

SPECTRAL CLASSIFICATION OF THE LATE COMPONENT OF STARS WITH COMPOSITE SPECTRA

L. V. KUHI

Berkeley Astronomical Department
University of California

Previous classification of stars with composite spectra has been in the blue region of the spectrum. When the system consists of an early and a late type star, the classification of the late component is often uncertain because of the domination of the spectrum by the early component. As a result, many of the composite spectra with one member of type B or A and the other later than F were listed as having simply a G or a G5 component, there being no attempt at assigning a luminosity class. To assign more specific types, it was decided to make use of the visual region of the spectrum where the late component might be expected to be more prominent.

The stars observed were taken from an unpublished compilation by L. W. Ross (mostly from Hynek¹ and the *General Catalogue of Stellar Radial Velocities*) who selected suitable bright stars with composite spectra on the basis of one component being of type A or B and the other later than F. Spectra of 64 such stars were obtained with the 7-inch grating spectrograph of the 36-inch refractor at Lick Observatory with a dispersion of 88 Å/mm covering the region from 5200 Å to 6700 Å on 103a-F(3) plates. In addition, spectra of standard stars (Johnson and Morgan²) were obtained for all luminosity classes for spectral types later than F5. Classification was then determined by direct comparison of the composite spectrum with those of the standard stars. Due to the lack of suitable lines in this region the classification is not very reliable for types earlier than G0. For a star classified as G0 III, however, there is no question but that it is earlier than G5. The spectral types become more reliable as one proceeds to later stars.

The resulting classifications of the late component of 64 composite stars are listed in Table I. Of these stars, five show emission at H α (two of which are binaries of the VV Cephei type),³ and 27 are known spectroscopic binaries of which seven are known to show Ca II emission.³ (The radial-velocity range is listed in parentheses if known.) In many cases considerable differences from earlier classifications such as the *Henry Draper* are present. However, with few exceptions the agreement is fairly good for more recent and reliable spectral types from Bidelman^{3,4} and from Bahng's multicolor wide-band photoelectric photometry.⁵

An interesting feature is the large number of stars that appear to lie in the Hertzsprung gap. That a gap should be present can be inferred from galactic cluster data such as the HR diagram for NGC 752 by Roman.⁶ It shows no stars earlier than F2, a giant branch, and a distinctive Hertzsprung gap. The A and early F stars having most recently evolved off the main sequence must have passed very quickly through the gap region since no stars are found there. Now in the case of binaries, stars earlier (i.e. more massive) than the A or early F component will have already evolved off the main sequence to become the later type now observed; and if the evolution were similar to that of the

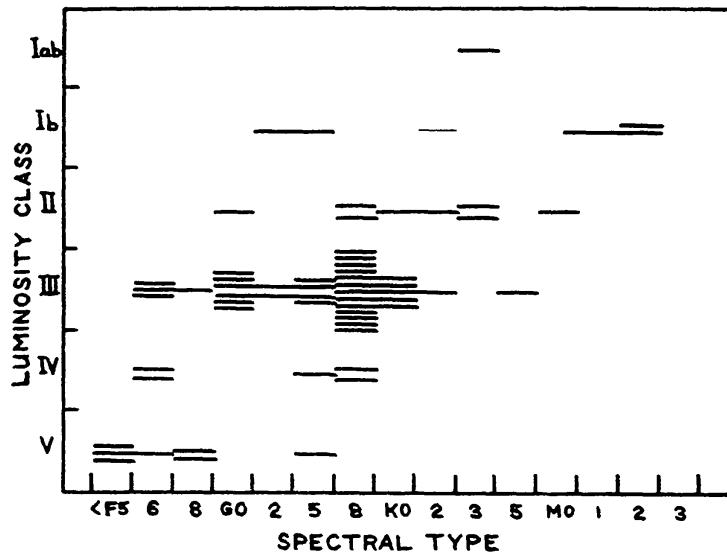


FIG. 1.—Distribution of late component with spectral type and luminosity class. Each bar represents one star.

TABLE I
CLASSIFICATION OF LATE TYPE COMPONENTS

HD Number	Star	a	(1900)	δ	m_v	Spectral Type		Note p. 453
						Kuhi	HD	
962		0h08m9		60°10'	7.8	G2 III	A0	*
4775-6	HR233	0 44.7	63 42		5.4	G0 III	F2A2	1
9352-3	HR439	1 27.0	57 49		6.0	K3 I ^{ab}	K0A0	
14262-3	HR676	2 13.3	22 43		6.4	F6 IV	A5G	SB(20)
16082-3		2 29.9	51 32		7.3	K0 III	G5A5	
17878-9	τ Per	2 47.2	52 21		4.1	G5 IV	G0A5	
18925-6	γ Per	2 57.6	53 07		3.1	G8 III	F5A3	2, SB
19926-7	HR958	3 07.1	6 18		5.8	K5 II ^e	G5A5	3, SB
21224		3 20.4	59 34		7.5	G8 III	F8	SB(31)
23089-90	HR1129	3 37.3	63 02		5.0	G0 III	F5A	4
26673-4	52 Per	4 08.1	40 14		4.9	G8 III	G0A5	5, SB(35)
29094-5	58 Per	4 29.7	41 04		4.5	K0 III	K0A3	6, SB
33883-4	HR1701	5 08.3	1 51		6.2	F6 III	A2G	
34318-9		5 11.5	-11 28		6.5	G8 III	G0A2	
34807		5 15.0	39 28		7.4	G8 III	A2	*
37269	26 Aur	5 32.2	30 26		5.5	G0 III	A2	7
39118-9	HR2024	5 45.3	2 00		6.2	G8 IV	G0A0	
39286	HR2030	5 46.5	19 50		6.0	G5 II ^e	B9	
39847		5 50.1	25 19		7.7	F6 IV ^e	A2	
40369-70	HR2099	5 53.2	12 48		5.7	K0 III	G5A5	8
41724-5		6 01.8	35 08		7.7	F6 III	A2G	
47579-80		6 34.2	-23 29		6.6	G8 III	G0A3	
50730-31		6 49.3	-5 53		7.9	K0 III	K0A3	
51565-6		6 52.7	-2 26		7.7	G2 II ^e	A2G	
55684-5		7 08.8	-4 59		7.5	F8 III	A0G5	
55899-900		7 09.8	-1 12		7.1	G8 III	G0A3	
60414-5	HR2902	7 29.2	-14 18		5.1	M2 I ^e	K5B	9, SB(32)
69479-80		8 12.1	-4 31		6.7	G5 III	G0A2	SB(32)
70442-3	HR3279	8 16.9	-19 46		5.6	G8 III	G0A3	SB(29)
74228-9	45 Cnc	8 37.7	13 03		5.6	F8 V	A3G	SB(51)

COMPOSITE SPECTRA

451

83808-9	9	35.8	10 21	10	F6 III
85558	9	47.5	7 38	5.1	F
107700	12	17.5	26 24	4.8	G0 III
110026-7	12	34.2	14 54	8.0	G0 III
157978	17	21.5	7 41	6.0	G2 Ib
166391-2	18	05.3	-17 24	8.9	G5 V
167570-1	18	10.7	-20 34	7.1	G8 III
169689-90	18	20.8	7 59	5.6	G8 IV
169985-6	18	22.1	0 08	5.3	G8 III
171347	18	29.3	-17 04	7.0	F
172806	18	37.1	3 56	8.0	F5 V
174348	18	45.0	10 34	8.1	F6 V
174485	18	45.6	11 24	7.1	G5 III
175492-3	19	50.5	22 32	4.5	K1 II p
181657-8	19	16.2	35 21	7.8	K1 II p
184398-9	19	29.2	55 31	6.5	K2 III
186518-9	19	39.8	26 54	6.6	K3 II
187076-7	19	42.9	18 17	3.8	M2 Ib
192577-8	20	10.5	46 26	4.0	K2 II
192909-10	20	12.3	47 24	4.2	K3 II
193495-6	20	15.4	-15 06	3.2	G8 II
196093-4	20	30.0	34 54	4.8	K2 Ib
196753-4	20	34.3	23 19	6.1	K0 III
199378-9	20	51.7	14 27	7.5	G8 III
200428-9	20	58.3	15 23	7.7	M0 II
201270-1	21	03.3	45 17	7.3	G5 III
202447-8	21	10.8	4 50	4.1	G0 II
203338-9	21	16.5	58 13	5.8	M1 I _{ep}
205114-5	21	28.1	52 11	6.2	G8 III
208253	21	49.9	53 32	6.6	G8 III
213310-11	5	Lac	47 11	4.6	M0 Ib
216572	22	25.4	60 22	7.6	G0 III
223047	22	48.9	45 52	5.1	G5 Ib
223932-3	23	41.1	-18 56	7.4	G8

cluster members then no presently observed late component should lie in the gap. However, even taking into account the uncertainties in classifying the G0 stars, one is left with an unusually large fraction in the gap; the effect is therefore probably real. The frequency distribution with spectral type and luminosity class is shown in Figure 1. A similar diagram constructed for 47 visual binaries compiled from data of Stephenson⁷ and Bidelman⁸ shows that there are virtually no stars earlier than G5 and none in the Hertzsprung gap. This different distribution of later components is illustrated more clearly in Figure 2 which shows the frequency distribution of giant components with spectral type. The lack of stars earlier than G5 for visual binaries is quite marked. A similar though less marked effect also exists for field stars (e.g. see Keenan and Morgan Fig. 1.1 in *Astrophysics* J. A. Hynek, ed., (New York: McGraw-Hill, 1951)).

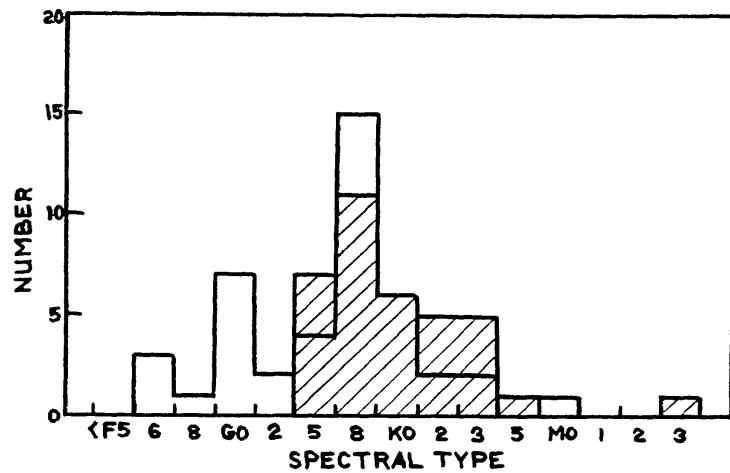


FIG. 2.—Distribution of giants with spectral type for composite stars (plain area) and for visual binaries (cross-hatched area).

Thus one is left with the question of why there are more stars in the Hertzsprung gap among composite stars than among visual binaries and field stars. The above results seem to indicate that for the same type of present early component the present late component has not evolved as far off the main sequence for the composite pair as it has for the visual pair. This would suggest

that the closeness of the components has somehow affected their mutual evolution. Close binaries do show synchronization of rotation and orbital revolution leading to possible interaction. Some close double stars and eclipsing binaries show violent activity on a large scale which must alter the evolution of the two components; a less violent interaction may be responsible in this case. However, in either case the observed range in radial velocities does not seem excessive and the spectra exhibit no great peculiarities aside from H α emission in a few so that for most of the pairs such interactions do not seem too likely. Selection effects probably also play a significant role in this discussion but no allowance for them has been made. Higher-dispersion spectra to determine radial-velocity variations and possible rotational effects will be required to clarify the situation.

I wish to thank Dr. G. Wallerstein for suggestions and advice; also Lick Observatory for the use of its facilities and a Lick Fellowship held during this investigation.

¹ J. A. Hynek, *Perkins Obs. Contr.*, **1**, 185, 1938.

² H. L. Johnson and W. W. Morgan, *Ap. J.*, **117**, 313, 1953.

³ W. P. Bidelman, *Ap. J. Supplements*, **1**, 218, 1958 (No. 7).

⁴ W. P. Bidelman, *Pub. A.S.P.*, **69**, 148, 1957.

⁵ J. D. R. Bahng, *Ap. J.*, **128**, 586, 1958.

⁶ N. G. Roman, *Ap. J.*, **121**, 454, 1955.

⁷ C. B. Stephenson, *A. J.* **65**, 60, 1960.

⁸ W. P. Bidelman, *Pub. A. S. P.*, **70**, 168, 1958.

Notes to Table I:

1. G0 III + A4 V (ref. 5).

2. G4 III + A4 V (ref. 5).

3. G8 III + A3 V (ref. 5).

4. G0 III + A3 V (ref. 5).

5. K2 III + A6 V (ref. 5); G5 II + A, B (ref. 4).

6. K4 III + A3 V (ref. 5); G8 II + B (ref. 3).

7. G5 III + A3 V (ref. 8).

8. K2 III + A5 V (ref. 5).

9. M2 Iabep + B (ref. 3).

10. F8 III + A5 V (ref. 5); F6 II (W. P. Bidelman, private communication).

11. G0 III-IV + A3 (G. H. Herbig and B. A. Turner, *Ap.J.*, **118**, 477, 1953).

12. G0 III + A6 V (ref. 5); G0 + A2 (E. C. Tilley, *Ap.J.*, **98**, 347, 1943).

13. G4 III + A6 V (ref. 5).

14. K3 III + A (ref. 7).

15. K2 II-III + A (ref. 3).

16. M2 II + A0 V; M2 Ib-II + A (ref. 3).

17. K2 II + B3 V (ref. 3).

18. K3 Ib-II + B (ref. 3).

19. K2 Ib + B5 V (ref. 5).

20. G0 III + A5 V (ref. 5).

21. M1 Ibep + B (ref. 3).

22. K5 Ib + B7 V (ref. 5); M0 Ib-II (ref. 3).

23. G5 Ib (N. G. Roman, *Ap.J.*, **116**, 122, 1952).

* A-type K line plus G band characteristic of a later type and also Balmer decrement characteristic of composite spectra (A. Slettebak and J. J. Nassau, *Ap.J.*, **129**, 88, 1959).

SB: Spectroscopic binary with radial-velocity range in parentheses.