STATISTICAL MECHANICS OF THE SIMPLEST TYPES OF GALAXIES

K. F, Ogorodnikov

In accordance with the principles given by the author in another paper*
quasi-stationary stellar systems are considered. These have finite phase volumes
and times of relaxation which are not longer than the characteristic time-scales
(of the order of magnitude of the rotational period). In these systems the actual
phase distribution cannot differ appreciably from the most probable distribution.

In order to find the most probable phase distribution the author applies the
method of "phase cells,” (known in statistical physics) together with the method
of additive parameters. Every stellar system, from the point of view of a dy-
namical system of material particles, is characterized first of all by three addi-
tive parameters expressing properties of motion: the mass — M, the sum of the
energies of motion of the stars — E, and the sum of the rotational moments of the
stars — K. Every stellar system completely defined by the values of these three
parameters is called dynamically definable or briefly a D-system. These are
systems of the simplest type, as generally three dynamic parameters are not suf-
ficient for uniquely defining a stellar system (e.g. our galaxy),

In the present paper only D-systems are considered. It is shown that the
following characterize the most probable state of D-systems:

1) Uniform rotation (Theorem I); 2) "isothermal™ Maxwellian distribution
of peculiar stellar velocities (Theorem II). However, Maxwell's law is valid only
within a limited range of velocities.

The application of Poisson's equation together with Theorems I and II leads
to the conclusion that in the first approximation the stellar density is constant
throughout the main body of the D-galaxy and is proportional to the square of the
angular velocity of rotation (Theorem III). D-galaxies appear to be dynamically
unstable as they do not comply with the requirements of Poincare’s criterion for
the upper limit of angular velocity (Theorem 1IV).

Nevertheless we can associate with every D-system a certain classical
equilibrium figure of a uniform, gravitating liquid mass. Maclaurin's ellipsoids
of the 1st type (planetary) correspond to E-galaxies and to the nuclei of normal
S-spirals, Maclaurin's ellipsoids of the 2nd type (disk-shaped) correspond to SO -
and normal S-spirals, Finally, the prolate ellipsoids of Jacobi correspond to a new
type of galaxies which we shall term needle-shaped (acicular), or simply A-
-galaxies,

These galaxies are very long and very thin bodies. They are observed in
sufficient numbers in the skies but ordinarily they are confused with genuine nor-
mal spirals seen edge-on. Their presence among edge-on spirals is revealed by

* This paper will appear in Vol. 34, No. 6, of this Journal.
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the apparent excess of the number of such objects as compared to theoretical pre-

‘dictions based on the assumption that all these objects are disk-shaped. Such an

excess was pointed out as early as 1920-22 by J. H. Reynolds [5]. The main
features of A-galaxies are: a very tufty appearance with an absence of any regular
structure (nuclei, spiral arms, annular structure and the like). They represent, prob-
ably, one of the earliest stages of galactic evolution. Typical representatives of
the A-class of galaxies are: NGC 2188, 2796, 3034, 3556,

Owing to their great instability, the A-galaxies are observed rather seldom in

their pure form. In the majority of cases they form the main bodies of SB-spirals
displaying a state of disruption through an outflow of streams of stellar gas from
their outermost points, (NGC 7741isa typical example.)

Pear-shaped asymmetry, theoretically predicted for liquid masses by G, Dar-
win, H. Poincare and A, Liapunov, is also possible for galaxies. It is actually ob-
served in many instances (e. g. NGC 4455, 4631, 7479). In the extreme cases the
asymmetry leads to the formation of one-arm spirals (e.g. NGC 4038, 4254),

In the second approximation a differential equation of the Helmholtz type
for the additional star density was derived. For its solution a suitable boundary pro-
blem based on the uniform equilibrium body of the first approximation must be
formulated, In the simplest case of a very thin and flat disk it is possible to apply
the Fourier method of separating variables, This leads to a Bessel equation for the
distribution of the additional star density along the radius. Different particular solu~
tions correspond either to the central nucleus or to a system of concentric rings.
A "barometric” formula was obtained for thie density distribution in the z-direction.
In the azimuthal direction a harmonic solution was found. Mathematically this
solution is identical with the well-known solution for an elastic round membrane.

The above solution permits the interpretation, at least qualitatively, of a num-
ber of different structural details of SO- and SB-spirals, which have an annular struc-
ture and a strong condensation of mass towards the center, Owing to low density in
the end parts of the main body, which is now less prolate, the outflow of stellar gas
goes on slower and the streams are thinner than in the case of "classical” SB-spirals,
such as NGC 7741 with no central condensation., (Typical examples: NGC 488,
1398, 4725.) The existence of the solution of the Helmholtz equation ensures the
stability of the central nucleus and of the annular pattern and prevents their dissipa-
tion, At the same time the existence of a flat Maclaurin ellipsoid of equilibrium
prevents the majority of stars, ejected from other parts of the old prolate main body,
from dissipating and permits them to form a new disk-shaped body.

In all the above cases the spiral arms must be trailing.

1. Introduction

On the basis of the ideas presented in another paper* we will consider that in every star system there exists
an inner part, or the main body, and an outer part,or the halo. The character of a star system is determined by
the structure of its main body. The halo surrounds the main body in the form of a structureless star cloud.

The dynamical theory must first of all describe the equilibrium shape of the main body of a star system.
Then the structure of the halo can be determined by obtaining a suitable function to describe the distribution of
the orbit elements of the individual stars moving in a gravitational field which depends almost entirely on the at-
traction of the main body.

The phase density has been determined only inside the main body [1].

*See the footnote to the abstract. In the following we will refer to it by the symbol [I].
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We will assume that the relaxation time T, is considerably less than the time necessary for a star, moving
with a velocity v equal to the mean value of the residual velocities, to cross a given star system along its dia-
meter D*:

Ty < D/v. : 0))

Doing this, we assume that, at least inside the main body, there exists an efficient system of irregular
forces, analogous to viscosity in gases, which enables us to consider the star system as a continuous medium and,
consequently, to use the Boltzmann equation and the equations of stellar hydrodynamics. On the other hand, be-
cause of the action of irregular forces,the phase distribution must differ little from the most probable one for
the given star system. Only by combining two methods, statistical and hydrodynamical, are we able to elimi-
nate the indeterminacy in the solution of the dynamicai problem,

Observations show that the distinguishing feature of galaxies is their axial rotation which is either rigid-
body rotation, as in E- and, apparently, SB-type galaxies, or quasi-rigid-body rotation as in S-type galaxies, in
the inner part up to the distance corresponding to the maximum velocity of rotation (for this see [T]).

We will assume that the galaxies investigated by us, firstly, are isolated dynamical systems; secondly, we
will assume that they are in a quasi-stationary state, by which we mean that the star system is in a state of dy-
namical equilibrium at every instant of time, With dynamical equilibrium the phase density and, consequently,
all the internal physical parameters of the galaxies,can be considered to be explicitly independent of time.,* *
We will not consider any interaction forces apart from gravitational forces. Although we have sufficient data
to accept the existence of magnetic fields in certain types of galaxies (for example, in ours), as yet it is insuf-
ficiently clear what is the role played by the fields in galactic dynamics, It is equally uncertain whether their
action is the same in all types of galaxies. It appears that they are only important in gigantic spirals of the type
of our galaxy and, even there, their role is probably limited to the influence they have on the distribution of
gas and dust, As regards stellar motion, it is not affected by magnetic fields.

2. The Method of Additive Parameters

According to Jeans' Theorem, the phase density f must be a function of only the integrals of motion of
a free point, For example, in the case of a star system whose mass distribution is rotationally symmetric* * *
there will be two such integrals: the energy integral and the angular momentum integral (*integral of areas").
In cylindrical coordinates they will have the form

I =P2 402+ 222U (p,2); J,= pB; (2

where U(p, z) is the gravitational potential.

*For example, for our galaxy we can take D = 16 kps, v = 20 km/ sec and then we find T, < 4 - 10® years.

*+ *By investigating equilibrium bodies we also take the necessary first step towards the study of nonstationary
galaxies. The nonstationary motion can be regarded as due to the breakdown of initial stationary conditions.
For example, we can consider SB-spirals to be formed by the disruption of a primary elongated cylindrical or
ellipsoidal body by an escape of a gas of stars from its ends. In the same way, we can consider the formation
of dark bands along the equator of E-galaxies to be due to the disruption of an ellipsoidal body. In both cases
it is natural to assume that the -disruption is produced by the centrifugal force due to rotation.

*+ *+ +In the following we will distinguish between the rotational and axial symmetry of a function. In the former
case, the function depends only on p, the distance from the axis of symmetry, and the coordinate z. In the lat-
ter case, each point (p, 0 , z) has a point(p,0 + 7 , z) which is situated symmetrically with respect to the
axis. The level surfaces of the function will be surfaces of rotation in the first case, but not in the second. A
spheroid is an example of a function with rotational symmetry, an ellipsoid that of a function with axial sym-
metry.

750

© American Institute of Physics * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1957SvA.....1..748O

Therefore,

f=Fy L), 3
where F is an arbitrary function,

On the other hand, with the condition that in a star system there exists an efficient mechanism of relaxa-
tion in the form of irregular forces, the phase density must differ little from the most probable distribution for
the star system with the given physical characteristics,

In the method of additive parameters we form functions ¢ (I;, I;) of the integrals so that their arithmetic
sum for all the stars of the given system represents an additive parameter, i.e., a quantity which describes some
characteristic property of this system.

Let
N N N
Py = ) mip (I, Ini); Py = Dymugy (Iny, L) -« o3 Pro= ) mupn (L, Ini) )
fw] L i=1

be a system of additive parameters satisfying the conditions that: (1) they are independent and(2) that they de-
termine uniquely the star system. Here Iy, Ipj, my denote the values of the integrals and the mass of the i-th

Star, ¢4, ¥g, « « « » ¢p are the characteristic functions obtained by the method described above.

Any system of additive parameters which satisfies conditions(l) and ), we will call a defining system.
Each star system, generally speaking, has an infinite number of equivalent defining systems of parameters. This
is seen, if only from the fact that any linear combination of additive parameters of a given system is itself an
additive parameter, '

Having found a defining system of additive parameters of the type (4), we then look for the most probable
phase distribution satisfying the condition that the parameters Py, Py, . . . , Py have the specified values. In this
case, as we will see below, Jeans' Theorem is automatically satisfied. The method of additive parameters, ob=
viously, can be extended to any number of independent integrals of motion (greater or less than two).

The simplest type of star systems is the dynamically-definable systems or, briefly, D-systems. We can ar-
rive at an understanding of dynamically-definable systems by the following method.

The simplest additive parameters are

N N N
1) Py =D\ my; 2) Py =D mily; 3) Py= D) mily. (5)
t=1

i=1 im1

We will show that these parameters have constant values as the result of the general theorems for an iso~
lated system of mass points. In fact, the physical meaning of P; is obvious: it is equal to the mass of the star
system. Therefore, the invariance of Py is an expression of the law of mass conservation, We will call it the
mass parameter and will denote it in the following by the symbol M. The second parameter is equal to the sum
of the kinetic energies of the individual stars moving in the total gravitational field of the star system. It has
the expanded form:

N

Py = D) m; (P} + 8} + 23 —2U), 6)

i=1

where we have written for brevity

N
rm
Ui =U @@ 2)=0G Q) —=,

r
k=1 i

(D
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where G is the gravitational constant, rji denotes the distance betweenthe k-th and i-thstars,and the prime in the
summation sign means that the term for k = i has been omitted in it. From this it is seen that

N
D mUy = — 2W, (®)

i=]1

i.e., twice the potential energy of the system (with opposite sign) since in the summation each star is taken into
account twice, As regards the sum

N

) my (P} + 8} + Zi) = 2T, )

i=1
it is equal to twice the kinetic energy of the system. Therefore,
Py = 2(T + 2W). (10)

Even if P, is not equal to twice the total energy of the system, it is constant because in the case of a quasi-
stationary system of mass points, not only is the law of conservation of energy obeyed, i.e., T + W = constant,
but also the virial theorem according to which 2T + W is zero, Therefore, in a quasi-stationary system the
kinetic and the potential energies are constant separately, but only their combination P, has the additive pro-
perty with respect to the integrals of motion of the individual stars, We will call P, the energy parameter and
in the following we will denote it by the symbol E.

Finally, Pg is the sum of the rotational moments of the individual stars about the axis of symmetry of the
star system. In the following we will restrict ourselves to the investigation of only the star systems rotating a-
bout the axis of symmetry.* Then P; will be constant as the result of the law of conservation of angular mo-
mentum. In the following we will denote Py by the symbol K. We will refer to M, E and K as dynamical para-
meters.

In general, the dynamical parameters do not form a defining system, i.e., they are insufficient for a unique
description of a given type of star system. The general theorems of mechanics, however, do not give any inte-
grals, except the energy and momentum integrals, for an arbitrary isolated system of mass points.* * From this
follows that all the other additive parameters must be nondynamical, i.e., they must be statistical in nature. We
can thus divide star systems into two classes: dynamically definable and dynamically nondefinable systems. It
is clear that every star system among its defining parameters must, in any case, have three dynamical parameters.
Therefore, from the point of view of statistical mechanics, dynamically definable star systems are systems of the
simplest type and for this reason we will at first restrict ourselves to the investigation of such systems only, leav-
ing the investigation of more complicated dynamically nondefinable systems to a future paper.

3. The Most Probable Phase Distribution for the Simplest Type of Galaxies

We will investigate a D-system of stars (a galaxy) which is defined by three additive dynamical parameters:
the mass M, the energy E, and the angular momentum K. We will consider that the system is rotating about its
axis of rotational symmetry. For simplicity,we will assume that all the stellar masses are equal. Then, denot-
ing by N the number of stars in' the galaxy, we will have three parameters; ‘

N N
N, E=2 (P} +6°+ 2} —2U)); K =) p6i (11)

il i==1

*In other words, we will not investigate the cases in which, in addition to pure rotation, there are precessional
and nutational motions,since these are unlikely to arise in a star system not subject to the influence of external
forces.

* +We do not, of course, inciude the integral which describes the uniform motion of the center of mass as it does
not enter into our calculations.
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Taking into account that the main body (which we have in mind here) of the galaxy occupies a finite
volume, while the velocities are limited by the escape velocity, we conclude that the phase volume of the galaxy
T is limited. To find the most probable phase distribution we will use the method of phase cells which is well-
known in physics. For this we divide the phase volume into a very large number m of very small phase cells
which, however, must satisfy the condition

1<< m=<<N, (12)
i.e., m must be very large and, at the same time, very small by comparison with N. In other words, the average

number of stars in one phase cell N/ m must be larger than unity (for example, several tens or several hundred),
We denote the volume of the k-th cell by yk. yk satisfies the relation

m
E Te=T. (18)
1

Let us now assume, as is usual in such cases, that the a priori probability for any star to lie in the k-th cell is the
same for all stars, is independent of the position of the cell in the phase volume I', and is equal to the geometrical
probability

pr=1x/T. (14)

Obviously, this hypothesis is equivalent to the assumption that in the absence of the constraints imposed by the
conditions E = constant and K = constant, the phase distribution will be uniform over the whole volume T'.

The probability that with a random distribution of stars there will be ny, ng, . . . , nm stars in the cells is
given by the blnomial distribution as ‘

ANl ,
P=n1inal...nmf p?l’p;l"‘p:"‘m' (15)

Within each cell we can take the phase coordinates of the points to be equal. Hence, the quantities given by
(11) can be rewritten in the form

N = my E=) n (P} 46} + 2} —2Us) = X mEx; (16)
k=1 k=1 k=1
K = D) nkpiBy = D Ky,

k=1 k=1
where the subscript k refers to the value of the given quantity for the k-th cell.

The problem now reduces to the determination of the maximum of the probability P as a function of the
variables ny, 0y, . . . , Oy Which are subject to the conditions (16). Since, after finding the maximum we intend
to go over to a continuous and differentiable phase density (which obeys Boltzmann's equation), we can consider .
the variables n; to be continuous.

The Lagrangian for the variational problem can be taken as

L=1InP 4k Dny+ ky meEy + 2ky DymKy, an
k k k

where ky, ky, and kg are Lagrange multipliers.
Differentiating with respect to nk, we obtain

d] !
g,%z__fﬂ’—+lnpk+kl+k2E,‘+2k3K,,.
3

dn,,
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To find the meaning of the derivative of In(ng !) we will assume that the occupation number for the given cell
is

ng > 1. (18)

Then, with sufficient accuracy,we have that

dln (n,!) In [(n, + 1)!1] — In (n,})
dny, = (n +1)—n,

-:-ln(n,,—!—i):ln ng. (19)

Substituting this expression into the equation of aL/ dng, we find after rearrangement that

n—= pekl—Hf,E—(»zk,K s (20)

where the subscript k has been discarded,as it is no’longer necessary. Instead of the occupation number of a phase
cell, we now introduce the phase density f:

n —
fdy/T, (21)
and obtain the following expression for the most probable phase density:
f = efrtHhE+2kK (22)

The condition ng >> 1 has an important basic significance. In the present problem it is determined by the neces-
sity to change over from a discrete distribution to a continuous one and is therefore not associated with the’ mathe-
matical method used by us, but with the nature of the physical problem. At the same time it has a very import-
ant consequence, namely, that all conclusions about the phase distribution are meaningful only for those values of
the phase coordinates for which the occupation of the phase cells is sufficiently high. In particular, the Expres-
sion (22) for the phase density has no meaning for large values of the coordinates (outside the main body), as well
as for high velocities (greater than the escape velocity),

4. Investigation of the Phase Distribution for Dynamically-Definable Galaxies

To obtain the physical meaning of the solution found, we transform the exponent in Eq. (22):

ko 4 2k, K — ky (P2 4 02 + 22 — 2U) + 2kp8 = @)
=k, [P? 4 (8 — 8,)2 + 22— 2U4],
where
e (24)
and
Uy=U+ 46 25

Here, O, is the velocity of the centroid. We see that it is at right angles to the galactic meridian through
the given point. From the hypotheses that we made at the beginning we have obtained the rotation of the galaxy
about its axis of symmetry and 6, gives the velocity of the centroid.

Eq. (24) shows that ©, is proportional to p. Therefore, the angular velocity of the centroid,

@, = By/p = — k3/ky = const ‘ (26)
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is constant and, consequently, we obtain Theorem I,
Theorem 1. The most probable form of rotation for dynamically-definable galaxies is rigid-body rotation.

In our paper [I] we have shown that, judging by all the data, this in fact agrees with observations. On the
other hand, from Eqs. (22) and (23) it can be seen that the dispersions of the three velocity components are the
same and are equal to

1
0% = — = const. (27)

From this we obtain the second theorem:

Theorem II. The most probable distribution of the residual stellar velocities at all points of dynamically~-
definable galaxies {s Maxwell's distribution with the same dispersion for all points of the system (“isothermal”
distribution),

Integrating (22) over all the velocity space and taking (23) into account, we obtain the star density v,

v, 9%
v=Ceo T (28)
where ;
C = (21‘:)"*0387“ (29)

is a constant which is determined by the condition that the integral of v over all of the galactic volume * must
be equal to N, the number of stars in it,

The physical meaning of the Lagrange multipliers has also become clear, If according to (27) k, deter-
mines the dispersion, kg on the basis of (26) determines the angular velocity of rotation, and, finally, according
to (29) k, determines the mass, for which it is necessary to know the potential (i.e., the mass distribution), the
- size and shape of the galaxy, i.e., it is necessary, first of all, to solve the dynamical problem. From (28) it
follows immediately that the level surfaces of the star density are given by the equation

1
This equation is the same as the analogous equation in the classical problem of the equilibrium figures of rotat-

ing liquid bodies and it will be used extensively by us in the following.

To eliminate the potential from Eq. (28), we take its logarithm and apply the Laplace operator. Then,
using Poisson's Equation

AU = — 4xGmy,
where G is the gravitational constant and m is the average stellar mass, we obtain a differential equation for
‘the star density:

o?A (In v) = — 4=Gmv + 2055. 31)

This is the fundamental equation for the problem of determining the distribution of mass inside the D-galaxies.
In expanded form it is written as:

1 al 1 821 21 .
02{?_@(9_9_")4_?_5(%3_{__62_’;”}:—47:va+2¢0§. (81")

*Here, as everywhere else, we have in mind the volume of the main body of the galaxy.
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In the case when the star system possesses rotational symmetry, the second term in the bracket must be omitted.

Eq. (31') is too complicated to be worth an attempt to integrate it in the general case. However, a spe-
cial case of the solution is conspicuous. In fact, in the left-hand side the star density appears only through the
derivative of its logarithm. Therefore, if we restrict ourselves to the investigation of sufficiently "smooth"
models, then the absolute magnitude of the left-hand side will be small. Hence, neglecting the left-hand side,
we obtain the special solution:

27Gmv — g =0

or 2

0 .
2nGm (32)

[0)
Vo=

This is a very important result which leads to further conclusions. The following theorem is proved by Eq. (32).

Theorem IIl. In any dynamically-definable galaxy, if the star density varies smoothly enough, the star
density is constant in the first approximation and is proportional to the square of the angular velocity of rotation.

Before we proceed to further deductions, we must make two remarks of a fundamental nature:

1) Firstly, if we note that the product mv represents the density of matter d:

mv =d,
then Eq. (32) can be rewritten in the form:
o) 1
2rGd ~—

which shows that the value of the star density obtained by us as a first approximation does not satisfy Poincare's
criterion for the upper limit of the angular velocity [1); We thus obtain Theorem IV.

Theorem IV. Dynamically-definable galaxies with quasi~constant star density* are dynamically unstable.

2) v =const cannot be an exact solution of any physical problem. In fact, from Eq. (28) it follows that
with v = const , the potential must be a function of p only (6, is a function of p). But this is not physically
possible since in this case the component of the gravitational field parallel to the z axis (axis of symmetry of
the galaxy) will be equal to zero, while the component of the force along the radius p will be independent of z.
Consequently, in this case we would have a uniform circular infinite cylinder, rotating about its axis. We can
consider this case to be physically meaningless.

To obtain dynamical stability and a physically real model, we must find the second approximation to the
solution of Eq. (31). Taking

V=Vt (33)
(where v is the first approximation to ¥ given by (32), while v 4 is a small quantity by comparison with v ;) and

substituting v into (31), we can linearize the equation and obtain, after transformation, the differential equation
from which the second approximation can be obtained:

@2
AVl + 2 T;)*Vl == O. (34)

This equation is well known in mathematical physics and is called the Helmholtz Equation (for example, see [2]).

In particular, it was used by H.Poincare and J. Jeans in developing a theory of ellipsoidal figures of equilibrium.

We will study Helmholtz's Equation in greater detail below. We will only make a few brief remarks now.

* That is, with a density constant in the first approximation,
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For brevity, in what follows we will refer to the uniform density v ; as the primary density and to v as the ad-
ditional density. The effect of the additional density is mainly that it determines the formation of central nuclei,
which are in fact observed in most galaxies. Because of the additional density, the quantity

)
" 2nGmy (39)

decreases and hence the dynamical instability of the galaxy decreases.

In addition, as we will see below, the additional density leads to the formation of certain structural details
in the galaxies, in particular, to the formation of an annular structure, as well as of a system of planet-like con-
densations similar to beads, sometimes observed in galaxies (for example, NGC 4324). The annular structure
sometimes exists together with the spiral (for example, in M31).

5. The Equilibrium Figures of Galaxies

As the result of the analysis carried out in the preceding paragraphs,we found that the dynamically-defin-
able galaxies have the following properties: 1) they rotate as a rigid body, 2) they are uniform with respect to
the distribution of mass (the density is.everywhere the same), and 3) they behave as continuous bodies in the
sense that the methods of hydrodynamics are applicable to them, This leads to the possibility of using, in the
case of galaxies, the classical theory of the equilibrium figures of rotating uniform liquid bodies,

Referring for details to the textbooks (for example, see [3, 4]), we recall that, dependlng‘ on the numerical
values of the quantity Q in Eq. (85), there exist the following equilibrium ellipsoids:

Values of Q Type of equilibrium ellipsoids

1. From 0 to Q4 = 0.1871, ., 3 ellipsoids of which two are Mac-
laurin ellipsoids and one isa -
Jacobi ellipsoid

2. From Qq to Q, = 0.2247 2 Maclaurin ellipsoids
3. With Q = Q, 1 Maclaurin ellipsoid
4. WithQ> Q, No ellipsoids

In the cases when there are two Maclaurin ellipsoids (@ < €,), to each value of Q there corresponds one
"planetary” and one “disc-shaped" Maclaurin ellipsoid. The planetary ellipsoid is slightly oblate and as Q
tends to zero it tends to a sphere. The disc-shaped ellipsoid is always very oblate, it is always similar to a cir-
cular flat disc and as Q tends to zero, it tends to an infinite thin flat layer, As Q increases and tends to the value
Qq = 0.22417. . ., the oblateness of the first ellipsoid increases, while that of the second decreases,and when

Q = 0,2247 the ratios of the semi-axes of both ellipsoids become the same and equal to

go =22 =0.6323. ..
g a

A Jacobiellipsoid is an elongated triaxial ellipsoid which rotates about its minor axis. It only exists for small
values of Q= Q4= 0.1871... . If we take that a > b> c, then as Q tends to zero the semiaxes b and c tend
to equality, and the axis a— o, Thus, for small values of Q Jacobi's ellipsoid is "needle-shaped,” i.e., it
has the form of a long and thin needle with pointed ends, As Q increases and tends to Q¢ = 0.1871. . . , the
axes a and b tend to equality and at @ = Q, Jacobi's ellipsoid becomes the biaxial Maclaurin ellipsoid and
its oblateness becomes equal to

g =2—2=0.4172...

a

It is not hard to find examples of galaxies having the form of Maclaurin ellipsoids. E.~galaxies and also the
nuclei of S-~spirals are related to the planetary ellipsoids, The presence in some of them of an equatorial rib
and the outflow of matter along it can be easily fitted into the picture provided by the Roche model.
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Disc-shaped galaxies also occur in adequate numbers. We can take as belonging to this type all of the
varieties of S-spirals, including SO-spirals in which the spiral structure changes into a system of rings (for ex-
ample, NGC 4826). Their disc-like shape is particularly apparent when these galaxies are observed edgewise
(for example, NGC 4565).

Finally, if we accept the hypothesis that SB-spirals represent the result of the outflow of a stream of star
gas from the ends of a primary body, then we can consider that SB-spirals are the resuit of the disruption of
needle-shaped ellipsoids (for example, NGC 1300, NGG 7741, and others).

The fact that needle-shaped galaxies are observed most frequently in the form of SB-spirals, characterized
by the escape of matter from the ends of the primary body, can be readily understood if we take into account
that of all the ellipsoid types, Jacobi ellipsoids on the average correspond to the smallest values of Q and be-

“cause of this these galaxies are the least stable. A question arises, however, are there any examples of needle-

shaped galaxies which are not SB-spirals? Such spirals must occur among the galaxies usually classified as
"spirals seen edge-on." In fact, there is a marked difference in appearance between the various examples of
this type of galaxies, as a comparison of such galaxies as, for example, NGC 4565 and NGC 4631 will show. In
the former we can clearly see the central nucleus and a dark equatorial band, i.e., the features we can expect
to observe in normal spirals; on the other hand, in NGC 4631 we do not see any signs of a nucleus, nor of a dark
equatorial band. This gives us a reason for assuming that in the latter case we are observing a needle-shaped
galaxy from one side.*

The presence of two different types of galaxies (disc- and needle-shaped) among the S-spirals must affect
their observed distribution of oblateness. As can be easily shown, the fraction of galaxies with a high oblateness,

-usually taken to be the galaxies "seen edge-on,"” will be larger in the case when needle-shaped galaxies exist

than if they are absent. But the excess of the type indicated has been known for a long time, as already in 1920-
1922 it was discovered and investigated by Reynolds [5].

So as not to digress, we will restrict ourselves here to the above remarks and postpone a more detailed dis~
cussion of this question to another paper. Here, we have still to show that needle~shaped galaxies belong to the
class of dynamically-definable galaxies.

6. On the Existence of Needle- and Pear-Shaped Galaxies

In the derivation of the most probable phase distribution in §3, we have assumed that the star system pos-
sesses rotational symmetry in its mass distribution. The integral of areas relative to the symmetry axis exists
for each star only if this condition holds.

We will now show that the phase distribution obtained by us remains valid for a wider class of bodies of
which the triaxial ellipsoid is a special case ., That is, we will prove Theorem V.

Theorem V. The class of dynamically-definable star systems includes also any system rotating as a rigid
body whose density distribution is symmetrical with respect to a plane passing through the axis of rotation and,
at the same time, whose velocity distribution is symmetrical with respect to a plane which is perpendicular to
the first plane,

Let f(X,y, 2; );, .;r, é) be the phase distribution. If we take the planes of symmetry indicated above to be
the coordinate planes (x, z) and(y, z), then the symmetry property expressed in Theorem V can be written down
in the form of an equality:

f(xr Y, 2 x,y',z')=f(:1:,——y,z; 56,?7,2)=f($,y,z;——561y',2)=
Lo 36
= (=, —y, 2, — X, ¥, 2). (36

If in dividing the phase volume I" we take the symmetrically-placed cells to be identical, then the occu-
pation numbers of the phase cells will also have the Symmetry Property (36)

* NGC 2188, 3034, 3556, and 2796 can serve as other examples of needle-shaped galaxies.
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N, = n(Tk, Yo 25 Xier Yoy 2ic)-

In a system of coordinates rotating with an angular velocity w, the equations of motion for a free point will be

" | U
% — 20y — 0T = ——;
(37N
. ou .. au
!','+2m0x._w§y=__; Z=-53—,

oy
where U is the potential. |

It is clear that U will have the same symmetry as the mass distribution, i.e.,

U (z,y,2) __ _ 9U(z, —y,3)
' dy - dy '

Multiplying the first of the Eqs. (37) by —y, the second by x and adding the two, we obtain,after the simple
transformations usual in such cases,the equation

d oD
=i (@Y — yx) + 20 (X + yy) = = a—f,— y %% (38)

Let us now write down the same equation for another star whose phase coordinates are (x, —y, z; =X, ;1. i). We
will have

d . . ) , oUu oU
7 (07— %) =200 (o5 + ) = — (s 5 —y 52).

Adding this equation to Eq. (38), we obtain for a system consisting of two symmetrically-placed stars,the equation:

d 3 . d . .
-5 (&g — %) + 3 (a2 — YaXg) = 0
or

(291 — ¥1%y) + (zzyz — YaXg) = C, ‘ (39)

where the subscripts 1 and 2 denote the coordinates of the first and second stars. Thus, in the cése of the sym-
metry described in Theorem V, the angular-momentum integral exists for each pair of symmetrically-placed
stars and as we have agreed to take the occupation numbers of symmetrically-placed phase cells equal, then
the expression for the additive parameter

m
K = 2 nkpkek

k=1

will remain unchanged. Because of this all the other results connected with the most probable phase distribution
will also remain unchanged, The only unimportant difference is that in this case we must consider the star
system as formed not from individual stars, but from pairs of symmetrically-situated stars and these will be our
material particles, ‘

The applicability of the theorem formally proved by us is considerably wider than is necessary for the
physical problem that we are ihvestigating. In fact, with the most probable phase distribution, the distribution
of velocities at any point is Maxwellian, i.e., it possesses spherical symmetry, Therefore, it is symmetrical
with respect to any plane which passes through the center of the velocity distribution [the point (0, 0, 0)] in the
rotating system of coordinates. As regards the mass distribution, the condition of symmetry with respect to a
plane passing through the axis of rotation is satisfied not only by triaxial ellipsoids and similar bodies, which
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are symmetrical with respect to both of their principal planes passing through the minor semiaxis, but also by
pear-shaped equilibrium bodies which were investigated classically by A. A. Liapunov, H, Poincare, G. Darwin,
L. Lichtenstein, and others.

We have already discussed the question of the occurrence of galaxies with the shape of triaxial ellipsoids.
Similarly, asymmetric pear-shaped galaxies are also often observed. We can even state that this type of assym-
metry is almost always present to some extent. It is noticeable, for example, in the needie-shaped galaxy
NGC 4631 which we have mentioned already. It is also noticeable in the normal-spiral galaxy seen edge-on:
NGC 4565. In the most marked cases of this asymmetry it happens that S-galaxies have only one spiral arm
(for example, NGC 4038).*

Thus, on the basis of the theory considered by us, the SB-spirals are the result of the rotational instability
of ellipsoidal or pear-shaped bodies. Depending on the value of the star density, the angular velocity of rota-
tion, and the presence of a central condensation (the nucleus),we have different forms of SB-spirals. In the ab-
sence of a central condensation, with a high average star density and a high angular velocity, we have a large
outflow in the form of wide streams (for example, NGC 7741). In the presence of a very marked central con-
densation we have thin streams, which corresponds to a low value of the star density at the ends of the main body
(examples: NGC 1300, 1530, and others).

Using the outflow theory, we can explain fairly simply some of the details of SB-spirals which at first sight
seem to be unimportant. For example, the wide streams (as in NGC 7741) curve markedly inwards to the center
because of the gradual shortening of the main body as its mass decreases. On the other hand, the thin streams
curve inwards very slightly and do not depart significantly from a circular shape, because in this case the shorten-
ing of the main body takes place much more slowly.

In many SB-spirals the peculiarity is observed that the beginning of the stream does not coincide with the
end of the main body. On the basis of the outflow process described above, this phenomenon can be explained
in the following way. The escape of stars from the main body, naturally, mainly takes place at the expense of
the stars with the highest absolute (i.e., relative to the system of coordinates with origin at the center of mass
of the galaxy and with axes fixed in direction) velocities, because it is necessary for the velocity of a star to ex-
ceed the local escape velocity before it can break away. Therefore, the stream of star gas must mainly consist
of stars whose absolute velocity is greater than the circular velocity of the local centroid. Because of this, the
stars that have broken away will continually overtake the main body as the galaxy rotates. On the other hand,
in the remaining part of the main body the circular velocity of the centroid will decrease because of the loss of
the stars which overtake the centroid. Therefore, the stream as a whole will start to overtake slightly the main
body and this slow advancing will also continue after the outflow has stopped.

We can often observe not one, but two or even more thin streams forming a series of rings or, more accu-
rately, a series of sections of slowly-contracting spirals (for example, NGC 488 and NGC 1398). This can be ex-
plained by assuming that at the end of one period of outflow, the main body,because of gravitational contraction,

* At this stage it may be useful to point out that the reason why GChandrasekhar and G.Kuzmin, who investigated
the problem of finding the general solution for a stationary star system, arrived only at the solution of the spe-
cial form: to systems with rotational (in our terminology) symmetry (if the solutions with screw symmetry are
not considered to be physically completely unreal), is that these authors imposed certain formal mathematical
conditions on their solutions.In particular,Chandrasekhar imposed the condition that the solution should give
differential motion of the centroids, while Kuzmin the condition that among the integrals of motion in the gravi-
tational field of the system there should be an integral linear in the velocities which, as can be seen from Kuz-
min's analysis, is equivalent to the condition for the existence of the angular-momentum integral,

The problem of the statistical mechanics of normal spirals of the type of our galaxy will be investigated
by us in another paper, in which we will show how the method of additive parameters can be used to interpret
the differential(nonrigid-body)rotation observed in these galaxies. Therefore, here we will restrict ourselves
to a few brief remarks on the morphology of the galaxies, If we assume that SB- and SO-spirals are formed as
the result of the disruption of dynamically-unstable needle-shaped galaxies, then there can be no objections to
the assumption that normal spirals are also produced in the same manner.
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takes the shape of another equilibrium figure. As the result of this, its moment of inertia about the axis of rota-
tion is decreased and the angular velocity is correspondingly increased. This may initiate another process of
outflow, and so on.

It is clear that these considerations must be verified by quantitative calculations on the basis of the theory
of nonstationary processes, which we will not carry out here,

From the above discussion it follows that in SB-spirals the arms must be curled inwards, even if in some
cases this is very slight. In this respect the results of the present theory differ from the results of the well-known
theory of Lindblad. We can expect that Linblad's theory is applicable to galaxies of the type of NGC 2841, 7217,
etc., which have a massive nucleus in the form of an oblate ellipsoid in which from various points along the
equator (not necessarily at the opposite ends of a diameter) there is an emission of thin spiral streams as the re-
sult of the instability of circular orbits outside the main body of the galaxy.

We will investigate the problem of normal spirals in the next paper.
In conclusion, we will briefly discuss the solution of Helmholtz's Equation and the ring structure of galaxies

which follows from it,

7. The Formation of Central Condensations and Annular Structures in Galaxies

Helmbholtz's Equation for the additional density has the form

Au + k*u =0, (40)

where
3
[O)
2 9.0
=2

Inside the main body, the unknown function u can take both positive and negative values. However, the
negative values cannot be greater in absolute magnitude than the primary density v, otherwise the star density
would become negative, Besides, this is'also unacceptable for purely formal reasons since |u| < v,. For the
same reason, ir cannot be negative outside the main body. ‘ '

To solve Eq. (40) it is necessary to formulate the appropriate boundary problem, i.e., to specify the value
of either u, or of its derivative along the normal to some closed surface which represents the external surface of
the galaxy.

However, as an example,we will restrict ourselves to the investigation of one simple case, that of a very
flat spheroid which we will take as a flat circular disc.

In expanded form in cylindrical coordinates the equation can be written in the form
1 % Mu

1
73 (P5) T o @ T T Re=0, “

whose solutions can be found in textbooks of mathematical physics (for example, see [2], vol. 3,4th edition,
§ 154).

To separate the variables, we take
u = POZ, ' (42)

where P, © and Z are functions of the variablesp , 6 , and z, respectively. For brevity we will call them the
radial, azimuthal and vertical factors, respectively. Substituting (40) into (39), we obtain for P, ©, and Z the
following equations:

8"+ p*8 =0;
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PP [ i) — B P =0, (43)

where p and I are new constants (p is an integer which we can consider to be always positive). Since © must be
a periodic function with period 27 and it does not matter where we start measuring 0 , in the case of the azi-
muthal factor we will have :

© =sin pe (when p # 0) and © = 1 (when p = 0). (44)
For the vertical factor we obtain the formal solution

Z = Ae'z 4 Be—1z,

However, Z must obviously satisfy the condition that Z—> 0 as | z] = oo. In addition, we can take Z(0) = 1
since the value of the density for z = 0 will be determined by the value of the function P.

Thus in the case of the vertical factor we obtain the "barometric® equation®*
Z =e—llzl, (45)

The third.equation, as is well known from the theory of linear equations, has only one solution which remains
finite at z = 0. This is the Bessel function of order p. If we take

K+12%2=¢, (46)
then the/solution will ‘be
P =Jp (ap). (47)

Since the density must be equal to zero on the equator of the galaxy, we obtain for g a number of values, each
of which corresponds to a root of the equations

Ip (w) = 0.
If we denote the i~th root of the Bessel function of order p by upP we will have

P
P = —";2—. (48)

where p, is the equatorial radius of the galaxy.
In the general case, the solution of Helmholtz's Equation must be the sum of particular solutions of the
type (42), i.e.,

u=A0uo+A1u1+..., (49)

-where Ay, Ay, . . . are constant' coefficients.

From the theory of Bessel functions it is known that there exists an infinite number of positive roots for
each value of p. In our problem the Bessel function Jap), of order p = 0, is of particular importance. It is the
only one of all the Bessel functions which has a value at the coordinate origin different from zero: J4(0) = 1.
Therefore, the solution of the form (47) for every galaxy which has a central nucleus must contain a term
corresponding to p = 0, If the other terms are absent (Ax = 0, k # 0), then the distinguishing feature of the
galaxy must be an annular structure with unbroken rings, since when p = 0 the aximuthal factor © =1 = constant,

*1t is known that the "barometric” law for the decrease of star density with increasing z coordinate is observed
in the case of our galaxy (for example, see [6]).
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NGC 4826 is an example of an unbroken annular structure. It has at least three concentric rings surrounding the
central nucleus, The elliptical shape of the nucleus and the rings must be the result of an inclination to the
line of sight. Two concentric tings are quite clearly visible. The first ring is broken in two places which are
diametrically opposite. If this break is real, and is not the result of the absorption of light by dark matter, then

this indicates that for this galaxy the Solution (49) contains a téerm corresponding to p = 1.

The galacy NGC 4324 has an even more complicated appearance; in the rings surrounding the nucleus
there appear equally-spaced bead-like condensations of approximately equal size and brightness, similar to the
annular nebula in the Kant=Laplace nebular hypothesis. If we consider that the beads fill uniformly all of the
ring, then there must be 16 of them and the corresponding solution must be of the order p = 16.

However, two difficulties arise. The first of these is that the first maximum of the Bessel function Jyg(X)
occurs at x = 18,1, while the first few maxima of the function J,(x) occur at x = 3,83, 7.02, 10,17, 13.32 and
16.47. In other words, it‘appea;s as if inside the ring corresponding to J;¢(x) there should be at least five rings
corresponding to the solution belonging to p = 0 which must undoubtedly exist in view of the presence of the
nucleus. This difficulty, however, can be easily eliminated if we remember that the eigenvalue g, on which the
solution depends, is determined from Eq. (46) which contains, in addition to the number k,-depending only on
the properties of the galaxy itself, the coefficient ! of the "barometric” equation. The bigger !, the faster is
the decrease of density with height, For large values of I, and consequently of g, the first root of the equation
J16(x) = 0 can be reached for comparatively small values of p. Thus,at least in principle, the first difficulty can
be easily eliminated.

The situation is more complicated in the case of the second difficulty, Similarly to the ring in NGC 4826,
the ring in NGC 4324 is also broken at two points on the opposite ends of a diameter. In the region of the break
there are gaps also in the bead-like structure. The fact that, as in NGC 4826, these breaks occur exactly at the
ends of the observed larger diameter of the ring,is very striking. This throws doubt upon the correctness of the
"natural™ assumption that the elliptical shape of the nucleus and the rings is caused only by the inclination of
the galaxy to the line of sight, It is probable that in this case the nongravitational (for example, magnetic)
forces have an important effect, This is very likely, particularly because an-analogous phenomenon, i.e., a
break in the ring at the ends of the larger diameter, is also observed as was pointed out by G. A. Gurzadian in
some of the planetary nebulae, i.e., in objects of a completely different nature to galaxies; in planetary nebule
the magnetic field undoubtedly plays an important part,* ‘

All this shows that the nature of the annular structure of galaxies is quite complicated. We will not discuss
it any further since our aim is only to investigate the principles of statistical theory, leaving to a future time its
application to the structure of individual objects, We will only remark that the annular structure frequently exists
together with the spiral, there being a characteristic superposition-of the two structures.

8. Summary

We have seen that to the class of the simplest type of galaxies, or D-galaxies, there belong a number of
varieties: 1) SB-spirals (barred), 2) SO-galaxies with an annular structure and, finally, 3) E-galaxies (elliptical).
We have discussed the first two forms in greater detail, We have not considered E-galaxies because their struc-
ture and evolution can apparently be interpreted sufficiently well in terms of the well-known Roche theory of
the outflow from the equatorial rim of a rotating spheroidal body (for example, see [4], vol. 3, § 54). In addition,
we concluded that there exists a new type of galaxy, which we have called a needle-shaped galaxy, that has not
been previously investigated. To each of the galactic types listed above there corresponds a prototype from the
classical theory of equilibrium figures of gravitating rotating uniform liquid bodies.

E-galaxies correspond to Maclaurin ellipsoids of the first kind, or planetary ellipsoids. SO-galaxies corres-
pond to Maclaurin ellipsoids of the second kind, or disc-shaped ellipsoids. Needle-shaped galaxies correspond
to Jacobi ellipsoids. The same ellipsoids correspond to the main body in SB-spirals which represent the result
of rotational instability, It is probable that the needle~shaped star systems-are the most unstable of the galaxies,
which is also connected with their flocculent structure, We did not refer to normal spirals which, as is known,
are an important variety of galaxies. Our galaxy belongs to this class. The theory of normal spirals must be the

*D. Evans in his article on the bright galaxies of the southern sky in Vistas in Astronomy, vol. 2 (Pergamon Press,
1956) has also pointed out this circumstance.
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subject of a separate paper., We will only point out here that in shape, of course, they resemble Maclaurin
disc-shaped ellipsoids. '

A few words on the meaning of the concept of quasi-stationarity in the investigation of galaxies. As we
have seen, this concept allows us to apply the methods used in the study of stationary states to systems which,
strictly speaking, are not in a stationary state, provided that the departure from this state takes place sufficiently
slowly.

The question arises whether it is valid to apply this method in investigating galaxies, many of which, for
example SB-galaxies, are in an obviously nonstationary state.

The main problem of stellar dynamics is the discovery of laws governing the evolution of star systems. Any
evolutionary development of a system must be connected with a change of shape, i.e., basically with a redistri-
bution of mass, Therefore, all evolutionary processes are basically forms of nonstationary motion of star systems,

However, it must be recognized that at present we are not able to solve in practice or even formulate the
problem of nonstationary motion. At this stage, therefore, we are forced to restrict ourselves to the solution of
problems of stationary motion. It can be shown that the solution of stationary problems is an appropriate and -
necessary stage before we pass to the solution of nonstationary problems. We have to consider the following fact.
It is hard to imagine that the evolution of star systems has the same turbulent and catastrophic nature at all stages.
It 1s more reasonable to assume that, at least in some stages, the process of evolution will slow down and during
this period we can consider that in the first approximation the star system is in a state of equilibrium. States of

_this type are just what we have defined as quasi-stationary. In a quasi-stationary state a star system evolves so
“slowly that at any given instant it can attain the shape of the equilibrium figure corresponding to the dynamical
conditions,

Along the line of evolutionary development of star systems, the states of quasi-stationary equilibrium must
'represent nodal points. Most of the various types of galaxies observed by us must correspond to these nodal points,
since the higher the rate of evolution in a given phase, the smaller the number of systems of this type that would

be observed. It is very likely that elliptical galaxies, SO- and normal spirals are examples of star systems in a
quasi-stationary state, It is obvious, however, that even among quasi-stationary systems there are different rates
of evolution. Thus, a star system which has a very flocculent structure will evolve very rapidly because of the
loss of stars with velocities exceeding the escape velocity, This agrees with the fact that galaxies with a floccu-
lent structure occur comparatively rarely. On the other hand, there are about a hundred elliptical galaxies,
characterized by a very uniform mass distribution and a uniform structure,forevery galaxy of another type [7].

Therefore, the investigation of quasi-stationary systems enables us to study the dynamics of the most com-
mon type of star systems. This, by itself, is enough to justify the use of the concept of quasi-stationary states as
a tool in the study of the dynamics of galaxies. In addition, it enables us also to approach the problem of investi-
gating star systems which are in phases of comparatively rapid evolution, since this phase can be considered as
the process of breakdown of the preceding quasi-stationary state. Thus, for example, after the needle-shaped
equilibrium figures of the galaxies have been found, the barred galaxies can be considered as the result of the
emission of a stream of star gas because of the violation of Poincare’s stability criterion,

A. A. Zhdanov
Leningrad State University Received May 14, 1957
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