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Ideal orbits of the space vehicle for moon probes have been studied preliminarily under the approximation 
implied in the restricted three-body problem by the method of successive approximation carried out on the 
IBM 7090 digital computer. 

I. INTRODUCTION 

AN ideal orbit of a space vehicle for a moon probe is 
one which passes around the moon and afterwards 

approaches the earth at a short distance, so that what- 
ever information it has received during its passage 
around the moon can be transmitted back to the earth 
when it is again near the earth. We can divide such 
orbits into two kinds : (1) orbits which enclose the earth 
and the moon and which pass both of them at short 
distances for a number of times, and (2) orbits which 
first pass around the moon closely and then return to 
the same geographical point at which the moon-probing 
vehicle is launched. We shall study here only orbits of 
the first kind, which lead us to the problem of searching 
for orbits in the well-known problem of three bodies in 
celestial mechanics. 

With the advent of electronic computers of high 
speed, we can tackle this problem numerically. This 
is especially true for any problem such as the present 
one, where the time scale involved is not astronomically 
long but is rather humanly short. 

Several papers (Egorov 1958 ; Message 1959 ; Newton 
1959) have appeared recently in which the periodic 
orbits in the restricted three-body problem have been 
derived by means of numerical computations. In these 
papers references to earlier work in this field can also 
be found. In the present investigation, we emphasize 
the practical aspect that the orbits may be used for 
actual moon probes. Consequently, mathematical rigor 
is not demanded here. In fact, we discuss the accuracy 
of numerical approximations more in line with the 
engineering feasibility than with its usual sense under- 
stood in celestial mechanics. Similarly, the words, 
“stable” and “unstable” are used here with respect to a 
time scale of a few years or at most a few tens of years 
but not more than 100 years. Also, the word “stable” is 
associated with finite deviations (arising, for instance, 
from the limitation of accuracy in the launching of the 
space vehicle) that will be encountered in practical 
applications instead of infinitesimal deviations generally 
understood in analytical treatments. 

II. STARTING CONDITION OF NUMERICAL EXPERIMENTS 

In order to find the desirable orbits numerically, we 
must have some starting conditions from which these 
orbits can be obtained by successive approximation. 
As the starting condition, we employ the orbits which 

enclose both the earth and the moon, which have 
periods commensurable with the period of the moon, 
and which pass at relatively short distances from the 
earth as well as from the moon. The effect of the moon is 
neglected in the treatment of the starting condition. 
Therefore, in this section we consider simply the orbits 
of the vehicle in the gravitational field of the earth 
alone. 

Let the semimajor axes of the orbits of the moon and 
of the space vehicle around the earth be 1 and a, and 
their periods P0 and P, respectively. If the two periods 
Po and P have a ratio given by 

P/P^n/m, (1) 

where both m and n are integers, the vehicle will repeat- 
edly reach the moon and come back to the neighborhood 
of the earth. Assume that the encounter of the vehicle 
with the moon takes place at the apogee of its orbit, 
which is at a distance of a from the earth. Obviously a is 
given by 

(\Jre)a = a, (2) 

where e represents the eccentricity of the orbit. In order 
to make the vehicle a moon probe, a must be of the 
order of unity. 

It follows from (1) that 

(3) 

where ß is the fraction of the mass of the moon in the 
earth-moon system and is equal to 0.01215. Thus, 
Eq. (3) determines the semimajor axis a of the re- 
quired orbit of the vehicle in terms of two integers m 
and n. Once a is determined, e can be obtained from (2) 
provided that a is given. In other words, for each pair 
of values m and n there corresponds to an one-parameter 
family of initial orbits. 

Table I gives the values of a for different pairs of 
integers m and n that are relative prime. It is apparent 
that large values of n are not desirable because it takes 
too long to have an encounter between the vehicle and 
the moon. If n cannot be large, m must be also small ; 
otherwise the orbit will be too small to reach the moon. 

The limitation of initial orbits can be most profitably 
discussed in terms of a. If a is very near to unity, the 
space vehicle will be strongly perturbed by the moon or 
will even collide with its surface, and consequently it 
would not come back to the neighborhood of the earth. 
On the other hand, if a is considerably different from 
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Table I. Values of a for different combinations of m and n. 

\n 
1 

1 0.9959 1.5809 
2 0.6274 
3 0.4788 0.7600 
4 0.3952 
5 0.3406 0.5401 
6 0.3016 
7 0.2722 0.4320 
8 0.2490 
9 0.2302 0.3654 

10 0.2146 
11 0.2014 0.3196 
12 0.1900 

2.0716 2.5096 
1.3050 

1.2065 
0.8221 
0.7085 0.8583 

0.5661 
0.5179 

0.6858 

0.5800 
0.4463 
0.4188 0.5074 

2.9121 
1.8345 
1.4000 
1.1557 

0.8819 
0.7958 
0.7280 
0.6731 

3.2885 

1.1247 

0.8987 

0.5888 0.6649 
0.5556 

unity, the purpose of probing the moon will be lost 
because the vehicle will be too far away from the moon 
during the encounter. We may tentatively set the desired 
values of a between 1.08 and 1.20. This is, of course, only 
for a of the initial orbits. The value of a corresponding 
to the final orbit will be different from that of the start- 
ing one. 

Now a is furthermore limited by the condition that 
the orbit of the vehicle should be an ellipse ; i.e., e must 
be less than 1. If follows from (2) that 

a<2a. (4) 

If a must be greater than 1.08, we can immediately 
eliminate those entries in Table I where a <0.54. On 
the other hand, e must be greater than zero, hence 

Û!>Æ. (5) 

If we insist on a <1.2, so that the vehicle can reach 
points near the moon, we must exclude those values of a 
in Table I which are greater than 1.2. 

Practical considerations such as the launching of the 
vehicle and later communications with it, require that 
a(l — e) be not too large. If it is necessary to restrict 
a(l — e) to be less than a certain value, say 7, then 

a<|(a:+7). (6) 

If we take 1.2 as the largest value for a which is still 
meaningful for the moon probe and take 7 = 0.5, a must 
be less than 0.85 according to (6). Therefore we may 
eliminate all cases with a >0.85 in Table I. 

After the values of a which are either greater than 
0.85 or smaller than 0.54 have been excluded as possible 
semimajor axes of starting orbits for a moon probe, only 
a few cases are left in Table I that are suitable. In the 
present paper we shall consider the case n/m = %, the 
case n/m — \ having been studied by Message and by 
Newton. 

III. PROCEDURE POR DERIVING THE 
DESIRED ORBITS 

A starting orbit proposed in the previous section does 
not represent the true orbit of the vehicle for a moon 

Fig. 1. A retrograde orbit which makes periodic encounters with 
the moon. The orbit is drawn in the frame of reference rotating 
with the earth E and the moon M. 

probe because of lunar perturbation. In this preliminary 
study it will be assumed that the moon’s orbit is 
circular. This reduces the perturbation calculation to 
the integration of the differential equations of the 
restricted three-body problem. The result thus derived 
does not give exactly the required orbit for the moon 
probe in the sun-earth-moon system. However, it 
provides a basis for treating by successive approxima- 
tions the more realistic problem that includes the solar 
attractions. 

Following the usual notation (e.g., Moulton 1914) we 
use a coordinate system rotating with the moon and 

1.2 
1.1 

-1.2 
Fig. 2. A direct orbit which makes periodic encounters with the 

moon. The orbit is drawn in the frame of reference rotating with 
the earth E and the moon M. 
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0 0.5 1.0 1.0 1.0 1.0 1.0 

0 0.5 1.0 1.0 1.0 1.0 1.0 

0 0.5 1.0 1.0 1.0 1.0 1.0 

Fig. 3 (a). 

Fig. 3. The effect of a small 
change in the initial conditions 
on the stability of the retro- 
grade orbit. Plotted here are 
the motions of the moon and of 
the third body. The numerical 
values in the diagram denote 
times of passage of the moon 
and of the third body at vari- 
ous points on their respective 
orbits near encounters. The 
percentage deviation of the 
initial velocity from the correct 
value is marked at the upper 
left corner in each diagram. Ex- 
cept for the case of —0.15%, 
all show stability of the orbits. 

Fig. 3(b). 

Fig. 3(c). 
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Fig. 3(d). 

Fig. 3 (e). 

Fig. 3(f). 

0 0.5 1.0 1.0 1.0 1.0 1.0 

0 0.5 1.0 1.0 1.0 1.0 1.0 

0 0.5 1.0 1.0 1.0 1.0 1.0 
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with its origin located at the center of mass of the earth- 
moon system and with the separation between the two 
as the unit of length. The total mass of the system will 
be taken as unity. Thus, the mass of the earth is 1 — 
and that of the moon /x, /z being equal to 0.01215. 
With this system of units, the period of the moon 
around the earth is 27r. If we now confine the third body, 
i.e., the space vehicle, to the orbital plane of the moon 
around the earth, the equations of its motion assume 
the form 

and 

dïx dy x—Xi x—x2 
 2 =X— (1 — JJl) ¡JL  
dt2 dt /q3 /q3 

d2y 

dt2 

dx y y 
+2—=y— (1—m) M- 

(7) 

(8) 

where the various symbols have the obvious meanings. 
The space vehicle for the moon probe is supposed to 

be launched at the perigee, whose coordinates are 

x=-a{l-e)-fi, y=0, (9) 

and whose distance from the earth is a(l — e). The 
initial velocity that is necessary in order to make the 
vehicle to enter the starting orbit is given approximately 
by , 

dx dy r l+e “I2 

—=0, —=dz —   +a(\ — e). (10) 
dt dt \-a(\ — e)J 

The minus sign in the second of Eqs. (10) applies to the 
injection of a vehicle revolving in the same sense as the 
moon around the earth (direct orbits), while the plus 
sign applies to vehicles revolving in the opposite sense as 
the moon (retrograde orbits). It is obvious that the 
perturbing effect of the moon on the vehicle is greater 
in the first case than in the second case, because when 
the vehicle is rotating in the same sense as the moon, 
their encounter will last longer than when the two are 
rotating in the opposite sense. Therefore we would 
expect that it will be easier to find desired orbits of 
retrograde motion than those of direct motion. Indeed, 
as we will see immediately, the orbits rotating in the 
same sense are unstable. 

With the four initial conditions as given by (9) and 
(10), we can proceed to integrate (7) and (8) and are 
thereby able to find by successive approximation the 
required orbits. The integrations were carried out on the 
IBM 7090 digital computer at Goddard by Clarence 
Wade, Jr. The Runge-Kutta method was used with 
A/ = 0.01. 

We have studied the case a = 1.14 which is in the 
middle of the range of interest from 1.08 to 1.20. By 
the method of successive approximation we obtain a set 
of correct initial conditions : 

x=-0.39215, y = 0, dx/dt=^ ¿y/¿/=2.35164, (U) 

with which a final integration has been performed up to 

¿ = 240. During this time interval of nearly 3 years 
(38.20 sidereal months), we have seen 19 encounters 
with the moon. The orbit repeats itself every time after 
each encounter. This indicates that the orbit is a closed 
one for all practical purposes. It is shown in Fig. 1. 
The final value of a is about 1.16, which is larger than 
the initial value of 1.14. 

As a passing remark we should mention that it took 
the IBM 7090 computer about J hr to compute, with 
double precision, the path of the third body from 
/ = 0 to ¿ = 240 with A¿ = 0.01. 

The desired initial conditions corresponding to an 
initial a of 1.14 but with negative injection, i.e., with 
the minus sign in the second of Eqs. (10), can be 
similarly obtained. They are 

^=-0.39215, y = 0, ^/íf¿ = 0,í/y/¿¿=-1.61025, (12) 

with which the final integration was carried out. The 
result is not quite satisfactory. After three passages 
around the moon which are identical within the ac- 
curacy of plotted figures, the third body deviates greatly 
after the fourth passage and never reaches the other 
side of the moon again before ¿ = 60. The orbit before 
the fourth encounter with the moon is illustrated in 
Fig. 2. 

It can be seen from the figure that the final value of a 
is about 1.07, which is much smaller than the initial 
value of 1.14. The strong perturbation by the moon at 
the time of close encounter is the reason why a closed 
orbit is so difficult to obtain in this case. However, the 
orbit has the advantage that it gives the probing vehicle 
a longer period of time to look at the other side of the 
moon than the retrograde orbit can provide. 

From the time interval between two consecutive 
encounters we can easily see that the direct orbit of the 
third body is strongly perturbed by the moon even 
before the fourth encounter because its line of apsides 
has rotated by an appreciable angle after each en- 
counter. If the successive encounters only make the 
line of apsides rotate without any effect on other ele- 
ments of the orbit of the third body, the orbit will be a 
stable one. Actually, the perturbation does cause the 
changes in other orbital elements. These changes 
destroy the synchronization of the motions of the moon 
and the third body. 

An appreciable degree of rotation of the line of apsides 
of the orbit of the third body also raises the difficulty 
of using them for practical moon probes. Since the moon 
is not actually revolving in a circular orbit as is assumed 
here but in an elliptical orbit, the change in the separa- 
tion between the moon and the earth would destroy the 
regularity of encounters even at the first time. There- 
fore, whatever merits the direct orbit has, it should not 
be used for a moon probe with the intention of circling 
the vehicle around both the earth and the moon for a 
long period of time. 

In both direct and retrograde orbits, the line of apsides 
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-1.0 -0.5 0 0.5 1.0 

-1.0 -0.5 0 0.5 1.0 -1.0 -0.5 0 0.5 1.0 

Fig. 4. The effect of a small change in the initial conditions on the stability of the direct orbit. The percentage deviation from the 
correct initial velocity is in each case 10 times less than those given in Fig. 3. Even with such a small deviation, no more than two 
encounters can be obtained, a fact indicating the instability of the orbits. 

has a retrograde motion, as a result of encounters with 
the moon, as we have mentioned. Consequently, the 
time interval between two consecutive encounters is 

slightly more than two sidereal months in the case of 
retrograde orbits and less than two sidereal months in 
the case of direct orbits. 
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IV. STABILITY 

The possibility of finding the desired orbits in the 
actual system of the earth, the moon, and the sun de- 
pends ultimately upon the tolerance in the initial condi- 
tions such that the orbits obtained under the approxi- 
mation of the restricted three-body problem will not be 
easily destroyed. In order to examine this tolerance, we 
have integrated six more cases for positive injection with 
dy/dt at / = 0 to deviate from the correct value of 2.35164 
by ±0.05, ±0.10 ±0.15%, but with no change in other 
initial conditions. For each case we have integrated the 
equations of motion up to 60. Figure 3 illustrates the 
behavior of the resulting orbits in the stationary frame 
of reference. Only the portion of the orbit during the 
encounter with the moon is drawn. Each diagram in the 
figure has marked at the upper left corner the percentage 
deviation from the correct value of dy/dt. Five en- 
counters are shown in each case. The dots mark the 
position of the moon and the third body at the labeled 
times during encounters. 

From Fig. 3, we notice that synchronization of the 
motion of the moon and of the third body is completely 
destroyed in the case of —0.15% after the third en- 
counter, which takes place on the wrong side of the 
moon, while in the other five cases, the regularity is 
maintained during the computed time. The orbits in 
these five cases undergo oscillations in the distance of 
the encounter with the moon. This appears to indicate 
the stability of the orbit under a small change in initial 
conditions. We are encouraged by this property to sug- 
gest that an orbit encircling both the earth and the 
moon for a period of a few encounters should be further 
studied under the realistic configuration of the earth- 
moon-sun system. 

Similarly, we have integrated the equations for six 
more cases in connection with negative injection. Their 
initial conditions follow Eqs. (12) except with dy/dt at 

/ = 0 being ±0.005, ±0.010. ±0.015% from the correct 
value of —1.61025. Note that the percentage changes 
are only one-tenth of those considered for the retrograde 
orbit. We have illustrated the results in Fig. 4. As with 
the case of retrograde orbits, only that portion of the 
path which encounters the moon is plotted. Similarly 
the time and the positions of both the moon and the 
third body during each encounter are marked in the 
diagram. All orbits in the figure make only two en- 
counters with the moon before they are perturbed out 
of synchronization. This shows that the orbit is not 
stable under a slight change in the initial conditions. 

Although the distances of encounter with the moon in 
these cases are too short to derive a general conclusion, 
we expect that this instability will persist even when the 
third body encounters the moon at greater distances. 

An interesting result which may have an important 
bearing on the practical application is the fact, as can be 
seen from Figs. 3 and 4, that a slightly larger magnitude 
of the injecting velocity than the correct one is less 
damaging to the regularity of encounters than a cor- 
respondingly smaller magnitude of the injecting 
velocity. 
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