describes the axially symmetric form. We write 
the potential \¡/ for the non-symmetric form as 

^ (9.1) 

and assume that we may neglect («S^)2. For the non-symmetric form, 

0 ^ Qa > (9.2) 
so that 

p' ^ Pa + P*à\l/ (9.3) 
to first order in d\f/. 

If we substitute expressions (9.1) and (9.3) into equation (2.14), the terms in i/'«, Pa 
cancel, and we are left with a linear homogeneous equation for dÿ. We expand 

8$ — ^2 (Ÿ-kl C0S +^.*2 Sin k(j)) (9.4) 
k = 0 

and obtain the system of equations 

5?0’ 4*-‘) + «" ¿ [( 1 - *•*] + 1 - 

= — P*''l'.k , 

where \j/.k stands for either \l/.ki or ^.¿2. From the linearity of equation (9.5), we see that 
\l/.k is a linear function of the Auk's. The equations (9.5) are mutually independent, 
and we may consider each value of k separately. 

The boundary conditions (2.30) and (2.31) show that 

i/'.* = = 0 at £ = 0 . (9.6) 
We expand 

'!'*= <9-7> 
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to obtain 

i 

ROTATING GAS MASSES 

'l/jk= — P*''l'jk 

The functions ypjk satisfy boundary conditions (2.33) at ^ We define 

R 

565 

(9.8) 

(9.9) 

The residuals Rju are linear functions of the coefficients Auk for i — k(2). Thus, 

Rjk=^2(dRjk/dAQgk)AiQk (9.10) 

= ^Rjk3kAmk, (9.11) 
Q 

where the superscripts g, k denote differentiation with respect to Aq<1k. This notation is 
a generalization of the notation introduced in Section V. The necessary and sufficient 
condition for the existence of a non-axially symmetric equilibrium form, adjacent to the 
symmetric form, is that there exists a set of coefficients Aqqk, not all zero, such that 

^ = 0, all j, k. (9.12) 

Thus, we require the singularity of one or more of the matrices Rk with Rjkqk as the 
element in row (g — Æ + 2)/2, column (j — k 2)/2, when k 0, and row g/2, column 
j/2 when k = 0. 

The matrix elements Rjoq0 are the Rjq0’s of Section V. Essentially the same computer 
programs are used to compute Rjkqk, k 0, and Rjoq0. The main modification required 
is the addition of certain subroutines to the program. These replace Pj(ps) by Pjk{ßs) 
before computing expansions for \l/.kqk in regions 1 and 2, or finding pfqk in region 3. The 
Pjk(psys are renormalized so that 

f PuHp)Pvk(p)dp = -^j-r 8uv- 
J-l 2/X+l 

This simplifies the integration subroutines. With this convention, we may obtain the 
equations governing the calculation of Rjkqk from equations (5.6)-(5.24) by the obvious 
changes in notation, with the exception of equation (5.12), which becomes 

Aiikqk/ = diq8kk . (9*14) 

The rank of the matrix Rk could be determined by finding its eigenvalues. However, 
elements of Rk can be of order 1010, which introduces difficulties in the calculation of 
the eigenvalues. Therefore, the rows of Rk are first normalized to make the diagonal ele- 
ment equal to unity. We denote the normalized matrix by Nk. Thus, to locate a point of 
bifurcation, we need only find a configuration for which a matrix Nk has a zero eigen- 
value. 

The methods described above cannot be extended to include terms of the second 
order in Ôi/' for the poly tropic case. This would involve computing integrals of the form 

ea
n-^.Pkdp (9.15) 

in region 3. If w < 1, these integrals do not exist. In fact, bifurcation forms are not found 
on the axially symmetric series for n > 1. Thus, we cannot investigate the variation of 
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physical parameters along the branch series of non-symmetric forms to the second order 
in 8\f/. The investigation of the secular stability of these forms requires a knowledge of 
this variation. Thus, we cannot investigate the secular stability of non-axially symmetric 
equilibrium polytropes with the facilities available. 

X. NUMERICAL CHECKS 

The program includes an optional facility for checking the solutions obtained. The 
checks verify the adequacy of the integration formulae used in regions 1 and 2, and also 
give some security against program errors. 

In regions 1 and 2, we check the expansions for \//, \l/.kqk by back substitution for all 
£ = O.lr, r a positive integer, such that 0 < £ < When the computer tests \¡/, it cal- 
culates yf/j, £~2 d(£2di/'y/d£)/i/£ directly from the coefficients in the expansion. From 
through equations (2.15) and (2.10) or (2.28), it calculates p'(£, /¿s) and evaluates p^, 
from the formula 

p/= (i + é)¿ffsP'(£, PS)A(P.) • o0-» 
8 = 0 

The integration formula is the same as is used for computing the expansion for \//. The 
computer stores for each j the maximum value of the residual on substituting for 
£-2 ¿(£2^/i/£)/^£, p/ in equation (3.1). The adequacy of the integration formula is 
checked indirectly. For p = 0.2(0.2)1, the computer determines p'(£, p) from the coeffi- 
cients p/, and also from the coefficients i/'y. The machine records for each value of p the 
maximum deviation for all the values of £ tested. Similar checks were performed when 
required on the expansions for \p.kqk- 

In region 3, the computer checks that certain functions of £ are constant. Consider 
the integral 

L= f(Z,i+2p/dt'. (10.2) 
‘/0 

We substitute for p/ from equation (4.3) : 

(10.3) 

The computer calculates Ij(^p) by substituting £ = ^ in equation (10.3). It integrates 
from p' = 1 to p' = 0 the differential equations 

d 
dp' ij= Al 

du' 
(10.4) 

simultaneously with equations (4.14)-(4.16). At p' = 0, £ = £e, the computer substi- 
tutes Ijj y¡/j, d\¡/j/d^ into equations (10.3), and stores the residuals. No attempt is made 
to check the accuracy of the integration formulae in region 3. 

In general, the machine takes as long to check a solution as it takes to obtain it in the 
first place. Thus, only two or three solutions for \¡/ are checked for each value of ^ or D. 
The functions ^/.kqk are checked only in cases of particular interest. 

XI. GENERAL PROPERTIES OE ROTATING CONFIGURATIONS 

For a non-rotating polytrope, the mass (in units of a[n + \}Kp¿,n) is a decreasing 
function, and the dimensionless radius an increasing function of n. Thus, for fixed A, 
the importance of the rotational part of the total potential 0 increases with n. The 
maximum value of A on the series decreases with n. The central condensation of a poly- 
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trope increases with n, and the distortion of the central regions is always small. Thus, 
for fixed n, the non-spherically symmetric terms in the gravitational potential \¡/ diminish 
as n increases. The ju-wise expansion of \f/ near the end of a series converges most rapidly 
for large n. 

For values oî n < 3, the Newton-Raphson process of Section V proved satisfactory. 
For n > 3, however, the process failed to produce solutions. This phenomenon is ex- 
plained by the analysis of Section IV. It is clear that the last term on the left-hand side 
of equation (4.22) serves to stabilize the integration for ^ < 3, but that for larger values 
of n, these terms are not sufficiently large for the purpose. Fortunately, however, bifur- 
cation forms are not found when n is as large as 3, and so the region ^ > 3 is not of pri- 
mary interest in this investigation. Series of equilibrium forms were constructed for 
n — 1(0.5)3, and also for some values of n in the range (0.5, 1). To facilitate extrapola- 
tion of the terminal values of physical quantities, a fine tabulation was made near the 
end of each series. The proximity of the end of the series led to some difficulty in obtain- 
ing solutions, as dd/dit is small near £ = £e, and small errors in the potential led to larger 
errors in dit/dix'. However, an adequate tabulation was obtained in all cases except n — 3. 
In this case, the instability due to the integration through region 3, combined with 
proximity to the end of the series, rendered a satisfactory tabulation impractical. The 
numerical checks on x// described in Section X were applied to two configurations on each 
polytropic series. The results proved satisfactory in all cases. 

Series of white-dwarf configurations were obtained for D = 0.025, 0.25, 0.1, and 
0.2(0.2)0.8. The Newton-Raphson process of Section V was satisfactory in all these 
cases. Numerical checks were applied to a few configurations only, as computing time 
for more thorough checking was not available. The results of the checks performed were 
satisfactory, and served to verify the accuracy of the program for the white-dwarf case. 

Appendix Table 2 gives the variation of physical properties for the axially symmetric 
equilibrium configuration. For = 0 in the poly tropic case, Chandrasekhar (1933) 
gives the derivatives with respect to A of several physical quantities. The same deriva- 
tives are obtained by numerical differentiation of the values in Appendix Table 2, and 
a comparison is made in Appendix Table 3. In Appendix Table 4 we give the physical 
properties for the last configuration of each series. These values were obtained by numer- 
ical extrapolation of the values given in Appendix Table 2. The number of figures given 
in each case reflected the number considered meaningful. The missing values for the 
polytrope n — 3 are those considered untrustworthy. Figures 1 and 2 show the variation 
with n and £>, respectively, of the terminal values of A, the oblateness a = (£e — £p)/£e, 
and of (C — B)/C. It will be noted that the terminal value of a is not sensitive to varia- 
tion in n or D. 

a) Estimation of the Truncation Error 

When each solution of equation (2.14) is obtained, the computer prints ^y(£e), 
{d\l/j/dit)ze as part of the information for this case. Inspection of these coefficients gives 
an estimate of the truncation error due to the truncation of the ju-wise expansion of \[/. 
Where possible, this estimate was confirmed by the checking facilities of Section X. In 
Figure 3, we summarize the behavior of the truncation error near the end of a series, 
considered as a function of n or D. The truncation error in ge is approximately that in \¡/. 
In all cases, it exceeds the random error in ge, which is of order 10~6. The truncation error 
in other physical quantities is easily obtained from that in ge. The number of significant 
figures given in Appendix Table 2 reflects the magnitude of the truncation error—the 
last figure given is subject to error but is never without meaning. 

The figures given in Appendix Table 2 were checked by differencing wherever possible. 
This check proved satisfactory in the poly tropic case. The tabulation was much coarser 
in the white-dwarf case, and differencing did not give so reliable a check on the values of 
Appendix Table 2. Computing time was not available to rectify this situation. 
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XII. THE EXISTENCE OE BIFURCATION FORMS 

For the Roche model, the series of axially symmetric equilibrium forms has no point 
of bifurcation. The series terminates when the surface gravity becomes zero at the equa- 
tor. The angular velocity increases monotonically along the series. We expect a similar 
behavior for a polytrope with ^ « 5, with A increasing monotonically along the series. 
For the homogeneous case, corresponding to the polytrope ^ = 0, a bifurcation point 
exists. The series does not terminate as above. The angular momentum H increases 
monotonically along the series, and can be arbitrarily large. A has a maximum on the 
series, and —>0as¿7—»0or¿7—» oo.For other values of n, we do not know a priori if a 
series of polytropes terminates. However, all the polytropic series constructed for 

Fig. 1.—^Variation of At, o-t, ([C — B]/C)t with n in the polytropic case. Abscissa: n; ordinate (left- 
hand): 102Aordinate (right-hand): <Tt and ([C — B]/C)t. 

Fig. 2.—^Variation of At, (rt, ([C — B]/C)t with D in the white-dwarf case. Abscissa: D; ordinate 
(left-hand) : 103A ordinate (right-hand) : at and ([C — B]/C)t. 
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w > 0.7 were found to terminate with = 0 for the last configuration, as were all the 
white-dwarf series. This made possible the strategy of Section VII and greatly simplified 
the search for points of bifurcation. The series constructed for w < 0.7 were not taken 
far enough to show whether or not they terminated in the same way. 

Comparing the cases n — 0 and w ~ 5, it seems likely that there exists a value nc of n, 
such that bifurcation forms exist if and only iîO < n < nc. If nc > 1.5, we would expect 
a corresponding value Dc of Z>, such that bifurcation forms exist for 1 > > Dc. 

We consider first the polytropic case. The matrices Nk were obtained in the cases 
k = 0, k = 2 only. These cases give perturbing potentials containing second-order 
spherical harmonics. For other cases, the spherical harmonics in the potentials are all 
of order >3. (In the case k = 1, the term cos 0 is ruled out by the boundary 

f 

Fig. 3 —Truncation errors near A t for the polytropic and white-dwarf cases. Curve 1 : polytropic 
case; Curve 2: white-dwarf case. Abscissa (upper): n; abscissa (lower): D; ordinate: logio (error). 

conditions [9.6].) In the homogeneous case, the first bifurcation point of the axially 
symmetric series corresponds to the second-order harmonic. The higher the order of a 
given harmonic, the farther along the series is the corresponding bifurcation point. It 
seems likely that a similar behavior occurs in the poly tropic case. It would have been 
desirable to verify this conjecture, but the computing time available was not adequate 
for this purpose. 

At ^4 = 0, the eigenvalues of Nk are all equal to unity. This follows from equations 
(9.8). If ^4 = 0, p*' depends on £ only, and the equations are mutually independent. 
Thus Rk is a diagonal matrix and Nk a unit matrix. As A increases, the eigenvalues of 
Nk spread out. If n is small enough, the smallest eigenvalue reaches zero before the end 
of the series. It is found that the eigenvalues of N2 spread out more rapidly than those of 
N°. In Figure 4, we show the variation of the eigenvalues of N2 in the case n = 0.7. 
This behavior is broadly similar to that for other values of n. We take Ep(n, ^4) as being 
numerically the smallest of the eigenvalues of the matrices Nk. For a bifurcation point, 

Ep(n,A) = 0. (12.1) 

If this point is at the end of a series, ^4 = ^4 * say, 

g« = 0 . (12.2) 
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We solve equations (12.1) and (12.2) for A and n to find the critical bifurcation form. 
Obviously, we cannot construct equilibrium forms at or beyond the end of a series. 

Therefore, we cannot use the Newton-Raphson process to solve equations (12.1) and 
(12.2) for n and A. The equations were solved as follows. First the series of equilibrium 
configurations for ^ = 1 was examined. It proved that ^(1, ^4) is positive everywhere 
on the series. Series of equilibrium forms were constructed for n = 0.6, 0.7, and 0.8. 
These series proved to have bifurcation forms. Thus 

0.8 < < 1 . (12.3) 

Fig. 4.—Eigenvalues of N2 for n = 0.7. Abscissa: 102A; ordinate (left-hand): eigenvalue; ordinate 
(right-hand) : ge; solid line: eigenvalues; broken line: ge. 

Here n was taken as a function of ge for the bifurcation forms, and Aitken’s (1932) process 
used to extrapolate n for ge = 0. For values of n near this estimated nCy series of equilibri- 
um configurations were constructed, and Ep(n, A t) obtained by numerical extrapolation. 
Inverse interpolation between these values led to the result 

nc = 0.808 . (12.4) 

This result was verified by constructing series for n = 0.808 and 0.8085. These series 
showed that 

0.808 <nc< 0.8085 . (12.5) 

Figure 5 shows the variation of ge with n for bifurcation forms, where these exist. Fig- 
ure 6 shows the variation of Ep(ny ^4) as a function of ^4/^4* for other values of n. Clearly 
the series for n = 1(0.5)2.5 lacks points of bifurcation. Also, if A/At is constant and 
< 1, Ep(ny ^4) is an increasing function of n in the range (0.8, 2.5). We conclude that no 
bifurcation forms exist on the axially symmetric series if ^ > 0.808. 
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As nc < 1.5, we do not expect to find points of bifurcation on axially symmetric equi- 
librium series for the white-dwarf case. It was not possible to explore this case as thor- 
oughly as the polytropic case, because of shortage of computing time. However, very 
rough estimates for the minimum eigenvalues, denoted by Ed{D^ A^) in this case, were 
obtained for some series. In Figure 7, we see the variation of ^ as a function of Ev(n, A *), 
and also of P as a function of EdiP, Aï). The scale in D has been chosen so that Z) = 0 
corresponds to ^ = 3, and D = \ to n = 1.5. We can easily show that £<¿(79, At)—> 
£p(1.5, as 79 1. Thus the two curves intersect at n = 1.5, 79 = 1. They appear to 
diverge as n increases, but this is a spurious effect. If the effective polytropic index were 
used as the ordinate in the white-dwarf curve, the scale of 79 would be compressed 
toward 79 = 1, and the two curves would be in better agreement. 

In the homogeneous case, the instability after the point of bifurcation enters through 
a term in P^{ß) cos 2</>. Jeans (1919) found this term dominant in the polytropic case 
also. Near a point of bifurcation, the coefficient £2222 becomes very small—this is essen- 

t 

Fig. 5.—Variation of ge with n for bifurcation points in the polytropic case. Abscissa: n; ordinate: ge 

Fig. 6.—Variation of E(n, A) with ^4/^4* for 5 values of n. Abscissa: A/At; ordinate: E(n, A) 
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tially the reason for Ep vanishing. Thus, the term in íY(m)cos 2</> in the potential is the 
dominant term in the perturbation giving rise to instability of the axially symmetric 
form. This result is consistent with Jeans’s work, and with the corresponding results for 
the homogeneous case, and the generalized Roche model. 

a) Estimation of the Truncation Error in nc 

The truncation error in A¿) arises from three sources: 
i) The truncation error in t/'. This contributes a relative error of ± 0.001 in Rjkik. 
ii) The truncation error in the ju-wise expansion for ^.2. The relative error in Rjkik 

from this source is about +0.005, so we may neglect the truncation error from source (i). 
Random errors are negligible in comparison with these truncation errors. 

Fig. 7.—^Variation of n with Epín, A¿) and D with At). Curve 1: poly tropic case; Curve 2: 
white-dwarf case. Abscissa: Ep(n} At) and £¿0, At)\ ordinate (left-hand): n; ordinate (right-hand): D. 

iii) The truncation of the £-wise expansion for ^.2 in regions 1 and 2. This was exam- 
ined by repeating one case with 7 X 10“9 replacing the right-hand side of equation 
(3.18). The truncation error proved to be negligible. Confirmation was obtained by test- 
ing ^.2i2 by the methods of Section X, in the case n = 0.808, + = 0.0264. 

To estimate the effect of the /¿-wise truncation error on Ev(n, three matrices N2 

were examined. The corresponding equilibrium forms were all near the critical bifurca- 
tion form. The smallest eigenvalue of the matrix formed by the first i rows and columns 
of N2 was calculated for i = 2(1)5. These four successive approximations to Ep gave an 
estimate of about +0.002 for the truncation error in all three cases. From Figure 4, 
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dn/dEp « 0.2 in the critical region. Thus, we estimate the truncation error in nc as 
±0.0004. 

It is of interest to compare these results with those of Roberts (1962, 1963). Roberts’ 
work is based on the assumption that surfaces of constant density are ellipsoids of revo- 
lution with a constant ellipticity throughout the star. In the later paper, he shows that 
for n — the value of A at the end of the series lies in the range (0.02035, 0.02590). 
This is consistent with the value 0.020930 obtained in the current investigation. The 
ellipticity of a form of bifurcation is given as 0.81267. However, no purpose would be 
served by comparing this with the “ellipticity” of the critical configuration for n = 0.808. 
Near the end of a series, an equatorial bulge develops. Its extent may be estimated by 
computing the equatorial radius of an ellipsoid with the same polar radius and volume 
as the actual equilibrium form. Reference to Appendix Table 4 shows that an ellipsoidal 
model underestimates the equatorial radius by 8.9 per cent at the end of the series for 
w = 1, and 8.8 per cent at the end of that for n = 0.808. Roberts is unable to rule out 
the possibility of a bifurcation form on the sequence for n = 1. This possibility is 
excluded by the results presented above. 

b) Conclusions 

Bifurcation points exist on the series of axially symmetric equilibrium forms provided 
that n < 0.808 in the poly tropic case. The error in this critical value of n is of order 
± 0.0004—thus all the decimals given are meaningful. This result is in very good agree- 
ment with the limiting value of 0.83 given by Jeans (1919). There are no such bifurcation 
forms in the white-dwarf case. For a slightly non-symmetric equilibrium form, the domi- 
nant term in the non-symmetric part of the potential is a term in iVi/Ocos^r sin)20. This 
is also in agreement with Jeans. The critical bifurcation form is that for n = 0.808, 
A — 0.0265074. The central condensation for this critical form is 3.117. This compares 
with the value ~ 1.3 for the critical case for the generalized Roche model (Jeans 1919). 
The numerical agreement is not close, but both figures are small compared with the 
central condensations for most stars. Therefore, the existence of non-symmetric equi- 
librium forms for rotating stars would require large deviations from rigid body rotation 
inside these stars. 

I would like to express my gratitude to Professor Z. Kopal, for suggesting this problem 
to me in the first place, and encouraging and advising me with it ever since. My thanks 
go also to Dr. C. B. Haselgrove and Dr. D. J. Evans, both of Manchester University, 
for much valuable advice. Dr. Evans also permitted me the use of a complete program 
for the evaluation of the eigenvalues of a non-symmetric matrix. Mr. R. A. Brooker, 
director of the Manchester University Computing Machine Laboratory, very kindly 
permitted me the use of the Mercury computer, without which this work would have 
been impossible. 

APPENDIX 

NOTATION 

The following conventions are used throughout: 
Suffix c attached to a variable quantity indicates the value at the center of mass. 
Suffix c attached to w or D indicates a critical value (see Sec. XII). 
Suffix t attached to a parameter indicates its value for the last of a series of equilibrium 

forms. 
Suffix a attached to a quantity indicates that it describes an axially symmetric equilibri- 

um form (Sec. IX). 
Superscripts q and k attached to a quantity denote its derivative with respect to Aq<lk. 
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574 R. A. JAMES Vol. 140 

a) Coordinates and Physical Variables 

r = distance from center of mass of the configuration 

M = cosine of the co-latitude, measured from the axis of rotation 

<p = longitude 

P = pressure 

p = density 

ÿ = gravitational potential. 

b) Physical Constants 

G = universal constant of gravitation 

K — constant factor in equation (1.1) 

a = 6.01 X 1022 

b = 9.82 X 105pe 

= molecular weight per electron. 

c) Dimensionless Variables 

p' = P/Pc 

x = parameter in equation of state for a degenerate gas 

y = (1 + x2)112 

6 = p'Un (polytropic case) 

= y/jc (white-dwarf case) 

\// = \¡//(n + l)Kpc
1/n (polytropic case) 

= b/Sayc (white-dwarf case) 

P*' = dp'/dd 

£ = r/a 

a = [(# + tyK/^irGpc1-1'11]1'2 (polytropic case) 

= [2a/TrGb2yc
2]i/2 (white-dwarf case) 

P = p'(0 is the boundary of the configuration 

= boundary of region 1 

£i = origin for an expansion in region 2 

£/ = end of range for an expansion in region 2 

*? = £ — £i 

Ä = £o (region 1) 

= £i' - £i (region 2) 

= Runge-Kutta step-length in region 3 

//& ( £ ) = ( .7 + I ) £2 /* P *PjPkdp . 
'/—p' 
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d) Coefficients in Expansions 

i) Axially symmetric cases 

An = coefficient of in ^ (region 1) 

Bij = coefficient of ^Pjiix) in p' (region 1) 

an = coefficient of ffiPjiß) in xp (region 2) 

ßn = coefficient of ffiPjiv) in p' (region 2) 

i/'/Q = coefficient of P//x) in xp 

p/U) = coefficient of Pj(p) in p 

Qp{ß) = coefficient of yf in 0 (region 2) 

dv{p) = coefficient of r)p in p' (region 2). 

ii) Non-axially symmetric cases 

Aijk = coefficient of £¿P/(p) cos in xp 

Bijk = coefficient of £iP/(p) cos in p' 

Cijk = coefficient of sin kcp in xp 

Dijk = coefficient of ^Pjk{p) sin k<j> in p' 

't'iÀÇ) = coefficient of Pjk{p) cos(&0 + bjk) in xp 

8jk — phase constant. 

e) Physical Parameters 

co = angular velocity 

n = polytropic index 

D = yc~
2 

H = angular momentum of configuration 

A = co2/SirGpc (polytropic case) 

= œ2/SwCyc2 (white-dwarf case) 

a = oblateness of configuration 

Rk = matrix formed by the derivatives of the Rjk’s with respect to the Aqqk’s 

Nk = normalized matrix Rk 

Ep(n, A) = minimum of eigenvalues of N°, N2 (polytropic case) 

Ed(D, A) = minimum of eigenvalues of N°, N2 (white-dwarf case). 

The units for the following are given in Table 1 : 

= polar radius 

%e = equatorial radius 

M = mass 

V = volume 

ge = equatorial gravity 

B — moment of inertia about principal axis, perpendicular to axis of rotation 

C = moment of inertia about axis of rotation. 
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576 R. A JAMES 

/) Miscellaneous 

f(x) = x(2xz — 3)(x2 + 1)1/2 + 3 sinh-1 x 

8j(£) = error in (Sec. IV) 

== ^ (axially symmetric case) 
? Ah;, 

J+l 
jk + ^ (general case) 

{ 
IAZ)= f */0 

a,- = £í+Vv 

/s = Gaussian abscissa 

#s = Gaussian weight. 

APPENDIX TABLE 1 

The Physical Properties of Polytropes for Increasing 
Angular Velocity of Rotation (A = oß/STrGpc) 

n — 1 

10* A tp 10ge M 10~W 10-25 10-2C 

0 0 . 

0 8 
0 9 

0 
1 
2 
3 
4 
5 
6 
7 
8. 
9 
0. 
02 
04 
06 
08 
09 

1416 
1227 
1037 
0845 
0653 
0459 
0263 
0066 
9866 
9665 
9461 
9255 
9046 
8834 
8617 
8397 
8172 
7940 
7702 
7454 
7194 
7139 
7084 
7028 
6971 
6942 

1416 
1704 
2005 
2320 
2649 
2994 
3357 
3739 
4144 
4574 
5032 
5523 
6051 
6625 
7253 
7948 
8727 
9620 
0674 
1984 
3797 

4.4282 
4 4847 
4.5542 
4 6519 
4 7349 

1831 
1075 
0299 
9501 
8680 
7833 
6958 
6052 
5111 
4132 
3110 
2037 
0907 

1 9710 
1.8432 
1 7055 
1 5553 
1 3886 
1 1985 
0 9717 
0 6732 
0 5963 
0 5082 
0 4019 
0 2569 
0 1369 

3 142 
3.171 

201 
233 
267 
301 
338 
376 

3.416 
3 458 
3.502 

549 
599 
652 
709 
770 
837 

3.909 
988 
076 
177 
199 
222 
246 
272 
285 

1 299 
1 315 
1 332 
1 349 
1 368 
1 387 
1 408 
1 430 
1 454 
1 479 
1 506 
1 535 
1 566 
1 600 
1 638 
1 680 
1 727 
1 781 
1 844 
1 920 
2 020 
2 045 
2 073 
2 105 
2 144 
2 169 

1 0184 
1 0308 
1 0440 
1 0580 
1 0729 
1 0888 
1,1059 

1243 
1440 
1652 
1882 

1 2131 
1 2403 
1 2700 
1 3027 
1 3390 
1 3795 
1 4252 
1 4774 
1 5384 
1 6117 
1 6284 
1 6460 
1 6648 
1 6848 
1 6955 

1.0184 
1 0444 
1 0719 

1009 
1316 
1643 
1990 

1 2360 
1 2756 
1.3181 
1 3638 
1 4133 
1 4669 
1 5254 
1 5896 
1.6605 

7394 
8284 

1 9300 
0483 
1908 
2233 
2576 
2941 
3332 
3540 
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APPENDIX TABLE 1—Continued 
n = I S 

lOM Zp lOge M IO-27 IO-25 10-2C 

0 00 
0 05 
0 10 
0 15 
0 20 
0 25 
0 30 
0 35 
0 40 
0 45 
0 50 
0 55 
0 60 
0 65 
0 70 
0 75 
0 80 
0 85 
0 90 
0 95 

00 
04 
06 
08 
09 

6538 
6383 
6228 
6073 
5917 
5760 
5603 
5446 
5287 
5128 
4968 
4807 

3.4645 
4481 
4317 
4151 
3983 
3814 
3642 
3468 
3292 
3148 
3075 
3001 
2964 

6538 
6811 
7095 
7390 
7698 
8020 
8358 
8712 
9085 
9478 
9896 
0341 
0818 
1331 
1888 
2498 
3174 
3937 
4815 
5863 
7190 
8641 
9650 
1187 
3007 

2 0330 
1 9829 
1 9315 

8790 
8251 
7697 
7128 
6542 
5936 
5309 

1 4659 
3983 
3277 
2537 
1756 

1 0928 
1 0040 
0 9080 
0 8021 
0 6825 
0 5410 
0 3983 
0 3063 
0 1769 
0 0400 

7141 
7297 
7457 
7622 
7791 
7966 
8145 
8331 
8522 
8719 
8923 
9134 
9354 
9581 
9818 
0065 
0323 
0593 
0877 
1177 
1496 
1767 
1910 
2057 
2133 

0432 
0650 
0878 
1116 
1366 
1629 
1905 
2196 
2505 
2832 
3180 
3553 
3953 
4384 
4854 
5368 
5937 
6576 
7304 
8157 
9199 
0265 
0940 
1820 
2491 

0 9316 
0 9391 
0 9469 
0 9551 
0 9636 
0 9725 
0 9819 
0 9917 
Í 0020 
1 0128 
1 0242 
1 0362 
1 0489 
1 0623 
1 0766 
1 0918 

1080 
1255 
1444 
1649 
1874 
2072 

1 2179 
2292 
2351 

0 9316 
0 9470 
0 9631 
0 9797 
0 9971 
1 0151 
1 0340 
1 0537 
1 0742 
1 0958 
1 1184 
1.1422 
1.1672 

1937 
2217 

1 2515 
1 2833 
1 3174 
1 3541 
1 3939 
1 4376 
1 4761 
1 4968 
1 5187 
1 5302 

n — 2 

IOM üp te 10ge M 1Q~W IO-25 10-2C 

0 00 
0 25 
0 50 
0 75 
1 00 

25 
50 
75 
00 
25 
50 
75 
00 
25 
50 
75 
00 
25 
50 
75 
00 
25 
30. 
325 
350 
375 

4 35288 
4 33945 
4 32595 
4 31251 

29905 
28553 
27203 
25845 
24486 
23127 
21763 
20395 
19024 
17648 
16267 
14880 
13488 
12088 
10680 
09263 
07836 
06396 
06107 
05962 
05816 
05671 

4 35288 
4 38274 
4 41383 
4 44620 

48001 
51543 
55256 
59168 
63295 
67665 
72315 
77287 
82630 
88416 
94728 
01693 
09479 
18346 
28708 
41319 
57816 
83670 
91885 
96985 
03318 
12214 

27249 
23940 
20558 
17103 
13565 
09934 
06209 
02374 

0 98426 
0 94347 
0 90126 
0 85740 
0 81172 
0 76388 
0 71359 
0 66029 
0 60333 
0 54171 
0 47384 
0 39694 
0 30516 
0 17943 
0 14369 
0 12246 
0 09704 
0 06312 

4110 
4197 
4286 
4376 
4468 
4562 
4657 
4755 
4855 
4957 
5062 
5169 
5278 
5391 
5507 
5625 
5748 
5874 
6004 
6139 
6279 
6425 
6456 
6471 
6486 
6501 

4548 
4914 
5296 
5697 
6117 
6558 
7024 
7515 
8035 
8588 
9178 
9810 
0491 
1228 
2033 
2918 
3903 
5015 
6296 
7816 
9714 
2366 
3092 
3505 
3972 
4525 

0 88895 
0 89397 
0 89915 
0 90450 
0 91002 
Ö 91572 
0 92162 
0 92772 
0 93404 
0 94059 
0 94740 
0 95448 
0 96184 
0 96952 
0 97754 
0 98594 
0 99475 
1 00402 
1 01381 
1 02419 
1 03528 
1 04721 
1 04973 
1 05100 
1 05230 
1 05364 

0 88895 
0 89887 
0 90908 
0 91958 
0 93040 
0 94155 
0 95305 
0 96493 
0 97721 
0 98991 
1.00307 
1 01673 
1 03091 
1 04567 
1 06106 
1 07714 
1 09398 

11168 
13034 
15011 
17118 
19386 
19863 

1 20105 
1 20351 
1 20602 

577 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
64

A
pJ

. 
. .

14
0.

 .
55

2J
 

APPENDIX TABLE 1—Continued 
n = 2 5 

103^ 

0 0 
0 1 

0 8 
0 9 
1 O 
1 1 

2. 
3 
4 
5 
6 
7 
8 
9 
0 
1 
2 
3 
4. 
42 
44 
46 

£p 

35527 
34505 
33483 
32466 
31447 
30426 
29404 
28383 
27361 
26338 
25315 
24290 
23264 
22242 
21212 
20189 
19160 
18126 
17095 

5.16062 
15026 
13990 
12949 
11907 
10862 
10652 
10442 
10233 

35527 
38585 
41744 
45028 
48441 
51992 
55694 
59563 
63614 
67866 
72343 
77068 
82079 
87408 
93109 
99234 
05865 
13101 
21072 
29969 
40074 
51818 
65982 
84138 
10819 
18413 
27657 
40012 

Wge 

7 6265 
7.4499 

2708 
0879 
9016 
7115 
5175 
3191 
1161 
9080 
6943 
4747 
2483 
0145 
7721 
5204 
2576 
9820 
6912 
3819 
0490 
6854 
2777 
8005 
1817 
0219 

O 8362 
O 6023 

M 

18720 
19124 
19532 
19945 
20363 
20785 
21213 
21647 
22085 
22530 
22980 
23437 
23900 
24369 
24846 
25330 
25821 
26320 
26828 
27344 
27870 
28406 
28952 

,29510 
30081 
30197 
30314 
30431 

10~3F 

O 64333 
O 64943 
O 65577 
O 66237 
O 66924 
O 67642 
O 68393 
O 69180 
O 70005 
O 70874 
O 71790 
O 72759 
O 73788 
O 74883 
O 76055 
O 77313 
0.78673 
O 80152 
O 81775 
O 83572 
O 85590 
O 87897 
O 90606 
O 93922 
O 98349 
0 99482 
1 00765 
1 02286 

10-25 

O 88130 
88427 
88731 

.89041 
89357 
89680 
90010 
90347 
90691 
91044 
91404 
91774 
92152 
92540 
92939 
93348 
93769 
94202 
94648 
95108 
95584 
96077 
96588 
97121 

.97677 
97791 
97908 

O 98026 

10-2C 

O 88130 
O 88687 
O 89254 
O 89833 
O 90422 
O 91023 
O 91637 
O 92263 
O 92902 
O 93555 
O 94223 
O 94906 
O 95606 
O 96323 
O 97058 
O 97812 
O 98586 
O 99383 

00204 
01049 
01923 
02827 
03764 
04739 
05758 
05968 
06180 
06396 

n = 3 

10* A £p lOHe M 10-W IO"*# 10-2C 

o o 
O 5 

8 O 
5 
0. 
2 
4 
5 
6 

9.7. 

89685 
88591 
87504 
86411 
85317 
84227 
83136 
82048 
80949 
79857 
78772 
77682 
76591 
75500 
74406 
73301 
72208 
71111 
70013 
69575 
69138 
68918 
68698 
68477 

6 89685 
6 94462 
6 99456 
7 04690 
7 10189 
7.15980 
7 22101 
7 28587 

35492 
42879 
50803 

7 59388 
7 68735 
7 79007 
7 90435 
8 03338 
8 18197 
8 35797 
8 57635 
8 68182 
8 80295 
8 87126 
8 94619 
9 02964 

4 2430 
4 1215 

9975 
8708 
7411 
6083 
4719 
3318 
1874 
0380 
8837 
7228 
5550 
3790 
1928 

1 9943 
1 7797 
1 5439 
1.2763 
1 1562 
1 0249 
O 9540 
O 8786 
O 7976 

01824 
02072 
02323 
02576 
02832 
03090 
03351 
03615 
03882 
04152 
04425 
04701 
04980 
05263 
05550 
05841 
06136 
06435 
06738 
06861 
06985 
07047 
07110 
07172 

1 37417 
1 39101 
1 40867 
1 42724 
1 44681 
1 46748 
1 48937 
1 51263 

53745 
56401 
59258 
62348 
65712 

1 69401 
1 73488 
1 78070 
1 83289 
1 89366 
1 96685 

00111 
03935 
06035 
08289 
10730 

O 90910 
91162 
91418 
91679 
91945 

.92216 
92493 
92776 
93064 
93359 
93660 
93969 
94284 
94608 
94940 
95281 
95632 
95994 
96367 

.96520 
96675 
96754 
96833 

O 96912 

O 90910 
O 91352 
O 91802 
O 92260 
O 92726 
O 93201 
O 93686 
O 94180 
O 94685 
O 95200 
O 95726 
O 96265 
O 96816 
O 97381 
O 97961 
O 98556 
O 99168 
O 99799 

00450 
00716 
00986 
01123 
01261 

1.01400 

578 
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APPENDIX TABLE 2 

The Physical Properties of White-Dwarf Configurations for 
Increasing Angular Velocity of Rotation (A = co2/8TrGyc

2) 
D — 0 025 

10M ip 102ge M 10-2F io-1^ 10-iC 

0 0 4 85982 
4 83197 

80406 
77604 
74792 
71966 
69122 
66252 
63349 
60402 

85982 
93601 
02005 
11387 
22018 
34317 
48971 
67259 
92064 
33812 

7718 
3000 
8041 
2790 
7186 
1129 
4467 
6923 
7911 

1 5425 

1 8355 
1 8472 
1 8593 
1 8719 
1 8851 
1 8990 
1 9137 
1 9293 
1 9460 
1 9642 

8078 
9303 
0666 
2198 
3947 
5979 
8403 
1409 
5393 
1566 

7 123 
7 207 
7 298 
7 395 
7 500 
7 615 
7 740 
7 880 
8 038 
8 222 

7 123 
7 280 
7 447 
7 627 
7.820 
8 031 
8 261 
8 516 
8 805 
9 142 

D = 0 05 

103A ip 102&, M 10-27 lO'1# 10-iC 

0 0 
0 4 
0 8 
1 2 

6 
0 
4 
8 
2 
352384 
430255 

4601 
4292 
3982 
3670 
3357 
3041 
2723 
2400 
2071 
1943 
1878 

4601 
5375 
6236 
7208 
8326 
9646 
1272 
3422 
6765 
8937 
0721 

8 594 
8 030 

443 
797 
111 
358 

4 513 
518 
210 
495 

0 977 

1 7097 
1 7235 
1 7379 
1 7532 
1 7693 
1 7864 
1 8047 
1 8245 
1 8462 
1 8552 
1 8600 

3 7165 
3 8190 
3 9341 
4 0651 

2170 
3974 
6192 
9086 
3356 
5846 
7614 

165 
252 
348 
451 
565 
691 
832 
993 
182 
265 
310 

6.165 
6.331 
6.511 
6 705 
6 918 
7.153 
7.415 
7 714 
8 064 
8 218 
8 303 

D = 0 1 

IOM 

0 0 
0 5 
1 0 
1 5 

0 
5 
0 
5 
8 
911354 
095762 

ip 

0690 
0361 
0029 
9696 
9361 
9022 
8678 
8329 
8115 
8035 
7900 

4 0690 
4 1446 
4 2291 
4 3250 
4 4363 

5695 
7373 
9692 
1766 
2834 
5655 

102ge 

9 172 
8 545 
7 880 
7 166 
6 390 
5 531 
4.549 
3 353 
2 426 
1 996 
0 995 

M 

1 5186 
1 5336 
1 5495 
1 5664 
1 5843 
1 6036 
1.6245 
1 6474 
1 6625 
1 6684 
1 6786 

10-2F 

8220 
9033 
9951 
1004 
2236 
3719 
5582 
8108 
0254 

4 1291 
4 3674 

UT1# 

014 
096 
187 
286 
396 
520 
662 
827 
942 
989 
073 

10-ic 

014 
174 
347 
538 
748 
983 
250 
561 
777 
865 

7 024 

579 
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APPENDIX TABLE 2—Continued 
Z> = 0 2 

lOM 102^e M 10-2F IO“1# 10-iC 

0 0 
0 5 
1 0 
1 5 

0 
5 
0 . . 
5... 
756649 

4 0. . 
4 236581 
4 356443 

7271 
6962 
6652 
6339 
6024 
5706 
5384 
5056 
4885 
4721 
4560 
4476 

7271 
7920 
8638 
9442 
0357 
1424 
2712 
4358 

4 5438 
4 6723 
4 8441 
4 9699 

8 948 
8 392 

804 
177 
501 
762 
936 
976 
400 
766 
001 
494 

1 2430 
1 2561 
1 2700 
1 2847 
1 3003 
1 3171 
1 3352 
1 3549 
1 3658 
1 3767 
1 3881 
1 3941 

1687 
2258 
2896 
3617 
4446 
5419 
6596 
8091 
9055 
0172 
1582 
2526 

762 
824 
892 
967 
050 
142 
246 

4 366 
4 435 
4 507 
4 584 
4 627 

762 
885 
019 
165 
325 
503 
703 
932 
064 
201 
349 
430 

Z> = 0 4 

1034 102& 10-27 10“l5 io-íc 

0 0 
0 5 
1 0. 
1 5 

0 . 
5 . 
0. . 
25 

3.5 . 
3 665359 
37 .... 

5244 
4858 
4468 
4074 
3675 
3270 
2855 
2643 
2426 
2280 
2249 

3 5244 
3 6008 
3.6871 

7866 
9045 
0505 
2464 
3803 
5679 

4.7714 
4 8380 

922 
408 
857 
258 
595 
839 
929 

2.370 
1 665 
0 996 
0 797 

8 598 
8 723 
8 858 
9.005 
9.164 
9 340 
9.536 
9 645 
9.762 
9 846 
9.864 

8338 
8925 
9597 
0381 
1321 
2491 

2.4050 
2 5089 
2 6473 
2 7803 
2 8180 

518 
573 
635 
704 
785 
878 
989 
054 
128 
183 
196 

518 
629 
752 
890 
047 
229 
444 
569 
711 
817 
841 

D = 0 6 

10M 102ge 10M 10-2F 10“1# io-íc 

0 0. 
0 25 
0 5. . 
0 75 . 
1 00 
1 25 
1 50 
1 65 
1 75. 
1 85.. 
1.95.. . . 
2 203855 
2 320633 

6038 
5704 
5368 
5030 
4688 
4342 
3991 
3778 
3634 
3489 
3342 
2961 
2780 

6038 
6666 
7356 
8124 
8991 
9988 
1170 
2005 
2635 
3342 
4154 
7129 
0009 

373 
117 
846 
557 
247 
908 
532 
282 
101 
906 
692 

0 993 
0 432 

680 
750 
826 
906 
992 
085 
185 
250 
296 
343 
392 
530 
601 

1 960 
010 
065 
128 
198 
281 
379 
448 
500 
557 
624 
853 
035 

1 811 
1 844 
1 880 
1 920 
1 965 

015 
072 
110 
137 
166 
197 
289 
340 

1 811 
1.878 
1 951 

031 
119 
218 
329 
403 
456 
513 
573 
750 
848 

580 
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APPENDIX TABLE 2—Continued 

Z> = O 8 

lOM lOHe 10M 10-2 F 10-15 10-ic 

0 
1 
2 
3 
4 
5 
6 
7 
7.5 
8 
8 5 
9 
9 080420 

0446 
0046 
9642 
9236 
8825 
8409 
7987 
7554 
7334 
7110 
6882 
6648 
6609 

4 0446 
4 1183 
4 1996 
4 2904 
4 3933 
4 5126 
4 6555 

8358 
9492 
0892 
2787 
6274 
7636 

1 890 
1 776 
1 655 
1 526 
1 387 
1 234 
1 063 
0 864 
0 748 
0 614 
0 448 
0 184 
0 095 

0913 
1332 
1778 
2256 
2771 
3329 
3939 
4612 
4978 
5368 
5787 
6245 
6324 

7714 
8443 
9256 
0175 
1227 
2459 
3941 
5806 
6964 
8362 
0164 
2950 
3709 

1 275 
1 300 
1 327 
1 358 
1 392 
1 431 
1 475 
1 527 

556 
588 
624 
666 
673 

1 275 
1 326 
1 381 
1 442 
1 510 
1 587 
1 674 
1 774 
1 831 
1 894 
1 964 

045 
059 

APPENDIX TABLE 3 

Comparison with Chandrasekhar* 

dÇp/dA d£e/dA dM/dA dV/dA 

n= 1: 
Current . . 
Chandrasekhar 

n=\ 5: 
Current . . . 
Chandrasekhar 

n — 2\ 
Current .. 
Chandrasekhar 

n=3: 
Current .. 
Chandrasekhar 

18 87 
18 85 

30 84 
30 98 

53 40 
53 77 

-219 
-218 

28 27 
28 27 

53 
53 

63 
68 

117 0 
117.2 

935.2 
934 8 

28 
28 

78 
78 

30 83 
31 05 

34 41 
34 48 

49 44 
49 43 

1559 
1558 

4272 
4272 

14330 
14330 

328900 
329000 

* The deviations between the results of the current investigation and those of Chandrasekhar 
are due to the poor convergence of the differentiation formulae used. 
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582 R. A. JAMES 

APPENDIX TABLE 4 

Terminal Values of Physical Quantities 

0 808 

D 

102 A 

2 65074 
2 0930 
1 0906 
0 5401 
0 24825 
0 0983 

Zp M 10-2F 10-25 

Polytropic Case 

4852 
6933 
2962 
0553 
0999 
58 

4 7652 
4 8265 
5 3585 
6 307 
7 7623 

0248 
289 
2137 
6518 
30563 
089 

1 968 
2 1825 
3 259 
5 527 

10 503 

2 0890 
1 6955 
1 2355 
1 0553 
0 9818 

White-Dwarf Case 

10-2C 

3 0695 
2 3540 
1 5309 
1 209 
1 0666 

0 025 
05 
1 
2 
4 
6 

0 8 

0 2855 
34920 
41650 
452065 
37650 
23518 

0 91127 

5883 
1825 
7849 
4359 
2191 
2730 
6594 

033 
4723 
908 
4216 
1418 
2659 
9233 

1 9747 
1 8638 
1 6826 
1 4026 
0 9899 
0 6621 
0 36355 

981 
036 
569 
4959 
938 
153 
430 

0 834 
7348 

.6107 
4689 
3220 
2354 

0 1676 

0 935 
8373 
7089 
5550 
3888 
2877 

0 2064 
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