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ABSTRACT 

The purpose of this paper is to investigate the steady-state amplification of magnetic fields in a fluid 
It is shown that a rotating sphere of conducting fluid can regenerate a dipole magnetic field. It is suf- 
ficient for the angular velocity of rotation to vary with distance from the axis of rotation and for cyclonic 
fluid motions to be present The nonuniform rotation generates a toroidal field from the dipole field; the 
cyclones generate, from the toroidal field, loops of flux in the meridional plane which coalesce to amplify 
the dipole field The rotating sphere is discussed in relation to the liquid core of the earth and the geo- 
magnetic dipole field. If, instead of a rotating sphere, one has a prismatic volume of fluid, it is possible 
to construct migratory dynamo waves The dynamo waves are discussed in relation to the solar convec- 
tive zone; it is shown that such waves can account for many of the principal features of the observed 
solar magnetic activity 

I. INTRODUCTION 

The generation of magnetic fields 5 by a fluid with velocity v and conductivity a is 
described by 

^ = VX (t>XB) +TV2B. (1) 
at ¡jL<r 

Elsässer (1950)1 has suggested that there may exist fluid motions capable of regenerating 
various magnetic-field configurations, such as the magnetic field of the earth. Such a 
device has been called a ahydromagnetic dynamo.” Formally, from the kinematical 
point of view, the question is whether there exists a v such that a solution of equation (1) 
can be a magnetic field B which is maintained for an indefinite period of time. The prob- 
lem is sufficiently difficult that we shall consider a specific model for the fluid motion 
rather than inquire in a general mathematical way into sufficient conditions on v for 
maintaining a field B. The first model we consider is based on the geometry found in 
the earth. In the last section we will consider another model, that of dynamo waves, 
which may be of interest in connection with the sunspot cycle. 

Observed at the surface of the planet, the magnetic field of the earth is primarily a 
(poloidal) dipole. However, the existence of nonuniform rotation in the liquid core 
indicates that within the core the field cannot be entirely poloidal (Elsässer 1950). We 
shall assume, as a model from which to begin our discussion of equation (1), that the 
primary large-scale components of the terrestrial magnetic field are a (poloidal) dipole 
field, which we observe directly, and a toroidal field within the conducting core. The 
boundary conditions require that the toroidal field vanish outside the region of electrical 
conductivity (Elsässer 1947; Bullard and Gellman 1954). The toroidal field consists of 
lines of force circling about the axis of the earth, parallel to lines of latitude. The toroidal 
field is generated from the poloidal field by the nonuniform rotation of the core. 

Both the poloidal and the toroidal fields have rotational symmetry about the axis of 
the earth. Cowling’s theorem (Cowling 1933) then tells us that they cannot be main- 
tained through equation (1) by a single direct interaction with the fluid velocity v. It 
is possible to generate the toroidal field directly from the poloidal field, as will be shown 
presently, but not vice versa. 

To demonstrate the generation of the toroidal field Bt from the poloidal field Bp, we 
1 The fundamentals of hydromagnetic theory may be found in Elsasser’s (1950) review article and are 

not repeated here for reasons of economy. 
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shall use the cylindrical co-ordinates (p', </>, s) about the axis of the earth. We take the 
nonuniform rotation to be 

v = e<t>v (pO , (2) 
and the poloidal field to be 

Bp 6pBpp~\~ ezBvz j (3) 

where ep, e#, and ez represent unit vectors in the p'-, <¡>-, and s-directions, repectively. 
Then it is readily shown that 

V X (y X Bp) = e+BpeP1 . (4) 

We see from equation (1) that V2Bt is in the 0-direction. Since Bt is independent of 0, 
the 0-component of V2Bt reduces to — Bt<t>/(p')2. Thus Bt has only a 0-compo- 
nent, which we denote by.#. From equations (1) and (4) we see that, for steady-state 
conditions, B obeys 

t’b-w“ 

Since Bt is parallel to v, it follows that the nonuniform rotation does not interact with 
Bt. The net result, then, is that the nonuniform rotation does not alter Bp and has as 
its only effect the generation of an axially symmetric toroidal field, with opposite senses 
in the northern and southern hemispheres. Bullard (1954) has computed B resulting 
from various poloidal-field configurations. 

II. GENERATION OF LOOPS 

We must now demonstrate a fluid motion which, by interacting with the toroidal 
field Bt, regenerates the poloidal field. Let us fix our attention on a region of the toroidal 
field sufficiently small in extent that we may regard the field as uniform throughout. 
We define a local Cartesian co-ordinate system (£, ??, f) where the 77-axis is parallel to 
the toroidal field and points toward the east; the f-axis is directed radially outward; and 
the £-axis points south and is tangent to the circle of longitude through the local origin. 
Hence, locally, the meridional planes are parallel to the f£-plane. We denote the in- 
tensity of the toroidal field by B and the distance from the f-axis by p. Then 

Bt — e^B = e^B , p := V (£2+ ??2). (0) 

Now suppose that there is a body of fluid moving along the f-axis through the toroidal 
field. We will further suppose that the moving fluid is rotating about the f-axis. Dy- 
namically, such a fluid motion is related to the cyclones and anticyclones observed in the 
atmosphere, in which the primary driving force is radial convection and the rotation 
results from the Coriolis deflection of the influx and efflux of fluid at the ends of the 
vertically moving column. 

An elementary consideration of Coriolis forces suggests that in the northern hemi- 
sphere fluid flowing into the base of a rising convective column is deflected to the right 
as it approaches the column. The result is a counterclockwise rotation about the axis of 
the column. Opposite rotational forces apply to the efflux at the top of the convecting 
column. This is just the conventional elementary explanation for cyclones in the at- 
mosphere and is not intended as a proof of the existence of cyclonic motions in the core; 
we wish only to suggest that it is not unreasonable to postulate cyclonic motions. 

Unfortunately, if we include the influx and efflux in the fluid motion, the mathematics 
of a rigorous analytical solution becomes extremely complicated. We shall, therefore, 
idealize the problem. We shall simply constrain the fluid to rotate around the f-axis and 
consider a fluid column of infinite length along the f-axis. In order to restrict to finite 
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extent the region of interaction between the magnetic field and the fluid motion, we 
assume that the toroidal field is initially a slab with a thickness of the order of a in the 
f-direction. With these simplifications, the interaction of our idealized fluid motion and 
toroidal field may be computed rigorously in the limit of infinite electrical conductivity 
of the fluid. 

To demonstrate that nothing essential has been altered by the idealization, the prob- 
lem has been recomputed in the appendix for fluid motion of finite extent in the f-direc- 
tion, involving influx and efflux of fluid. A perturbation approximation is used, and it is 
easily shown that we obtain the same results as from the idealized model. 

Consider, then, the idealized fluid motion, 

v(= -Wo(j^ S (p) , Vv= +W0(J^ S (p) , V!;=V0R(p), (7) 

where wo, Vo, and a are constants. We assume that S(p) and R(p) vanish for large p 
and have a maximum at p = 0. The Gaussian exp (—p2/#2) would be typical of their 
behavior. Here and vv represent a rotation about the vertical f-axis. 

The result of the interaction of the fluid given by equation (7) may be understood if 
we first consider the effect of vç. The vertical motion will bulge up the toroidal field so 
that the lines of force in the vicinity of the bulge have the shape of a capital omega, Í2, 
and vç and vVy which represent a rotation about the vertical axis, will rotate the loop of 
the omega about a vertical axis, so that its projection on the meridional plane (the plane 
perpendicular to the initial Bt) will form a closed loop. Assuming many cyclones dis- 
tributed throughout the core, we obtain many such meridional loops. It will be shown in 
Section III that these loops may coalesce to form a poloidal dipole field. 

Let us now consider quantitatively the formation of meridional loops. For infinite 
conductivity, equation (1) reduces to 

-rr = V X (V XB) . (8) 
at 

If we replace 2? by <d, we note that we have just the usual Helmholtz equation for 
vorticity. Cauchy’s integral (Brand 1947) of this equation may be applied (Lundquist 
1952), giving the Lagrangian solution, 

B [r (r0, f)] = [B (r0,0) • V0] r (r0, 0 , 

where r(r0, t) represents the position at time t of an element of fluid initially at rc, and 
Vo represents differentiation with respect to ro. 

By equation (7) the distance of an element of fluid from the f-axis is independent of 
time. Thus p is constant for a given element of fluid, 

p = X . do) 

Then, at a time /, the co-ordinates of an element of fluid initially at (£o, ?7o, fo) will be 

V 

r 

. rS (X) wqíi . vS(\)woti 
?0

cos^__j_,0smi - J■ 

. . rs (X) w0n [S(\)w0n 
sin|—+ T"”J ’ 

VoRWt-\-Ço, X= (¿o+ijo)1/2 • 

(ID 

(12) 

(13) 
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Defining the functions 

Z(\) =R(\) v0t, 

EUGENE N PARKER 

*(A) 
S (X) w0t 

equations (11), (12), and (13) may be solved for (£0, Vo, fo) to give 

So = + ? cos SP + rç sin ^ , 

7}0= — S Sin ^ + 7] cos ^ , 

fo=f-Z. 

(14) 

(15) 

(16) 

(17) 

The initial toroidal field has only an ^-component. Thus, of Vor, we need only dr/drjo. 
From equations (11), (12), and (13) it is readily shown that 

7?o£ —£o>? 
A2 

£o£ + vov 
A2 

drjo 

drj 
drjo 

df _ Vo 

dvo A ‘ 

T' VoV 

F* 

A 

/ Vo£ 

(18) 

(19) 

(20) 

The primes denote differentiation with respect to A. Introducing the azimuthal angle \¡/ 
measured from the £-axis about the {-axis, we have 

£ = A cos ^ , 77 == A sin \j/ « (21) 

Equations (15) through (20) may be considerably simplified. Substituting equations 
(18), (19), and (20) in equation (9), and using equation (21), we obtain the field at 
(A, f) after a time t as follows: 

Bz = —B (f —Z) [sinT+ AT' sin ^ sin —T) 

Brj = -\-B (f — Z) [cosT+ AT' cos \f/ sin —^) 

Bt= +£(f-Z)Zsin (^-T). 

(22) 

(23) 

(24) 

The magnetic field B, given by equations (22), (23), and (24), is shown in Figure 1 
by the continuous ribbons. To consider the decay of B we decompose it into two parts, 
a and (3. Here (3 is the magnetic field that would result if Vç were zero, i.e., Z = 0, and 
is shown in Figure 2; and a is 2? — [3- 

Putting Z = 0 in equations (22), (23), and (24), we have 

Then, since 

a is given by 

= —B(Ç) [sinT + AT'sin i/'sin (t/'—T) ’ 

ßr, = +2? (f) [cos T+ AT' cos yp sin {\p — T) 

2? = a+ (3 , 

a£ = — [B (f —Z) —B (f) ] [sinT+ AT' sin \p sin (\f/ —T) 

av= + [B (f —Z) —B (f) ] [cosT+ AT'cos \p sin (xp —T) 

af= +BU-Z)Z' sin(^-T). 

(25) 

(26) 

(27) 

(28) 

(29) 

(30) 

(31) 
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Now suppose that the fluid motion comes to a halt after having rotated through tt/2 
in the vicinity of the f-axis. Then, in the vicinity of the f-axis, the field has been rotated 
to the ^-direction. Assuming Z(\) and ^(X) to be Gaussian functions, we put 

Z (X) = a* (X) = 0 J exp (32) 

For this case, B is shown by the solid lines in Figure 1; (3 is shown by the continuous 
ribbons in Figure 2. The intermittent ribbons in Figure 1 represent —(3. The lines of 
force of a, which is 5 — 5, form the closed curves obtained by combining the solid and 
the broken ribbons in Figure 1. Since 5 is just the projection of B on the frç-plane, the 
closed curves lie on cylindrical surfaces which are parallel to the f-axis. Figure 3, a, 
shows the surface inclosed by the lines through P and Q in Figure 1. Figure 3, b, shows 

Fig 1.—The deformation of a slab of toroidal field by cyclonic fluid motion. The ribbons under- 
neath represent — ß. 

Fig. 2.—The deformation of a slab of toroidal field by a cyclonic fluid motion in the absence of vertical 
motion. This is the field +ß. 
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the same surface tipped down so that we see only the projection on the f£-plane. In this 
projection the sign of the lines of force encircling PDB and CEQ is clockwise, whereas 
the lines encircling DECB have a counterclockwise sign. We see that the net result is a 
counterclockwise sign for PDE. We note, in fact, that so long as Z(\) and Sf^X) are 
positive quantities and monotonically decreasing functions of X, the central portion 
DECB will always predominate, with PDE representing a net counterclockwise rotation. 

Projecting a on the ^f-plane in the same manner as on the f ¿-plane demonstrates a 
circulation of flux about the ¿-direction, in a clockwise direction as viewed from a point 
on the positive ¿-axis. Thus we see that a is composed of loops of flux circulating about 
the ^-direction plus loops circulating about the ¿-direction. 

Í 

Fig. 3.—a, Isometric drawing of the surface inclosed by the closed line of force of a which passes 
through P and Q. b, The projection of the surface onto the ¿*£-plane. The arrow in a indicates the direction 
in which the projection is viewed (from the negative 77-axis). 

By subtracting the initial toroidal field from [5, it may be seen from Figure 2 that g 
consists of two loops of flux in the ¿77-plane, in addition to the initial toriodal field. The 
two loops have opposite directions: Viewed from a point on the positive f-axis, the loop 
for 77 > 0 circulates in a clockwise direction. It follows, then, that the field B, shown by 
the solid lines in Figure 1 and given by equations (22), (23), and (24), is equivalent to 
the initial toroidal field plus the three mutually perpendicular sets of loops shown in 
Figure 4æ. 

The perturbation computation in the appendix separates the sets of loops in quite a 
natural way: It is a second-order perturbation calculation; the terms of first and second 
order in the rotation SF give the two loops of opposite direction with axes parallel to the 
f-axis; the terms of first and second order in the vertical motion Z give the loop circulat- 
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ing about the f-direction; the cross-product term results in the loop circulating about 
the ^-direction. 

It is interesting, though not essential, to note that the three sets of loops with mutual- 
ly perpendicular axes may be reduced to two sets of loops by further idealization, elimi- 
nating the loop circulating about the £-axis. If, instead of equation (32), we write 

and make a^>>b, then in the region surrounding the f-axis, where Z is nonvanishing, 
'k is essentially constant and equal to 7r/2. As a result of the rotation ''E, then, we have, 

Fig. 4a.—Schematic drawing of the three sets of mutually perpendicular loops into which each closed 
line of force of a may be resolved. 

C 

A 

in the region of nonvanishing Z, a uniform field in the ^-direction. The vertical motion 
produces a hump in this uniform field, as shown by the broken line in Figure 2. 

Noting that 

we obtain, from equations (22), (23), and (24), the components of B: 

(35) 

(36) 

(37) 
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|8{= -5(f) [l+02Q)] , ' (38) 

&=+5(f)02Q), <39> 

ft = 0 , (40) 

and 

a£= - [5(f-Z) -5(f)] [l+02Q] , (4» 

«,= + [5(f-Z) -5(f)]02Q), (42) 

af = —B (f -Z) Z' cos li' + O2 exp ^ • (43) 

We see that the ^-component of a may be neglected, eliminating the loop circulating 
about the ^-direction. Figure 4& shows the two sets of loops into which the idealized 
field may be resolved. 

Fig 4£ —Schematic drawing of the two sets of loops into which each line of 
the vertical fluid motion is confined to a small neighborhood of the f-axis. 

a may be resolved when 

III. CANCELLATION OP LOOPS 

Having demonstrated how loops of magnetic flux may be produced locally from the 
toroidal field, let us now consider what happens when a large number of cyclones appear 
near one another. In this section we shall demonstrate that all loops except those circu- 
lating about the ^-direction can be made to vanish. 

To begin with, consider a large number of groups of loops (each group as shown in 
Fig. 4a) distributed throughout the core of the earth. If (r, 0, 0) represent spherical co- 
ordinates with the axis of the earth at 0 = 0, then the f-axis of each local co-ordinate 
system is in the r-direction, the £-axis is in the ^-direction, and the rç-axis is in the 
0-direction. 

Let us assume that all the loops in the meridional or local f f-planes have the same 
direction of field. So far, we have discussed explicitly only the loops produced by an up- 
welling of fluid. There may, of course, be sinking regions. In order for a sinking region 
to produce a loop with the same direction as an upwelling, it may be seen from equations 
(29) and (31) or from Figure 1 that the direction of rotation of the fluid must be reversed. 
We shall assume, therefore, that sinking regions all have the opposite direction of rota- 
tion from that of upwelling regions and are distributed throughout the core in equal 
number with the upwelling regions. 
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Considering equations (30) and (31) or Figure 1, we can readily see that the loop 
circuating about the local ¿-direction (^-direction) produced by an upwelling has a 
direction opposite to a similar loop produced by a sinking region. Let l represent the 
average separation of groups of loops, and let P represent the radius of the core. Then, 
upon expanding the loops circulating about the local ¿-directions in a series of spherical 
harmonics over the core, the alternation of sign of neighboring loops results in the lead- 
ing term in the series being P% (cos 6) cos + ôw), where n and m are both of the 
order of P/7. 

The two loops in each group circulating about the local f-direction (r-direction) have 
opposite directions and, upon expansion over the core, also contribute as the leading 
term, n,m ~ P/l. 

The loop in each group circulating about the local ^-direction (^-direction) will have 
the same direction in every case and, hence, will contribute a dipole Pi (cos 0) as the 
leading term. 

The decay rate of a mode is proportional to n2 + w2. Thus the ratio of the rate of 
decay of the superposed loops with axes in the ^-direction to either of the other two sets 
of loops is of the order of (//P)2. In the limit, as we consider more and smaller cyclones, 
(//P) —> 0, and only the loops with axes in the ^-direction remain. To put the matter 
differently, unless there is a predominant direction, the loops cancel one another. 

There are other circumstances under which the only loops to survive are those circu- 
lating about the ^-direction. For instance, if there were not so many loops produced by 
sinking as by upwelling fluid, then the loops with axes in the 0-direction would not vanish 
in the limit as (//P) 0, since the loops produced by sinking fluid would not entirely 
cancel the loops generated by upwelling fluid. However, if the region of vertical motion 
is confined to a small neighborhood of the local f-axis, then we obtain a set of loops, as 
described in equations (35)-(43), in which the loops with axes in the 0-direction are not 
generated. Thus the problem of their cancellation does not arise. 

It is easily demonstrated in this case that the loops with axes in the 0-direction will 
predominate. The dipole moment of a loop is of the order of the total flux circulating 
about the axis of the loop multiplied by the radius of the loop. Thus, initially, the mo- 
ment of each individual loop with axis in the r-direction is Pa3. For the 0-direction the 
moment of each loop is Bbz. The loops circulating about the 0-direction arise from the 
a given in equations (41), (42), and (43). The field intensity is of the order of B{b/d)2, so 
that the total moment is B(b/a)2¥. If a dipole field throughout the core decays accord- 
ing to exp ( — kt), then, upon superposition, the loops with axes in the r-, 0-, and 0-direc- 
tions contribute to the over-all field, according to 

Mr~Ba* eXp[—~] , 

Me ~Ba3 (^J exp (-kt), 

Mt — Ba3 (-^) exp ( — kt), 

(44) 

(45) 

(46) 

respectively. For ¿ > 0 we find, in the limit as / —> 0, that 

-A . (47) 

Thus, in the limit as (b/d)—>0, there remain only the loops circulating about the 
0-direction. 
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We have demonstrated that one result of the interaction of cyclonic fluid motions 
with the toroidal field is to generate loops of flux in meridional planes. In the limit as 
the number of cyclones becomes large, this produces no fields other than these meridional 
loops. We note that the reduction of the cyclone fields to meridional loops depends on 
the fluid having finite, rather than infinite, conductivity. Ideally, we produce loops by 
violent small-scale, short-lived cyclones in a time so short that the effects of finite con- 
ductivity may be neglected. We allow the loops to decay for a brief period of time follow- 
ing their formation, in order to eliminate all but those in the meridional plane. Thus, 
microscopically, the process will not be a steady state, even though the gross dipole field 
resulting from a steady production of the loops will not vary with time. 

Now we should notice that the same microscopic cyclones that generate the meridi- 
onal loops from the toroidal field will also generate loops from the poloidal field. The 
loops generated from the poloidal field will be of the same general nature as those gen- 
erated from the toroidal field, except that they will circulate about the ^-direction (local 
¿-axis) instead of the ^-direction, the reason being that the initial poloidal field from 
which they are formed is at right angles to the toroidal field. 

If the cyclones have a sense of rotation such that the loops they produce from the 
toroidal field regenerate the dipole field—and in any dynamo found in nature, they must 
have the regenerative sense—it may be seen that the loops they produce from the 
poloidal field have the same direction as the toroidal field. Hence they serve only to re- 
generate the toroidal field. However, because we are considering an idealized model, 
it is possible to get around this harmless complication by assuming that the nonuniform 
rotation greatly exceeds the cyclonic motion, so that the intensity of the poloidal field 
becomes vanishingly small as compared to the toroidal field. Then the loops generated 
from the poloidal field vanish in comparison to the loops generated from the toroidal 
field, and the only effect of the cyclonic motions is to produce the meridional loops. 

IV. COALESCENCE OE LOOPS 

Having demonstrated that through cancellation the only effect of a large number of 
cyclonic motions is to produce loops of flux in the meridional planes, let us now investi- 
gate analytically the over-all effects of a large number of meridional loops. 

We let (R, 0, <£) represent the spherical co-ordinates of the center of a meridional 
loop and (p, $, <p) the co-ordinates relative to the center of the loop, so that the co- 
ordinates (r, 0, <£) of a point are related to the center of the loop by 

0=0 + #, <¿>=<í>+^>. (48) 

The linear dimensions of a given loop are of the order of a, which has been taken as small 
compared to the radius P of the core. Thus p, #, and <p will be small quantities, of the 
order of a/P times r, 0, and </>, respectively. 

In the limit as a —> 0, the details of the individual loop become irrelevant: The indi- 
vidual details contribute to modes of the order of P/l or P/a and vanish in the limit as 
1/P—+0 because of their large decay rate, just as did the pairs of loops formed in the 
local ^-planes. Thus, for convenience, we choose loops described by a Gaussian sym- 
metrical about the loop center. We put 

P2+R2â2+R2 sin2 0<p2l 
Bp = —B0 — # exp T 

a L 

D * ,DP r P2+-R2t?2+-R2sm20^-1  ¿.p- J, 

(49) 

(50) 

Bv^Br, = 0 . (51) 

The lines of force are circles with centers on the 0- or local 77-axis. 
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The analysis is more conveniently carried out if we work with the curl of the magnetic 
field, since this is a toroidal rather than a poloidal vector. We shall need only the 0- 
component of the curl, for reasons that will appear presently: 

(V XB) « = -I5 ( 1 - t?2) exp [—A (p2 +^2 +Æ2 sin2 Gp2) ] . (52) 

We now expand equation (52) in terms of vector modes, whereupon we average the 
amplitude of each mode over all possible positions of the loop centers. If the distribution 
of the loops is independent of <i>, only the rotationally symmetric toroidal modes will 
survive the averaging process. The toroidal zonal modes are 

Trins) = Td{ns) == 0, T'oins) = Cnsjn (ksnT^ -j-- , (53) 

where jn(x) is a spherical Bessel function defined (Stratton 1941) as (Tr/2x)1/i2Jn+i/2(x). 
The boundary conditions require (Elsässer 1947) the ksn to be the roots of 

jn-l (ksnP) = 0 , (54) 

where P is the radius of the core. 
We now develop equations (53) in ascending powers of the small quantities p and d 

defined in equations (48). We write 

T<t>(ns) — Cna [ A n8 Bns pCns&Dns p2 Ens P&"h Fns&
20Z (p, #) ] . (55) 

We note that 
ld2jn(ksnP) dPn (cos e) 
2 dB2 de 

(56) 

_ i 
2 jn i.ksnR') 

dzPn (cos 0) 

dGz 
(57) 

The modes T(ns) are orthogonal, so that if we write that the toroidal part of V X 2? is 

(7X5),= ^T(ns), 

multiply by T(pq), and integrate over the volume of the core, we obtain 

Noting that 
fdViVXB) •2’w=/¿F(2’(m)) 

fjd e sin e [-P4r^] i = [Pi {fx) ] 

_2n (n+ 1) 
2n+~ï~~' 

(MacRobert 1947) and that 

f drr2jn(ksnr) =f dr rjl+i/2(ksnr) 
^ r^sn ^ 0 

= hP3j2n(ksnP), 

from equation (54) and Jahnke and Emde (1945), we obtain 

2n (n-\r 1) 
Sd V (T(ns))2 = ( O 2PZ j: (ksnP) T 

2n+1 * 

(58) 

(59) 

(60) 

(61) 

(62) 
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From equations (52) and (55) we find that 

JdV (V XB) • Ju) =-^B0cnaa^DM + ^+Oi (|)] . (63) 

Substituting equations (62) and (63) in equation (59), we obtain, finally, 

£o vW (2#+ 1) (Dns+FnjR2) 
Cn8 P3in

2(^)2^(^+1) 

We next consider the time dependence of the loops. They will appear in some random 
fashion and decay subsequently. Consider the amplitude YnS(¿) of the ws-mode due to 
loops appearing randomly in time at (R, 0, 4>). If their appearance is described by the 
random source function,/ws(0> then (Elsässer 1946-1947) 

i 
AnsYns (0 + -77 Yns (0 == fns (0 > Ans = — . at jX(J 

The solution is 

Yns (0 = f dt'fns (/') exp [Ans (¿' “Ol- (65) 
•s —co 

Let us assume that the loops appear suddenly at the random times U; thereafter they 
spread out by diffusion. Since cns is the contribution of a loop to the ^s-mode, we put 

InsiO = Cns^5{t-tt), 
i 

where — l¡) is a Dirac delta function. Then 

Yns (0 == Cns exp [Ans (^ ^) 1 > 
i 

where the summation is over all i for which < t. 
The average of Yns(¿) over time is 

< 7ns (t) > = lim f dtyns (t) , T—>œ LI J y 

which gives 

< Yns (0 > = 6ns Hm -7— = 1~T~~ T->™ 2F ¿T* Ans Ans 

(66) 

(67) 

(68) 

where v is the mean number of loops appearing per unit time. 
We let &(R, 0) represent the rate at which loops are generated at R, 0, normalized 

to give unity upon integration over the core. The expectation value over both space and 
time of the amplitude Yns is 

((ins')') = 2t f dR f dQR2 sin Qh (R, Q) (yns). (69) 
»'o ‘'0 

Then, from equations (53), it follows that the curl of the poloidal field resulting from 
the superposition of the meridional loops is the toroidal vector, 

where 

VXBP= y>(ns) = 
n,s 

Tsr\ d'&ns 
de 

^Fns ^ ^ Yns y Jn (>k nrf Pn (COS 0) • 

(70) 

(71) 
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Bp itself may be expressed in terms of the poloidal modes, S(ws), by noting that T(ns) 
must be related to them by 

TUs) =VXS(ns) - 
Then 

and 
V X Tins) = V X V X Sins) = - V2S(nS) = KnSUs) , 

S(ns) = (ksn)~2V XT(ns) * 

Using equation (70) and Legendre’s equation, we find that 

Sr(ns) =n(n+l) 

•Soins) 

KJ ’ 

1 d2 (kenr^ns) 

where, now, 

k2
snr ddd(ksnr) 

S<f>(ns) 0 , 

Bp — S (ns) • 

(72) 

(73) 

(74) 

(75) 

(76) 

V. HOMOGENEOUS MODEL 

Now let the loops be distributed with a density /t(B, 0) over the interior of a sphere 
of radius Ro < -P. We shall, in particular, consider a uniform distribution, h = Constant. 
Then, with proper normalization, we take 

h = ir™- (77) 

From equations (56), (57), (64), (68), and (69) we have 

<<7nS>>=^/' "dnf sin 0<7ns (i^, 0) > 

3 (2w+ 1) A 

where 

and 

2n{n+\){ksR,) *Pj2(ksnP) 

X [Ai {n, s)By (n) + A2 (n, s)B2 (n) ] , 

Bo VTra^viifT 

(78) 

A = 
4P2 

*k çmR r sth** o 2 
^4i (n, s) = f duu jn (u) , 

•"'O 

A2 (n, s) = I du jn (u) , 

2? / \ Hja • a dpn (cos (9) Bi(n) = I dd sm0 -j--  
d u 

Bs (n) = H dd sin0 d3Pn (c0S0) 

•/ n de3 

(79) 

(80) 

(81) 

(82) 

(83) 
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To evaluate Bi{n), we integrate by parts and obtain 

Bi(n) = — f dd cos 6Pn (cos 6) . 
*'0 

This may be evaluated (MacRobert 1947) to give 

r (^+i) r (w+f) 
Bi (2n) =0 Bi (2w+ 1) = 

To evaluate we note that 

dPn (cos e) = _sin9 

r (n+ 1) r (n+2) 

dPn (COS 0) 

(84) 

d 0 d (cos 0) 

vanishes at 0 = 0 and tt. Thus, upon integrating twice by parts, we obtain 

Bi (n) = -Bi (n) . (85) 

Since both Bi(n) and Bi(n) vanish for even #, we need compute A\(n, s) and Ai(n, s) 
only for odd n. To evaluate A\(n, s) we integrate by parts and apply the identity 

in (X) = Ín-1 (%) — jn (%) , X 
obtaining 

where 

Ai (n, s) = 2A2 (n, s) + Az (n, s) , 

AZ (fl) — (ksnBo) ^ jn—1 (ksnP-o) (^"1“ (^sn-^o) jn (.ksnPiï) • 

To compute A2(n, s) we use the identity 

in (*) = - ^W_1 ^ [^1_WÍn-l (%) 1 , 

and integrate by parts. Repeating the process n times gives 

r 7 . /x 2mn\ jln-m (#) 
Sdxj2n+1(x) = - 

Noting that, for small x, 

(86) 

(87) 

(88) 

(89) 

—^ (n — m) \ x1 
m—0 v 7 

jn (X) 
Xn 

where 

we have 

(2»+ 1) !!’ 

(2»+ 1) !! = (2w+ l)(2w- 1). . . 3 X 1 

Ai (2w+ l,i) 
2nn\ 

StA 
2mn\ j2n—m [ ^s(2n+l)-^o] 

(2n + 1) !! " (n- m)\ [^s(2n+i)^o] 

Using equations (85) and (87), we rewrite equation (78) as follows: 

3 (2^+1) AB\ (n)[A2 (n,s) +Az(n,s)] 

(90) 

(91) 

(92) 

(93) 

<<YnS>> = 2n(n+l){k8nRQ)*Pj>Jk8nP) 
(94) 
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From equations (73), (74), and (75) we find the components of the poloidal mode 
S(ns) * 

k5'r(2n + l)s 

>Sd(.2n^rl)s 

3 (4^ + 3) AB1{2n+\)[A2{2n^rl,s) +Az{2n+ \ s)] 

^ ^S(2n+l)^ ^s(2n+l)J^o) 3^2n+l (2n+l)^) 

^ J*2n+1 (^s(2n + l)^) 
(ks{2n+l)r) 

3 (4^+3) AB1{2n+l)[A2{2n+\,s) + Az{2n+\,s)} 

(96) 

P2n+l (COS 0) , 

4 U+ 1) (2n+ 1) (^(2n+1)P) (^(2n+1)Po) 3i2
2
n+1 (^(2n+1)P) 

X 
1 

(¿S(2n+l)f') d (^s(2n+l)^) 
[(¿S(2n+l)r) Í2n + 1 (ks(2n + l)r) ] 

dP2n+l (COS 0) 
de 

(97) 

It may be shown that the double sum (76) is absolutely convergent, but the proof 
has been omitted here to save space. The dipole field is composed of the sum, over s, 
of the terms S(is); the quadrupole field vanishes identically; the octupole field is given 
by the sum of the terms S(3S); etc. Numerical calculation gives the r-components as 

CO 
^5^ = 0.24^(003 0), 
S=1 

2>3S= — 0.038P3 (cos0) , 
5=1 

for the special case R0 = P. 
It may be expected that the field will reduce to a poloidal dipole in the limit as R0 

becomes small. This is readily demonstrated by noting from equations (81) and (91) that 

(n,s) ^ / 
ksnRi 

du 
u7 (,ksnR0)" + 1 

(2^+1) !! (w+l)(2^+l) 
(98) 

for small kSnRo- Similarly, from equation (88), 

fj   o 
AAn,s) ^JI--rm{ksnRo)^ 

Hence 

A2 (n,s) + A s (n,s) ^ 
l)(^nPo)n+1 

(n+ 1) (2n+ 1) !! 

(99) 

(100) 

From equation (96) we see that Sr(2n+i)s is porportional to (Æs(2n+i)Po)2n b Thus, if we 
require that 

lim 
i20-»0 ^slPo 

= M, (101) 

then only the dipole terms survive, and equations (96) and (97) reduce to 

5 rls 
SMPji (sirr/P) 

Sw s2 j*(sTr) r 
cos 0, ' (102) 

since ¿8iP = sir. 

Seu — 
3MP 

16t s2j2 (st) 7^[ril(i,r?)]si110’ 
(103) 
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It should be noted from equation (79) that A is proportional to Ba4. Thus, in taking 
the limit in equation (101), we keep constant the dipole moment Bas of the loop. Then 

A. & 
lim —— = Constant X lim — = Constant, 
â0->o ÆsiiCo äo-^oAq 

which maintains the relative size of the loop and i?o, as Rq becomes small. 
From the rapid convergence of expansion (76), as well as from numerical calculations, 

we conclude that the gross result of the meridional loops is a dipole field with relatively 
small octupole and higher-order components. This completes the problem, posed at the 
beginning of Section II, of the generation of the poloidal field from the toroidal field. 
Thus, combining the generation of the toroidal field from the dipole field with the gen- 
eration of the dipole field, we have demonstrated that a conducting fluid sphere in 
which the fluid is moving in a certain way, viz., nonuniform rotation and cyclonic mo- 
tion, will form a regenerative hydromagnetic dynamo. The external field of the dynamo 
is primarily a poloidal dipole. The next step of the problem would be, of course, the very 
difficult dynamical question as to the actual structure of cyclones in the rotating con- 
vecting fluid body forming the core of the earth or the central convective zones of some 
stars. 

VI. MIGRATORY DYNAMO 

Now that we know the results of the coalescence of the loops formed by cyclonic fluid 
motions, it is possible to reformulate in a simpler way the development of the coalescence 
of loops. First, we note that in the local Cartesian co-ordinate system (£, rj, f) the mag- 
netic loop given by equations (49), (50), and (51) may be represented by the vector 
potential 

Aç = Az = 0 , (104) 

where £ = Rê, rj = R sin 0<p, and f = p. Thus A is a vector in the ^-direction and is 
nonvanishing only within distances of the order of a from the center of the loop at 
(R, 0, 4>). If the cyclonic motions are given, the rate of generation of A is simply pro- 
portional to the toroidal field e^B. Assuming the cyclones to be small and numerous, the 
average effect is to generate A so that, writing A for the ^-component of A, 

dA ^ 
-^7- = F£ , Goa) 
oi 

where F is a measure of the violence of the cyclones and may be a function of position. 
From equation (1) we see that, in order to include the dissipation, we should write equa- 
tion (106) as 

r) A 1 
2JL=,tb + —V2A. (107) 
ot po- 

li there is present a fluid motion, 

v = evv , (108) 

representing the nonuniform rotation, then from equation (1) the toroidal field B is 
generated from A according to 

^ = VX [vx (VXA)) +—V*B. 
at pa 

(109) 
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Since A and v are independent of rj and have only ^-components, dB/dt is in the ^-direc- 
tion, as required, and equation (109) reduces to 

dB = (d1dA_dvdA\ ± 
dt Vdf d£ d£ dtJ ixcr 

(110) 

It is interesting to solve the dynamo equations (107) and (110) subject to rectangular, 
rather than spherical, boundary conditions. Thus, instead of (£, rç, f) representing local 
Cartesian co-ordinates in the spherical core of the earth, consider a rectangular volume 
of fluid with the Cartesian co-ordinates (£, ??, f) throughout. Instead of nonuniform 
rotation, we introduce uniform shearing. We make v vary linearly with f, so that 

d v 
- = 27 = Constant , 

df 

Then equation (110) reduces to 

(in) 

dB_ dA 1 

dt d£ /xcr 
V2£. (112) 

If we distribute the cyclones uniformly throughout the space, then F is a constant, and 
the dynamo equations reduce to two simultaneous linear equations with constant co- 
efficients. 

As a solution to equations (107) and (111) we let 

A = A0 exp [i (co¿+ k%)] , B =Bo exp [i (co¿+ k£) 

Substituting in equations (107) and (111), we obtain 

(iœ -| ^ —T^oF — 0, 
\ fJLO’/ 

Í ^co H  
\ ß(T. 

A0ikH+B )-0. 

Setting the determinant of the coefficients equal to zero, we find that 

(u A> + —Y-Í¿.HT= 0. 
/xcr/ 

(113) 

(114) 

(115) 

(116) 

We are interested only in the solutions which survive to large values of /, viz., those 
for which the real part of ico is positive. Thus we are interested only in the roots 

iœ = (Q + iß , 
V /xov 

yielding 

where 

Aq — —Bq 
( 1 i i) ß 

ß 

kH 

¿tfriv/2 
= QAEIiy/2 

(117) 

(118) 

(119) 

and the ± has the same sign as the product kHT. 
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Solutions (113) of the dynamo equations become the migratory dynamo waves, 

B exp exp [i(k%± üt) ] , (120) 

A — —+¿) exp|^fí —/J exp [i (k£ + ßO 1 • (121> 

If kHT > 0, we have a dynamo wave traveling in the negative ^-direction; if kHT < 0, 
the wave travels in the positive ^-direction. The vector potential is tt/4 out of phase 
with B. Assuming that 12 > &2/ju<r, the amplitude increases exponentially with time. If 
the conductivity is large enough that pa, the amplitude increases by a factor 
of exp 2tt, or about a factor of 500, for every lir/k (one wave length) the wave propa- 
gates. The velocity of propagation 12/& varies as k~1/2 and hence increases as the square 
root of the wave length. 

Fig. 5.—Schematic drawing of a section along a train of migratory dynamo waves The + signs 
represent flux coming out of the paper, and — signs into the paper. 

To understand physically the operation of the dynamo wave, consider Figure 5, 
which represents a section through the dynamo along the f¿-plane, as seen from a point 
on the positive 7?-axis. The + signs represent regions where J5 > 0, so that B is directed 
out of the paper; the — signs, into the paper. If F > 0, the loops of flux produced by 
the individual cyclones have the direction shown by the small circles. The individual 
loops coalesce to form the large loops of flux. 

If dfl/df and hence H is positive, then the fluid in the upper part of the figure is mov- 
ing out of the paper relative to the fluid in the lower part. The loops are being sheared 
so that, for instance, in region X a field in the negative ^-direction is being generated. In 
region Y a field in the positive ^-direction is being generated. It is readily seen that this 
regenerates the right-hand side of each of the bands of flux of B and degenerates the 
left side The result is a migration to the right, the negative ¿-direction. 

The migratory dynamo may be of interest in stellar magnetic activity. The magnetic 
fields of the sun show little or none of the steady dipole component observed for the 
earth. The sunspots (Kuiper 1953) and some of the prominence activity (Menzel and 
Bell 1953), which may be basically hydromagnetic in character, definitely exhibit migra- 
tion from high toward low latitudes. The corona undergoes over-all changes in step with 
the magnetic activity, suggesting that sunspots and prominences are not just individual 
isolated magnetic phenomena but are secondary effects of a general solar magnetic cycle. 

If we inquire into the geometry of the solar convective zone, where a dynamo should 
be located if it exists, we find this zone to be a shell sufficiently thin (« 105 km) that we 
may neglect its curvature. The dynamo equations in such a flattened space give just a 
migratory dynamo, as we have shown. 
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Finally, we note that if cyclones exist in the solar convective zone, we would expect 
their rotation to be strongest near the poles and to vanish at the equator. The shearing 
due to nonuniform rotation, on the other hand, should vanish at the poles and be strong- 
est near the equator. Hence the toroidal field 2?, produced by the shearing ¿2, will be 
strongest in low latitudes, and the poloidal loops (derived from A), produced by the 
cyclonic motions F, will predominate near the poles. If, as has been suggested elsewhere 
(Parker 1955), sunspots result from the magnetic buoyancy of the solar toroidal field, 
then we would expect sunspots where the toroidal field is strongest. We may thus obtain 
an explanation for the fact that sunspots appear only in low latitudes, as well as for the 
migration toward the equator of the region of formation of sunspots, and for the reversal 
of spot polarity between cycles. Fluid velocities of the order of 1 m/sec are sufficient to 
produce dynamo waves migrating from the pole to the equator of the sun in 22 years. 

Altogether, it would seem that a migratory dynamo of some sort is strongly suggested 
for the sun. It is interesting to note that a high rate of rotation, together with cyclonic 
velocities of 1 km/sec, might produce a migratory dynamo giving the vigorous magnetic 
activity observed by Babcock in some magnetic stars. 

I should like to express my gratitude to Dr. W. M. Elsässer for the many suggestions 
and helpful criticism which have contributed to the development of this paper. I should 
also like to thank Sir Edward Bullard for a stimulating discussion of the geomagnetic 
problem and Dr. S. Chandrasekhar for several valuable suggestions in the presentation 
of the dynamo models. 

APPENDIX 

Consider the interaction with the toroidal magnetic field of a localized cyclonic fluid motion. 
We include the return flow of the cyclone, so that the velocity can be made to vanish identically 
outside the cyclonic region. As was stated earlier, the influx and efflux of fluid at the ends of the 
cyclonic column, together with the return flow, complicate the calculation of the trajectories of 
the fluid elements to such an extent that a rigorous calculation of the resulting magnetic field 
is difficult. Therefore, having computed rigorously in the text the field generated by an idealized 
cyclone, without influx and efflux or return flow, we now compute by perturbation methods an 
approximate expression for the field generated by a cyclone with a return flow. 

We shall investigate, then, a localized cyclonic fluid motion in a large-scale magnetic field, 
We take the axis of the cyclone perpendicular to the magnetic field. Using the local Cartesian 
system (£, 77, f), we assume that the large-scale field is of the form 

B = er,B(£). (122) 

Let the velocity field of the fluid he v — u + w; then u represents the convection along the 
f-axis, together with the associated influx and efflux and the necessary return flow, and w repre- 
sents the rotation of the fluid about the f-axis. 

Without much loss of generality, we may take = 0 and set 

uv= -u0(t)XUí) Y (77) Z' (f) , u^u0(t)X(O F'(77)Z(n, (123) 

where the primes denote derivatives. We represent why wç = 0 and 

Wj:= —ti (t) 7]R (p) S' (f) , Wr} = Çl (t) £R (p) S (f) , (124) 

where uo(t) and ü(t) are representative of the corresponding magnitudes, provided that all the 
other functions are suitably normalized. Formulae (123) and (124) guarantee that V*w an(l VmW 

vanish. 
From equation (1) we have for the first-order perturbation of the magnetic field 

5 (0 = f'dtVX [ (u+w) XB] . (125) 
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The second-order perturbation field is 

r (¿) = f'dtV X [ (u +w) X ? (0 ] . (126) 

This field consists of the sum of four terms which arise, depending on whether the first step of 
the interaction is taken to involve either u or w and whether the second step involves either u 
or w. Two of these terms are quadratic, in u alone and in w alone; it is physically obvious that 
they will not contribute to loops in the meridional or f¿-planes. This may be demonstrated 
quantitatively by noting that the ¿-component of the term of second order in Uo(t) and the 
f-component of the term of second order in Í2(¿) are zero. Thus the terms cannot contribute 
individually. If we combine the nonzero f-component of the former and the nonzero ¿-com- 
ponent of the latter, we obtain a field which can be shown to have no net circulation about the 
77-axis. We therefore omit these quadratic terms and keep only the two mixed terms which in- 
volve u in one step of the interaction and w in the other. After somewhat lengthy but straight- 
forward calculations, this part of the second-order field, say ó(¿), is found to have the following 
components in the meridional planes : 

5! (0 = / w X (?) VR (p) ]z' (f) 5 (f)5 (f) 

+ (K ^ (p) ] V'(v) ~R (p) V ^ W )[^Z 5 W5 ] (lz7) 

+ [^ F,(r;)r,X(p)]5(f) 

Sr(0 =/W j-[^x(?)^57x(p)]r,(},) +X(?) 

X 

where 

/(¿) = f*dt'uQ (0 f1’dt,fÇl{t") = f1 dtfQ (tf) f* dt"u0(tf') . 
Jq Jq Jq Jq 

The field lines of u, w, and 5 are given by 

dri__dÇ d^_drj d% _dr) _d$ 
Ur, UÇ 1 Wj: Wr,' hr, Ôf 

For u we obtain the family of curves 

F (r;) Z (f) =Ci; 

?2+t,2 = C2, 
for w, 

(129) 

(130) 

(131) 

(132) 

where Ci and C2 are the parameters of each family. The differential equation for the field lines 
of 5 is not readily integrated except in special cases. We therefore consider the case of a Gaussian 
distribution : 

X (?) =exp F (t?) = )7 exp Z (f) = exp (; U33) 

R (p) =exp ^ — 5(f) =exp^ — ^, 5 (f) =50 exp ^ —J . (134) 
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Then equation (131) becomes 

1) exp £ — (jj2 + f2) ] = Ci or r)
2+r = a2ln^-, (135) 

and equations (127) and (128) become 

Ô((t) = f(t)B02[-ÇtW +»'(i?)]exp[-^(r+r,2+r2) 

ÔfW = f(t)Bo2aœ(v)exp[--^tt2 + ri2+ï2) 

where 

7T (77) = 
2_ 
a2 2 

(136) 

(137) 

(138) 

The neutral line where 8%(t) and 8ç(t) vanish simultaneously will be denoted by ¿oO?) and 
fo(??). We see from equation (136) that 

£0(^=0, to(v)=LTT. W 
7T (T?) 

Substituting equations (136) and (137) in equation (130), we obtain for the field lines of 5(/) the 
family of curves 

[r-roG))]2+^^ £2=c3. 
(14(» 7T (77) 

These are ellipses for rj2 < a2 with centers on the neutral line. For tj2 > a2 the lines form hy- 
perbolas. 

The problem of defining the “strength” of the magnetic loop generated offers some diffi- 
culty. The 77-component of curl 5 vanishes on integration over the volume, but this does not 
mean that there is no net circulation of magnetic flux about the neutral line. Perhaps the simplest 
way to demonstrate that such a circulation has been generated is the following: We compute the 
flux across the 77f-plane above foO?) and show that at least some of it bends around so as to 
penetrate the surface f = fo(??), £ > 0. The fluxes are 

/+OO +OO Z' + OO p CO 
= — / àr] I di; 8ç\t=to(v). (141) ■00 »/fo (77) J—CO *A) 

Using equations (136) and (137), we find 

${ = — 2/ (0-Bo Ç dr] f ¿f [fir (rj) —v(r]) ) exp[ —-^(ij2+ f2) 
L 0 (142) 

— 2/ (0-Bo f+a>dr\w (j)) exp j —[r;2+ (i?) ] --^[fo(i?) - ô] 2j 

(143) 

X,0^exp(-|;£2)- 

In the integrand of the expression for we have f > fofe). From equations (139) it follows that 
the integrand is always positive. In the expression for the sign of the integrand is the same as 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
55

A
pJ

. 
. .

12
2.

 .
2 

93
P 

314 EUGENE N. PARKER 

the sign of co(r/) From equation (138) we see that 00(7?) is positive if rç2 < a2, otherwise negative 
But for rj2 > a2 the Gaussian factor is very small, so small in fact that the integration over 
r]2 > a2 constitutes only a small percentage of the total value. Thus the integrals are positive, 
and <í>¿ and <í>¿- have the same sign; hence there is a net circulation of flux about the neutral line 
independent of the relative magnitudes of parameters a, b, and c 

Since the existence of a net circulation is independent of a, b, and c, we shall limit the evalua- 
tion of the fluxes to the special case b = 0, c = œ. Then fo(^) = 0, and 

${ = $i- = — / (0 Boa . (144) 
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